Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
PLoS One ; 19(8): e0305781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39178225

RESUMEN

Potato is one of the four staple food crops in the world. It has a wide range of cultivation, high yield, and high nutritional value. Enhancing the photosynthesis of potato is particularly important as it leads to an increase in the potato yield. The light-harvesting pigment-binding protein complex is very important for plant photosynthesis. We identified 12 Stlhcb gene family members from the potato variety "Atlantic" using transcriptome sequencing and bioinformatics. The proteins encoded by the Stlhcb gene family have between 3358 and 4852 atomic number, a relative molecular weight between 24060.16 and 34624.54 Da, and an isoelectric point between 4.99 and 8.65. The RT-qPCR results showed that the 12 Stlhcb genes were expressed in a tissue-specific and time-dependent fashion under low light. The relative expression of the Stlhcb genes in the leaves was significantly higher than that in the stems and roots, and the relative expression of these genes first increased and then decreased with the prolongation of light exposure time. The Stcp24 gene with the highest expression was cloned, and an expression vector was constructed. A subcellular localization analysis was performed in tobacco and an overexpression experiment was performed in potato using an Agrobacterium-mediated method. The subcellular localization analysis showed that the protein encoded by Stcp24 was located in chloroplasts as expected. Overexpression of Stcp24 in transgenic potato increased the yield of potatoes and the content of chlorophyll a and b; increased the net photosynthetic rate, transpiration rate, stomatal conductance, electron transport efficiency, and semi-saturated light intensity; and promoted photosynthesis and plant growth. This study provides a reference for the study of the function of the potato light-harvesting pigment-binding protein gene family. It lays a foundation for further study of the mechanism of the photosynthesis of potato, improvement of the light energy utilization of potato, and molecular breeding of potato.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Familia de Multigenes , Clorofila/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Filogenia
2.
Microb Biotechnol ; 17(7): e14521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949508

RESUMEN

Rhodopsins, a diverse class of light-sensitive proteins found in various life domains, have attracted considerable interest for their potential applications in sustainable synthetic biology. These proteins exhibit remarkable photochemical properties, undergoing conformational changes upon light absorption that drive a variety of biological processes. Exploiting rhodopsin's natural properties could pave the way for creating sustainable and energy-efficient technologies. Rhodopsin-based light-harvesting systems offer innovative solutions to a few key challenges in sustainable engineering, from bioproduction to renewable energy conversion. In this opinion article, we explore the recent advancements and future possibilities of employing rhodopsins for sustainable engineering, underscoring the transformative potential of these biomolecules.


Asunto(s)
Rodopsina , Biología Sintética , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/química , Rodopsina/metabolismo , Rodopsina/química , Rodopsina/genética , Biología Sintética/métodos
3.
Plant Cell ; 36(10): 4234-4244, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963887

RESUMEN

In oxygenic photosynthesis, state transitions distribute light energy between PSI and PSII. This regulation involves reduction of the plastoquinone pool, activation of the state transitions 7 (STT7) protein kinase by the cytochrome (cyt) b6f complex, and phosphorylation and migration of light harvesting complexes II (LHCII). In this study, we show that in Chlamydomonas reinhardtii, the C-terminus of the cyt b6 subunit PetB acts on phosphorylation of STT7 and state transitions. We used site-directed mutagenesis of the chloroplast petB gene to truncate (remove L215b6) or elongate (add G216b6) the cyt b6 subunit. Modified complexes are devoid of heme ci and degraded by FTSH protease, revealing that salt bridge formation between cyt b6 (PetB) and Subunit IV (PetD) is essential to the assembly of the complex. In double mutants where FTSH is inactivated, modified cyt b6f accumulated but the phosphorylation cascade was blocked. We also replaced the arginine interacting with heme ci propionate (R207Kb6). In this modified complex, heme ci is present but the kinetics of phosphorylation are slower. We show that highly phosphorylated forms of STT7 accumulated transiently after reduction of the PQ pool and represent the active forms of the protein kinase. The phosphorylation of the LHCII targets is favored at the expense of the protein kinase, and the migration of LHCII toward PSI is the limiting step for state transitions.


Asunto(s)
Chlamydomonas reinhardtii , Complejo de Citocromo b6f , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complejo de Citocromo b6f/metabolismo , Complejo de Citocromo b6f/genética , Fosforilación , Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética
4.
Nat Commun ; 15(1): 5211, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890314

RESUMEN

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.


Asunto(s)
Chlamydomonas reinhardtii , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Tilacoides/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Grupo Citocromo b/metabolismo , Grupo Citocromo b/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Luz
5.
Curr Biol ; 34(13): 2972-2979.e4, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851184

RESUMEN

The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.


Asunto(s)
Clorofila , Cianobacterias , Complejos de Proteína Captadores de Luz , Fotosíntesis , Clorofila/metabolismo , Cianobacterias/metabolismo , Cianobacterias/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Evolución Biológica , Fenotipo
6.
J Phys Chem Lett ; 15(24): 6398-6408, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38861672

RESUMEN

Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.


Asunto(s)
Transferencia de Energía , Complejos de Proteína Captadores de Luz , Mutación , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Cinética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema II
7.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763078

RESUMEN

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Asunto(s)
Chlamydomonas reinhardtii , Complejos de Proteína Captadores de Luz , Presión Osmótica , Complejo de Proteína del Fotosistema II , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Fotosíntesis/efectos de la radiación , Luz , Clorofila/metabolismo
8.
Nat Commun ; 15(1): 4437, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789432

RESUMEN

Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.


Asunto(s)
Carotenoides , Chlamydomonas reinhardtii , Transferencia de Energía , Chlamydomonas reinhardtii/metabolismo , Carotenoides/metabolismo , Carotenoides/química , Tilacoides/metabolismo , Fotosíntesis , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Clorofila A/metabolismo , Clorofila A/química , Luz , Cinética , Clorofila/metabolismo , Chlamydomonas/metabolismo
9.
Nat Plants ; 10(6): 874-879, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38816499

RESUMEN

Plant photosystem I (PSI) consists of at least 13 nuclear-encoded and 4 chloroplast-encoded subunits that together act as a sunlight-driven oxidoreductase. Here we report the structure of a PSI assembly intermediate that we isolated from greening oat seedlings. The assembly intermediate shows an absence of at least eight subunits, including PsaF and LHCI, and lacks photoreduction activity. The data show that PsaF is a regulatory checkpoint that promotes the assembly of LHCI, effectively coupling biogenesis to function.


Asunto(s)
Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Avena/metabolismo , Avena/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Plantones/genética , Plantones/metabolismo
10.
Biochim Biophys Acta Bioenerg ; 1865(3): 149050, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38806091

RESUMEN

Purple phototrophic bacteria possess light-harvesting 1 and reaction center (LH1-RC) core complexes that play a key role in converting solar energy to chemical energy. High-resolution structures of LH1-RC and RC complexes have been intensively studied and have yielded critical insight into the architecture and interactions of their proteins, pigments, and cofactors. Nevertheless, a detailed picture of the structure and assembly of LH1-only complexes is lacking due to the intimate association between LH1 and the RC. To study the intrinsic properties and structure of an LH1-only complex, a genetic system was constructed to express the Thermochromatium (Tch.) tepidum LH1 complex heterologously in a modified Rhodospirillum rubrum mutant strain. The heterologously expressed Tch. tepidum LH1 complex was isolated in a pure form free of the RC and exhibited the characteristic absorption properties of Tch. tepidum. Cryo-EM structures of the LH1-only complexes revealed a closed circular ring consisting of either 14 or 15 αß-subunits, making it the smallest completely closed LH1 complex discovered thus far. Surprisingly, the Tch. tepidum LH1-only complex displayed even higher thermostability than that of the native LH1-RC complex. These results reveal previously unsuspected plasticity of the LH1 complex, provide new insights into the structure and assembly of the LH1-RC complex, and show how molecular genetics can be exploited to study membrane proteins from phototrophic organisms whose genetic manipulation is not yet possible.


Asunto(s)
Chromatiaceae , Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Chromatiaceae/metabolismo , Chromatiaceae/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA