Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.272
Filtrar
1.
Methods Mol Biol ; 2780: 345-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987477

RESUMEN

Chemical protein knockdown technology using proteolysis-targeting chimeras (PROTACs) to hijack the endogenous ubiquitin-proteasome system is a powerful strategy to degrade disease-related proteins. This chapter describes in silico design of a hematopoietic prostaglandin D synthase (H-PGDS) degrader, PROTAC(H-PGDS), using a docking simulation of the ternary complex of H-PGDS/PROTAC/E3 ligase as well as the synthesis of the designed PROTAC(H-PGDS)s and evaluation of their H-PGDS degradation activity.


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Simulación del Acoplamiento Molecular , Proteolisis , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Simulación por Computador , Diseño de Fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química
2.
Bioorg Med Chem ; 109: 117790, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38906067

RESUMEN

The immunoproteasome subunit LMP7 (ß5i)/LMP2 (ß1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit ß5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over ß5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.


Asunto(s)
Ácidos Borónicos , Microscopía por Crioelectrón , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Animales , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/síntesis química , Ratones , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Ácidos Borónicos/síntesis química , Humanos , Relación Estructura-Actividad , Cisteína Endopeptidasas/metabolismo , Estructura Molecular , Simulación de Dinámica Molecular , Descubrimiento de Drogas
3.
Nat Commun ; 15(1): 3992, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734767

RESUMEN

Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Complejo de la Endopetidasa Proteasomal , Proteómica , Ribosomas , Programas Informáticos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Ribosomas/ultraestructura , Ribosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Humanos , Proteómica/métodos , Poro Nuclear/ultraestructura , Poro Nuclear/metabolismo , Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Ácido Graso Sintasas/metabolismo , Aprendizaje Automático , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Am Soc Mass Spectrom ; 35(6): 1063-1068, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38748611

RESUMEN

Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.


Asunto(s)
Bortezomib , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Bortezomib/farmacología , Bortezomib/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Humanos
5.
Bioorg Med Chem ; 106: 117733, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38704960

RESUMEN

Development of selective or dual proteasome subunit inhibitors based on syringolin B as a scaffold is described. We focused our efforts on a structure-activity relationship study of inhibitors with various substituents at the 3-position of the macrolactam moiety of syringolin B analogue to evaluate whether this would be sufficient to confer subunit selectivity by using sets of analogues with hydrophobic, basic and acidic substituents, which were designed to target Met45, Glu53 and Arg45 embedded in the S1 subsite, respectively. The structure-activity relationship study using systematic analogues provided insight into the origin of the subunit-selective inhibitory activity. This strategy would be sufficient to confer subunit selectivity regarding ß5 and ß2 subunits.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Relación Estructura-Actividad , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/síntesis química , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Estructura Molecular
6.
Protein Sci ; 33(6): e5034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801231

RESUMEN

In eukaryotes, the ubiquitin-proteasome system is responsible for intracellular protein degradation. Proteins tagged with ubiquitin are recognized by ubiquitin receptors on the 19S regulatory particle (RP) of the 26S proteasome, unfolded, routed through the translocation channel of the RP, and are then degraded in the 20S core particle (CP). Aromatic paddles on the pore-1 loops of the RP's Rpt subunits grip the substrate and pull folded domains into the channel, thereby unfolding them. The sequence that the aromatic paddles grip while unfolding a substrate is therefore expected to influence the extent of unfolding, and low complexity sequences have been shown to interfere with grip. However, the detailed spatial requirements for grip while unfolding proteins, particularly from the N-terminus, remain unknown. We determined how the location of glycine-rich tracts relative to a folded domain impairs unfolding. We find that, in contrast to a previous report, inserting glycine-rich sequences closer to the folded domain reduced unfolding ability more than positioning them further away. Locations that have the biggest effect on unfolding map onto the regions where the aromatic paddles are predicted to interact with the substrate. Effects on unfolding from locations up to 67 amino acids away from the folded domain suggest that there are additional interactions between the substrate and the proteasome beyond the aromatic paddles that facilitate translocation of the substrate. In sum, this study deepens understanding of the mechanical interactions within the substrate channel by mapping the spacing of interactions between the substrate and the proteasome during unfolding.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Modelos Moleculares , Humanos , Desplegamiento Proteico , Transporte de Proteínas
7.
Proc Natl Acad Sci U S A ; 121(10): e2310756121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408252

RESUMEN

Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1, show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin-binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome-Rpn1, Rpn10, and Rpn13-and the Ubl domains of Rad23 and Dsk2 are critical under different condensate-inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Animales , Ubiquitina/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/química , Saccharomyces cerevisiae/genética , Ubiquitinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Mamíferos
8.
Proc Natl Acad Sci U S A ; 120(51): e2308417120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38091293

RESUMEN

Proteasome inhibitors are widely used anticancer drugs. The three clinically approved agents are modified small peptides that preferentially target one of the proteasome's three active sites (ß5) at physiologic concentrations. In addition to these drugs, there is also an endogenous proteasome inhibitor, PI31/Fub1, that enters the proteasome's interior to simultaneously yet specifically inhibit all three active sites. Here, we have used PI31's evolutionarily optimized inhibitory mechanisms to develop a suite of potent and specific ß2 inhibitors. The lead compound strongly inhibited growth of multiple myeloma cells as a standalone agent, indicating the compound's cell permeability and establishing ß2 as a potential therapeutic target in multiple myeloma. The lead compound also showed strong synergy with the existing ß5 inhibitor bortezomib; such combination therapies might help with existing challenges of resistance and severe side effects. These results represent an effective method for rational structure-guided development of proteasome inhibitors.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Antineoplásicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/química , Bortezomib/farmacología , Bortezomib/uso terapéutico
9.
STAR Protoc ; 4(4): 102748, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999974

RESUMEN

Proteasomes are heterogeneous in forms and functions, but how the equilibrium among the 20S, 26S, and 30S proteasomes is achieved and altered is elusive. Here, we present a protocol for purifying and characterizing proteasome species. We describe steps for generating stable cell lines; affinity purifying the proteasome species; and characterizing them through native PAGE, activity assay, size-exclusion chromatography, and mass spectrometry. These standardized methods may contribute to biochemical studies of cellular proteasomes under both physiological and pathological conditions. For complete details on the use and execution of this protocol, please refer to Choi et al. (2023).1.


Asunto(s)
Mamíferos , Complejo de la Endopetidasa Proteasomal , Animales , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/química , Citoplasma/metabolismo , Espectrometría de Masas , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida Nativa , Mamíferos/metabolismo
11.
Nat Struct Mol Biol ; 30(10): 1516-1524, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653242

RESUMEN

Assembly of the proteasome's core particle (CP), a barrel-shaped chamber of four stacked rings, requires five chaperones and five subunit propeptides. Fusion of two half-CP precursors yields a complete structure but remains immature until active site maturation. Here, using Saccharomyces cerevisiae, we report a high-resolution cryogenic electron microscopy structure of preholoproteasome, a post-fusion assembly intermediate. Our data reveal how CP midline-spanning interactions induce local changes in structure, facilitating maturation. Unexpectedly, we find that cleavage may not be sufficient for propeptide release, as residual interactions with chaperones such as Ump1 hold them in place. We evaluated previous models proposing that dynamic conformational changes in chaperones drive CP fusion and autocatalytic activation by comparing preholoproteasome to pre-fusion intermediates. Instead, the data suggest a scaffolding role for the chaperones Ump1 and Pba1/Pba2. Our data clarify key aspects of CP assembly, suggest that undiscovered mechanisms exist to explain CP fusion/activation, and have relevance for diseases of defective CP biogenesis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Chaperonas Moleculares
12.
Anal Chem ; 95(33): 12209-12215, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552619

RESUMEN

Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.


Asunto(s)
Espectrometría de Masas , Complejo de la Endopetidasa Proteasomal/química , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Modelos Moleculares , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/química
13.
J Biol Chem ; 299(9): 105145, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562568

RESUMEN

The inhibitory mechanism of an intrinsically disordered proteasome inhibitor identified over 30 years ago has finally been revealed by cryo-electron microscopy by Hsu et al. in a recent report in the Journal of Biological Chemistry. The structure, coupled with biochemical and cell-based experiments, resolves lingering questions about how the inhibitor achieves multisite inhibition of proteasomal protease activity, while raising several exciting new questions on the nature of proteasome subpopulations in the process.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Inhibidores de Proteasoma/farmacología , Microscopía por Crioelectrón , Complejo de la Endopetidasa Proteasomal/química
14.
Biomolecules ; 13(8)2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37627288

RESUMEN

The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/biosíntesis , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Conformación Proteica , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Humanos , Microscopía por Crioelectrón , Proteolisis , Ubiquitina/metabolismo
15.
J Mol Biol ; 435(11): 167997, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330287

RESUMEN

AAA+ ATPases are ubiquitous hexameric unfoldases acting in cellular protein quality control. In complex with proteases, they form protein degradation machinery (the proteasome) in both archaea and eukaryotes. Here, we use solution-state NMR spectroscopy to determine the symmetry properties of the archaeal PAN AAA+ unfoldase and gain insights into its functional mechanism. PAN consists of three folded domains: the coiled-coil (CC), OB and ATPase domains. We find that full-length PAN assembles into a hexamer with C2 symmetry, and that this symmetry extends over the CC, OB and ATPase domains. The NMR data, collected in the absence of substrate, are incompatible with the spiral staircase structure observed in electron-microscopy studies of archaeal PAN in the presence of substrate and in electron-microscopy studies of eukaryotic unfoldases both in the presence and in the absence of substrate. Based on the C2 symmetry revealed by NMR spectroscopy in solution, we propose that archaeal ATPases are flexible enzymes, which can adopt distinct conformations in different conditions. This study reaffirms the importance of studying dynamic systems in solution.


Asunto(s)
Endopeptidasa Clp , Methanocaldococcus , Complejo de la Endopetidasa Proteasomal , Proteolisis , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Endopeptidasa Clp/química , Dominios Proteicos , Resonancia Magnética Nuclear Biomolecular , Methanocaldococcus/enzimología , Saccharomyces cerevisiae/enzimología
16.
PLoS Negl Trop Dis ; 17(6): e0011380, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37267415

RESUMEN

The high reproductive rates of insects contribute significantly to their ability to act as vectors of a variety of vector-borne diseases. Therefore, it is strategically critical to find molecular targets with biotechnological potential through the functional study of genes essential for insect reproduction. The ubiquitin-proteasome system is a vital degradative pathway that contributes to the maintenance of regular eukaryotic cell proteostasis. This mechanism involves the action of enzymes to covalently link ubiquitin to proteins that are meant to be delivered to the 26S proteasome and broken down. The 26S proteasome is a large protease complex (including the 20S and 19S subcomplexes) that binds, deubiquitylates, unfolds, and degrades its substrates. Here, we used bioinformatics to identify the genes that encode the seven α and ß subunits of the 20S proteasome in the genome of R. prolixus and learned that those transcripts are accumulated into mature oocytes. To access proteasome function during oogenesis, we conducted RNAi functional tests employing one of the 20S proteasome subunits (Prosα6) as a tool to suppress 20S proteasomal activity. We found that Prosα6 silencing resulted in no changes in TAG buildup in the fat body and unaffected availability of yolk proteins in the hemolymph of vitellogenic females. Despite this, the silencing of Prosα6 culminated in the impairment of oocyte maturation at the early stages of oogenesis. Overall, we discovered that proteasome activity is especially important for the signals that initiate oogenesis in R. prolixus and discuss in what manner further investigations on the regulation of proteasome assembly and activity might contribute to the unraveling of oogenesis molecular mechanisms and oocyte maturation in this vector.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Rhodnius , Animales , Femenino , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Ovario/metabolismo , Proteína Sequestosoma-1/metabolismo , Rhodnius/fisiología , Oogénesis/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Ubiquitinas/metabolismo
17.
J Phys Chem Lett ; 14(21): 5014-5017, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224454

RESUMEN

Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteolisis
18.
Biomolecules ; 13(4)2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37189451

RESUMEN

Many chronic diseases, including cancer and neurodegeneration, are linked to proteasome dysregulation. Proteasome activity, essential for maintaining proteostasis in a cell, is controlled by the gating mechanism and its underlying conformational transitions. Thus, developing effective methods to detect gate-related specific proteasome conformations could be a significant contribution to rational drug design. Since the structural analysis suggests that gate opening is associated with a decrease in the content of α-helices and ß-sheets and an increase in random coil structures, we decided to explore the application of electronic circular dichroism (ECD) in the UV region to monitor the proteasome gating. A comparison of ECD spectra of wild type yeast 20S proteasome (predominantly closed) and an open-gate mutant (α3ΔN) revealed an increased intensity in the ECD band at 220 nm, which suggests increased contents of random coil and ß-turn structures. This observation was further supported by evaluating ECD spectra of human 20S treated with low concentration of SDS, known as a gate-opening reagent. Next, to evaluate the power of ECD to probe a ligand-induced gate status, we treated the proteasome with H2T4, a tetracationic porphyrin that we showed previously to induce large-scale protein conformational changes upon binding to h20S. H2T4 caused a significant increase in the ECD band at 220 nm, interpreted as an induced opening of the 20S gate. In parallel, we imaged the gate-harboring alpha ring of the 20S with AFM, a technique that we used previously to visualize the predominantly closed gate in latent human or yeast 20S and the open gate in α3ΔN mutant. The results were convergent with the ECD data and showed a marked decrease in the content of closed-gate conformation in the H2T4-treated h20S. Our findings provide compelling support for the use of ECD measurements to conveniently monitor proteasome conformational changes related to gating phenomena. We predict that the observed association of spectroscopic and structural results will help with efficient design and characterization of exogenous proteasome regulators.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Humanos , Dicroismo Circular , Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Microscopía de Fuerza Atómica
19.
Chemistry ; 29(20): e202203958, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36617500

RESUMEN

Here, we present remarkable epoxyketone-based proteasome inhibitors with low nanomolar in vitro potency for blood-stage Plasmodium falciparum and low cytotoxicity for human cells. Our best compound has more than 2,000-fold greater selectivity for erythrocytic-stage P. falciparum over HepG2 and H460 cells, which is largely driven by the accommodation of the parasite proteasome for a D-amino acid in the P3 position and the preference for a difluorobenzyl group in the P1 position. We isolated the proteasome from P. falciparum cell extracts and determined that the best compound is 171-fold more potent at inhibiting the ß5 subunit of P. falciparum proteasome when compared to the same subunit of the human constitutive proteasome. These compounds also significantly reduce parasitemia in a P. berghei mouse infection model and prolong survival of animals by an average of 6 days. The current epoxyketone inhibitors are ideal starting compounds for orally bioavailable anti-malarial drugs.


Asunto(s)
Antimaláricos , Plasmodium , Ratones , Animales , Humanos , Inhibidores de Proteasoma/química , Complejo de la Endopetidasa Proteasomal/química , Plasmodium falciparum , Antimaláricos/farmacología
20.
Biophys J ; 121(20): 3975-3986, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36016496

RESUMEN

The 20S proteasome core particle (CP) is a molecular machine that is a key component of cellular protein degradation pathways. Like other molecular machines, it is not synthesized in an active form but rather as a set of subunits that assemble into a functional complex. The CP is conserved across all domains of life and is composed of 28 subunits, 14 α and 14 ß, arranged in four stacked seven-member rings (α7ß7ß7α7). While details of CP assembly vary across species, the final step in the assembly process is universally conserved: two half proteasomes (HPs; α7ß7) dimerize to form the CP. In the bacterium Rhodococcus erythropolis, experiments have shown that the formation of the HP is completed within minutes, while the dimerization process takes hours. The N-terminal propeptide of the ß subunit, which is autocatalytically cleaved off after CP formation, plays a key role in regulating this separation of timescales. However, the detailed molecular mechanism of how the propeptide achieves this regulation is unclear. In this work, we used molecular dynamics simulations to characterize HP conformations and found that the HP exists in two states: one where the propeptide interacts with key residues in the HP dimerization interface and likely blocks dimerization, and one where this interface is free. Furthermore, we found that a propeptide mutant that dimerizes extremely slowly is essentially always in the nondimerizable state, while the wild-type rapidly transitions between the two. Based on these simulations, we designed a propeptide mutant that favored the dimerizable state in molecular dynamics simulations. In vitro assembly experiments confirmed that this mutant dimerizes significantly faster than wild-type. Our work thus provides unprecedented insight into how this critical step in CP assembly is regulated, with implications both for efforts to inhibit proteasome assembly and for the evolution of hierarchical assembly pathways.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Molecular , Dimerización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA