Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.745
Filtrar
1.
Lung ; 202(5): 659-672, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153120

RESUMEN

PURPOSE: Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. METHODS: We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Mouse body composition was assessed using dual-energy X-ray absorptiometry. Mouse lung function was measured using flexiVent. RESULTS: Contrary to prior publications, the KO was not neonatal lethal. KO mice had lower body weight and shorter tibial length than wild-type (WT) mice. Their body composition revealed lower soft weight, fat weight, and bone mineral content. Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. CONCLUSION: Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.


Asunto(s)
Proteínas ADAM , Estudio de Asociación del Genoma Completo , Pulmón , Ratones Noqueados , Animales , Pulmón/metabolismo , Humanos , Ratones , Proteínas ADAM/genética , Polimorfismo de Nucleótido Simple , Masculino , Modelos Animales de Enfermedad , Pruebas de Función Respiratoria , Femenino , Capacidad Vital , Composición Corporal/genética
2.
Sci Rep ; 14(1): 19501, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174729

RESUMEN

Japanese quails (Coturnix japonica) have a high reproductive rate because they reach sexual maturity very early. This short rearing time results in increasing interest among breeders and consumers. The aim of the study was a comparative analysis of two genotypes and sexes of Japanese and Pharaoh quails and their impact on body weight, carcass composition, meat quality, digestive system morphometry and leg bone dimensions. The study involved 40 birds (10 females and 10 males), Japanese quail and Pharaoh quail, 42 days old. Quail genotype had an effect (P < 0.05) on body weight, carcass weight, and some percentage of carcass elements. In addition, there was a significant effect of quail genotype on intramuscular fat and water content of pectoral and leg muscles. The origin of the quails interacted (P < 0.05) with the lightness (L*), yellowness (b*), cutting work, hardness, springiness, chewiness, gumminess, fibre cross-sectional area, vertical fibre diameter, and perimysium thickness of pectoral muscle. In addition, genotype was found to influence some anatomical traits, such as the percentage of proventriculus, heart, and liver on body weight, lengths and diameters of duodenum, caeca, and colon, and most dimensions of leg bones (femur and tibia). The sex of the birds significantly (P < 0.05) affected body weight, carcass weight, percentage of skin with subcutaneous fat in the carcass, as well as water content, lightness (L*), and springiness, most microstructure characteristics of pectoralis muscle, and also water and protein contents, and yellowness (b*) of leg muscles. In addition, differences were found between males and females (P < 0.05) in terms of duodenum and caeca diameter, length of greatest and medial femur, and greatest length of tibia. It can be stated that in terms of body weight and carcass weight as well as some meat quality features (protein content, fat content, fiber cross-sectional area), the pharaoh quail was the better genotype, while in terms of the proportion of muscles in the carcass and selected meat quality features: hardness, gumminess, chewiness, Japanese quails turned out to be better.


Asunto(s)
Composición Corporal , Coturnix , Genotipo , Carne , Animales , Coturnix/genética , Coturnix/anatomía & histología , Masculino , Femenino , Carne/análisis , Composición Corporal/genética , Peso Corporal/genética , Huesos/anatomía & histología , Factores Sexuales
3.
Genes (Basel) ; 15(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927688

RESUMEN

In humans, the transient receptor potential vanilloid 1 (TRPV1) gene is activated by exogenous (e.g., high temperatures, irritating compounds such as capsaicin) and endogenous (e.g., endocannabinoids, inflammatory factors, fatty acid metabolites, low pH) stimuli. It has been shown to be involved in several processes including nociception, thermosensation, and energy homeostasis. In this study, we investigated the association between TRPV1 gene variants, sensory perception (to capsaicin and PROP), and body composition (BMI and bioimpedance variables) in human populations. By comparing sequences deposited in worldwide databases, we identified two haplotype blocks (herein referred to as H1 and H2) that show strong stabilizing selection signals (MAF approaching 0.50, Tajima's D > +4.5) only in individuals with sub-Saharan African ancestry. We therefore studied the genetic variants of these two regions in 46 volunteers of sub-Saharan descent and 45 Italian volunteers (both sexes). Linear regression analyses showed significant associations between TRPV1 diplotypes and body composition, but not with capsaicin perception. Specifically, in African women carrying the H1-b and H2-b haplotypes, a higher percentage of fat mass and lower extracellular fluid retention was observed, whereas no significant association was found in men. Our results suggest the possible action of sex-driven balancing selection at the non-coding sequences of the TRPV1 gene, with adaptive effects on water balance and lipid deposition.


Asunto(s)
Población Negra , Composición Corporal , Canales Catiónicos TRPV , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , África del Sur del Sahara , Población Negra/genética , Composición Corporal/genética , Haplotipos , Polimorfismo de Nucleótido Simple , Pueblo Africano Subsahariano , Canales Catiónicos TRPV/genética
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38943561

RESUMEN

The objective of the present study was to comprehensively evaluate whether body measurement traits, including body weight and body size, could be used as indicators of genetic selection for feed efficiency and carcass traits in Japanese Black steers. First, we estimated the genetic parameters for body measurements, feed efficiency, and carcass traits. Second, we estimated the correlated responses in feed efficiency and carcass traits when selection was applied to one or multiple-body measurement traits. In total, 4,578 Japanese Black steers with phenotypic values of residual feed intake (RFI) and residual body weight gain (RG) as feed efficiency traits and carcass weight (CWT) and beef marbling standard (BMS) as carcass traits were used. Eleven body measurement traits were measured at the start and finish of the fattening periods (BMT1 and BMT2, respectively), and their growth during the fattening period (BMT3) was used for genetic analyses. The results of genetic parameters showed that the heritability estimates were low to moderate (0.10 to 0.66), and the genetic correlations among body measurement traits were also estimated to be positively moderate to high in each measuring point (0.23 to 0.99). The genetic correlations of body measurement traits with RFI and BMS were estimated to be low (-0.14 to 0.30 and -0.17 to 0.35, respectively), but those with CWT were positively low to high (0.12 to 0.97). The genetic correlation estimates between BMT3 and RG were moderate to high (0.38 to 0.78). Second, correlated responses were estimated under positive selection for body measurement traits. Positive selection for BMT2 and BMT3 increased CWT and RG; however, positive selection for body measurement traits resulted in no change in RFI and BMS. Favorable directions of genetic gains, which were positive for RG, CWT, and BMS and negative for RFI, were obtained by selection indices, including multiple traits in BMT1. Our results suggest that using only one-body measurement trait as an indicator of genetic selection for RFI is difficult. However, body measurement traits can be indirect indicators of improved RG. Our results also suggest that genetic improvement of both RFI and RG without reducing CWT and BMS could be achieved using selection indices that account for a balance of body conformation using multiple-body measurement traits in Japanese Black cattle.


Improving feed efficiency is a key objective in the beef cattle industry. Still, high costs and logistical efforts make measuring daily feed intake per animal in many cattle difficult. Here, we focused on body measurement traits, including body weight and body size, as indirect indicators of feed efficiency in Japanese Black cattle, as measuring these traits is easy and inexpensive. When selection was applied to one- or multiple-body measurement traits, we estimated the correlated responses in feed efficiency and carcass traits. We also estimated the genetic relationships of body measurement traits with feed efficiency and carcass traits. Our results showed body measurement traits were heritable and had weak genetic relationships with residual feed intake. Regarding the possibility of genetic selection for residual feed intake using body measurement traits as indirect indicators, our results suggest that using a single body measurement trait as an indicator is difficult. However, our results also suggest that the genetic improvement of residual feed intake could be possible using selection indices that account for a balance of body conformation using multiple-body measurement traits in Japanese Black cattle.


Asunto(s)
Selección Genética , Animales , Bovinos/genética , Bovinos/fisiología , Bovinos/crecimiento & desarrollo , Masculino , Aumento de Peso/genética , Composición Corporal/genética , Peso Corporal/genética , Cruzamiento , Fenotipo , Alimentación Animal/análisis , Tamaño Corporal/genética
5.
Eur Thyroid J ; 13(4)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869458

RESUMEN

Introduction: The type 2 deiodinase and its Thr92Ala-DIO2 polymorphism have been linked to clinical outcomes in acute lung injury and coronavirus disease 2019 (COVID-19). Objective: The objective was to identify a potential association between Thr92Ala-DIO2 polymorphism and body composition (appendicular muscle mass, myosteatosis, and fat distribution) and to determine whether they reflect the severity or mortality associated with the disease. Methods: In this prospective cohort study (June-August 2020), 181 patients hospitalized with moderate-to-severe COVID-19 underwent a non-contrast-enhanced computed tomography (CT) of the thorax to assess body composition, laboratory tests, and genotyping for the Thr92Ala-DIO2 polymorphism. Results: In total, 181 consecutive patients were stratified into three subgroups according to the genotype: Thr/Thr (n = 64), Thr/Ala (n = 96), and Ala/Ala (n = 21). The prevalence of low muscle area (MA) (< 92 cm²) was 52.5%. Low MA was less frequent in Ala/Thr patients (44.8%) than in Thr/Thr (60.9%) or Ala/Ala patients (61.9%) (P = 0.027). Multivariate logistic regression analysis confirmed that the Thr/Ala allele was associated with a reduced risk of low MA (41% to 69%) and myosteatosis (62% to 72%) compared with Thr/Thr + Ala/Ala (overdominant model). Kaplan-Meier curves showed that patients with low muscle mass and homozygosity had lower survival rates than the other groups. Notably, the heterozygotes with MA ≥92 cm² exhibited the best survival rate. Conclusion: Thr92Ala-DIO2 heterozygosity is associated with increased skeletal MA and less myosteatosis in patients with COVID-19. The protective effect of Thr92Ala-DIO2 heterozygosity on COVID-19 mortality is restricted to patients with reduced MA.


Asunto(s)
COVID-19 , Músculo Esquelético , SARS-CoV-2 , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Composición Corporal/genética , COVID-19/genética , COVID-19/diagnóstico por imagen , Genotipo , Heterocigoto , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Estudios Prospectivos , Tomografía Computarizada por Rayos X
6.
Front Public Health ; 12: 1355659, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807991

RESUMEN

Background: The Tibetan population residing in high-altitude (HA) regions has adapted to extreme hypoxic environments. However, there is limited understanding of the genetic basis of body compositions in Tibetan population adapted to HA. Methods: We performed a genome-wide association study (GWAS) to identify genetic variants associated with HA and HA-related body composition traits. A total of 755,731 single nucleotide polymorphisms (SNPs) were genotyped using the precision medicine diversity array from 996 Tibetan college students. T-tests and Pearson correlation analysis were used to estimate the association between body compositions and altitude. The mixed linear regression identified the SNPs significantly associated with HA and HA-related body compositions. LASSO regression was used to screen for important SNPs in HA and body compositions. Results: Significant differences were observed in lean body mass (LBW), muscle mass (MM), total body water (TBW), standard weight (SBW), basal metabolic rate (BMR), total protein (TP), and total inorganic salt (Is) in different altitudes stratification. We identified three SNPs in EPAS1 (rs1562453, rs7589621 and rs7583392) that were significantly associated with HA (p < 5 × 10-7). GWAS analysis of 7 HA-related body composition traits, we identified 14 SNPs for LBM, 11 SNPs for TBW, 15 SNPs for MM, 16 SNPs for SBW, 9 SNPs for BMR, 12 SNPs for TP, and 26 SNPs for Is (p < 5.0 × 10-5). Conclusion: These findings provide insight into the genetic basis of body composition in Tibetan college students adapted to HA, and lay the foundation for further investigation into the molecular mechanisms underlying HA adaptation.


Asunto(s)
Altitud , Composición Corporal , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Tibet , Polimorfismo de Nucleótido Simple/genética , Masculino , Femenino , Composición Corporal/genética , Adulto Joven , Adulto , Adaptación Fisiológica/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Genotipo , Pueblos del Este de Asia
7.
BMC Geriatr ; 24(1): 438, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762444

RESUMEN

BACKGROUND: Appendicular lean mass (ALM) is a good predictive biomarker for sarcopenia. And previous studies have reported the association between ALM and stroke or Alzheimer's disease (AD), however, the causal relationship is still unclear, The purpose of this study was to evaluate whether genetically predicted ALM is causally associated with the risk of stroke and AD by performing Mendelian randomization (MR) analyses. METHODS: A two-sample MR study was designed. Genetic variants associated with the ALM were obtained from a large genome-wide association study (GWAS) and utilized as instrumental variables (IVs). Summary-level data for stroke and AD were generated from the corresponding GWASs. We used random-effect inverse-variance weighted (IVW) as the main method for estimating causal effects, complemented by several sensitivity analyses, including the weighted median, MR-Egger, and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods. Multivariable analysis was further conducted to adjust for confounding factors, including body mass index (BMI), type 2 diabetes mellitus (T2DM), low density lipoprotein-C (LDL-C), and atrial fibrillation (AF). RESULTS: The present MR study indicated significant inverse associations of genetically predicted ALM with any ischemic stroke ([AIS], odds ratio [OR], 0.93; 95% confidence interval [CI], 0.89-0.97; P = 0.002) and AD (OR, 090; 95% CI 0.85-0.96; P = 0.001). Regarding the subtypes of AIS, genetically predicted ALM was related to the risk of large artery stroke ([LAS], OR, 0.86; 95% CI 0.77-0.95; P = 0.005) and small vessel stroke ([SVS], OR, 0.80; 95% CI 0.73-0.89; P < 0.001). Regarding multivariable MR analysis, ALM retained the stable effect on AIS when adjusting for BMI, LDL-C, and AF, while a suggestive association was observed after adjusting for T2DM. And the estimated effect of ALM on LAS was significant after adjustment for BMI and AF, while a suggestive association was found after adjusting for T2DM and LDL-C. Besides, the estimated effects of ALM were still significant on SVS and AD after adjustment for BMI, T2DM, LDL-C, and AF. CONCLUSIONS: The two-sample MR analysis indicated that genetically predicted ALM was negatively related to AIS and AD. And the subgroup analysis of AIS revealed a negative causal effect of genetically predicted ALM on LAS or SVS. Future studies are required to further investigate the underlying mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Accidente Cerebrovascular , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/diagnóstico , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/epidemiología , Estudio de Asociación del Genoma Completo/métodos , Anciano , Masculino , Femenino , Composición Corporal/fisiología , Composición Corporal/genética , Factores de Riesgo , Índice de Masa Corporal , Sarcopenia/genética , Sarcopenia/epidemiología , Sarcopenia/diagnóstico
8.
Meat Sci ; 214: 109518, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38677055

RESUMEN

This is the first UK genome wide association study investigating potential links between Video Image Analysis (VIA) carcass traits and molecular polymorphisms in crossbred sheep. Phenotypic and genotypic data were collected from two crossbred lamb populations: Texel x Scotch Mule (TxSM, n = 2330) and Texel x Lleyn (TxL, n = 3816). Traits measured included live weights at birth, eight weeks and weaning (∼15 weeks). VIA-predicted traits included total weights and weights of fat, muscle and bone in the whole carcass and primal (hind leg, saddle, shoulder) regions. Within-breed heritabilities estimated for the VIA traits ranged from 0.01 to 0.70, indicating potential for inclusion of some traits in breeding programmes. The two crossbred populations differed in SNPs associated with different traits. Two SNPs on chromosomes two (s74618.1) and eight (s68536.1), respectively, reached genome-wise significance for TxSM, explaining <1% of trait variance, for whole carcass fat and muscle weights, hind leg and saddle fat weights and shoulder bone weights. For TxL, four SNPs reached genome-wise significance, on chromosome two for hind leg muscle weight (OAR2_117,959,202 and OAR2_11804335), on chromosome 10 for whole carcass bone weight (OAR19_8,995,957.1), and on chromosome 19 for weaning weight (s40847.1), each explaining <1% of trait genetic variation. Differences in apparent genetic control of carcass traits may be influenced by the lambs' cross-breed, but also by management decisions affecting environmental variance and trait definitions, which should be understood in order to define protocols for incorporation of carcass traits into (cross)breeding programmes. IMPLICATIONS: Combining VIA-measured carcass traits with conventional production traits in a breeding programme could potentially improve the production and product quality of meat sheep. Phenotypes for VIA traits could be collected relatively easily if VIA machines were present at all abattoir sites. The current study and future Genome Wide Association Studies may help to identify potentially informative molecular markers, that explain large proportions of the genetic variance observed in VIA-measured carcass traits. Including this information in the estimation of breeding values could increase the accuracy of prediction, increasing the potential rate of genetic improvement for product quality. This study confirms the polygenic architecture of the investigated carcass traits, with a small number of molecular markers that each explain a small amount of genetic variation. Further studies across breed types are recommended to further test and validate molecular markers for traits related to lamb carcass quality, as measured by video image analysis.


Asunto(s)
Cruzamiento , Estudio de Asociación del Genoma Completo , Músculo Esquelético , Fenotipo , Polimorfismo de Nucleótido Simple , Carne Roja , Oveja Doméstica , Animales , Carne Roja/análisis , Oveja Doméstica/genética , Masculino , Tejido Adiposo , Femenino , Genotipo , Composición Corporal/genética , Peso Corporal/genética , Procesamiento de Imagen Asistido por Computador/métodos , Grabación en Video
9.
Sci Rep ; 14(1): 8825, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627436

RESUMEN

In Maori and Pacific adults, the CREBRF rs373863828 minor (A) allele is associated with increased body mass index (BMI) but reduced incidence of type-2 and gestational diabetes mellitus. In this prospective cohort study of Maori and Pacific infants, nested within a nutritional intervention trial for pregnant women with obesity and without pregestational diabetes, we investigated whether the rs373863828 A allele is associated with differences in growth and body composition from birth to 12-18 months' corrected age. Infants with and without the variant allele were compared using generalised linear models adjusted for potential confounding by gestation length, sex, ethnicity and parity, and in a secondary analysis, additionally adjusted for gestational diabetes. Carriage of the rs373863828 A allele was not associated with altered growth and body composition from birth to 6 months. At 12-18 months, infants with the rs373863828 A allele had lower whole-body fat mass [FM 1.4 (0.7) vs. 1.7 (0.7) kg, aMD -0.4, 95% CI -0.7, 0.0, P = 0.05; FM index 2.2 (1.1) vs. 2.6 (1.0) kg/m2 aMD -0.6, 95% CI -1.2,0.0, P = 0.04]. However, this association was not significant after adjustment for gestational diabetes, suggesting that it may be mediated, at least in part, by the beneficial effect of CREBRF rs373863828 A allele on maternal glycemic status.


Asunto(s)
Composición Corporal , Diabetes Gestacional , Proteínas Supresoras de Tumor , Femenino , Humanos , Lactante , Embarazo , Composición Corporal/genética , Índice de Masa Corporal , Pueblo Maorí , Obesidad , Estudios Prospectivos , Proteínas Supresoras de Tumor/genética
10.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38578949

RESUMEN

OBJECTIVES: Growth factor receptor bound protein 7 (GRB7) is a multidomain signaling adaptor. Members of the Grb7/10/14 family, specifically Gbrb10/14, have important roles in metabolism. We ablated the Grb7 gene in mice to examine its metabolic function. METHODS: Global ablation of Grb7 in FVB/NJ mice was generated. Growth, organ weight, food intake, and glucose homeostasis were measured. Insulin signaling was examined by Western blotting. Fat and lean body mass was measured by nuclear magnetic resonance, and body composition after fasting or high-fat diet was assessed. Energy expenditure was measured by indirect calorimetry. Expression of adiposity and lipid metabolism genes was measured by quantitative PCR. RESULTS: Grb7-null mice were viable, fertile, and without obvious phenotype. Grb7 ablation improved glycemic control and displayed sensitization to insulin signaling in the liver. Grb7-null females but not males had increased gonadal white adipose tissue mass. Following a 12-week high-fat diet, Grb7-null female mice gained fat body mass and developed relative insulin resistance. With fasting, there was less decrease in fat body mass in Grb7-null female mice. Female mice with Grb7 ablation had increased baseline food intake, less energy expenditure, and displayed a decrease in the expression of lipolysis and adipose browning genes in gonadal white adipose tissue by transcript and protein analysis. CONCLUSION: Our study suggests that Grb7 is a negative regulator of glycemic control. Our results reveal a role for Grb7 in female mice in the regulation of the visceral adipose tissue mass, a powerful predictor of metabolic dysfunction in obesity.


Asunto(s)
Grasa Abdominal , Metabolismo Energético , Proteína Adaptadora GRB7 , Insulina , Ratones Noqueados , Transducción de Señal , Animales , Femenino , Masculino , Ratones , Grasa Abdominal/metabolismo , Glucemia/metabolismo , Composición Corporal/genética , Dieta Alta en Grasa , Metabolismo Energético/genética , Proteína Adaptadora GRB7/genética , Proteína Adaptadora GRB7/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética
11.
Sci Rep ; 14(1): 7270, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538606

RESUMEN

Cancer risk is associated with the widely debated measure body mass index (BMI). Fat mass and fat-free mass measurements from bioelectrical impedance may further clarify this association. The UK Biobank is a rare resource in which bioelectrical impedance and BMI data was collected on ~ 500,000 individuals. Using this dataset, a comprehensive analysis using regression, principal component and genome-wide genetic association, provided multiple levels of evidence that increasing whole body fat (WBFM) and fat-free mass (WBFFM) are both associated with increased post-menopausal breast cancer risk, and colorectal cancer risk in men. WBFM was inversely associated with prostate cancer. We also identified rs615029[T] and rs1485995[G] as associated in independent analyses with both PMBC (p = 1.56E-17 and 1.78E-11) and WBFFM (p = 2.88E-08 and 8.24E-12), highlighting splice variants of the intriguing long non-coding RNA CUPID1 (LINC01488) as a potential link between PMBC risk and fat-free mass.


Asunto(s)
Composición Corporal , Neoplasias , Masculino , Humanos , Composición Corporal/genética , Índice de Masa Corporal , Predisposición Genética a la Enfermedad , Neoplasias/etiología , Neoplasias/genética , Impedancia Eléctrica
12.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38489760

RESUMEN

Beef × dairy crossbred cattle (n = 615) were used to evaluate the effect of preharvest indicator traits and genotypes on the accuracy of estimated breeding values (EBVs) of seedstock candidates for selection. Genotypes for 100,000 single nucleotide polymorphisms were provided by the American Simmental Association of purebred and crossbred seedstock animals (n = 2,632). Five hundred and ninety-five of the 615 beef × dairy cattle had carcass camera and ultrasound data. Phenotypes were not used for any of the seedstock animals even though some may have had performance and ultrasound data. We estimated the genomic relationship matrix among 3,247 animals including both phenotyped and unphenotyped animals. We computed genetic parameters among 37 traits using 666 bivariate restricted maximum likelihood analyses. The accuracy of EBV depends on heritability. For the sake of brevity, we report accuracy for marbling as a proxy for other traits with similar heritability. We focus on accuracy for marbling because marbling is the primary determinant of carcass value. We computed EBV for all 3,247 animals for marbling based on camera data postharvest using best linear unbiased prediction. We report evidence of overlap in causative genes among postharvest carcass traits; marbling, ribeye area, yield grade, fat thickness, and hot carcass weight (HCW) based on genetic correlations. Genetic correlations range from -0.73 to 0.89. Several live animal traits (frame size, body weight and ultrasound fat thickness and ribeye area) were genetically correlated with postharvest traits; including HCW, ribeye area, yield grade, fat thickness, and marbling. Genetic correlations between pre- and postharvest traits ranged from -0.53 to 0.95. Accuracy for marbling ranged from 0.64 to 0.80 for animals with marbling recorded, and from 0.09 to 0.60 for animals without marbling recorded. The accuracy of animals without phenotypes was related to the genomic relationship between animals with phenotype and those without. Live animal traits were useful for predicting economically important carcass traits based on genetic correlations. The accuracy of EBV for seedstock animals that were not phenotyped was low, but this is consistent with theory, and accuracy is expected to increase with the addition of genotypes and carcass data from beef × dairy animals.


Low-cost genotyping platforms and sexed-semen have enabled the production of high breeding value dairy replacement heifers from a fraction of the herd representing the most elite cows. The remainder of the cow herd can be bred to beef bulls using male-sexed-semen. Camera carcass data postharvest and ultrasound carcass estimates preharvest (live animals) on beef × dairy animals combined with genotypes and ultrasound on seedstock animals may provide an efficient scheme for selecting beef bulls to mate to dairy cows in the future to maximize carcass value of the progeny. Genotypes are needed to link carcass data from previously harvested to seedstock bull selection candidates because pedigree is typically not available for beef × dairy cattle. We report that live animal ultrasound carcass estimates are predictive of postharvest economically important carcass traits. The accuracy of genetic evaluation of selection candidates without recorded carcass traits was low but is expected to increase with more genotypes and phenotypes on beef × dairy cattle. Genotypes, ultrasound estimates, and camera carcass data on thousands of beef × dairy cattle could enable increased accuracy of selection with periodic infusion of new phenotypes from future generations.


Asunto(s)
Composición Corporal , Carne , Femenino , Bovinos/genética , Animales , Masculino , Composición Corporal/genética , Carne/análisis , Fenotipo , Genotipo , Genoma
13.
An Acad Bras Cienc ; 96(1): e20230010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451594

RESUMEN

Growth and carcass traits are essential selection criteria for beef cattle breeding programs. However, it is necessary to combine these measurements with body composition traits to meet the demand of the consumer market. This study aimed to estimate the genetic parameters for visual scores, growth (pre and post-weaning weights), and carcass (rib eye area (REA), back and rump fat thickness) traits in Nellore cattle using Bayesian inference. Data from 12,060 animals belonging to the HoRa Hofig Ramos herd were used. Morphological traits were evaluated by the MERCOS methodology. The heritability estimates obtained ranged from low to high magnitude, from 0.15 to 0.28 for visual scores, 0.13 to 0.44 for growth, and from 0.42 to 0.46 for carcass traits. Genetic correlations between visual scores and growth traits were generally of moderate to high magnitudes, however, visual scores showed low correlations with carcass traits, except between sacral bone and structure and REA. Selection for visual score traits can lead to favorable responses in body weight and vice versa, but the same is not true for carcass traits. Morphological categorical traits can be used as complementary tools that add value to selection.


Asunto(s)
Composición Corporal , Bovinos/genética , Animales , Teorema de Bayes , Peso Corporal/genética , Composición Corporal/genética , Fenotipo
14.
Nutr Metab Cardiovasc Dis ; 34(6): 1361-1370, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403485

RESUMEN

BACKGROUND AND AIM: The relationship between appendicular lean mass (ALM) and most cardiovascular events has been established, but the direct association between ALM and atrial fibrillation (AF) remains uncertain. METHODS AND RESULTS: Herein, we identified 494 single-nucleotide polymorphisms (SNPs) strongly associated with ALM as instrumental variables (P < 5E-8) based on a genome-wide association study (GWAS) with 450,243 European participants. Then, we employed five Mendelian randomization (MR) analysis methods to investigate the causal relationship between ALM and AF. All results indicated a causal relationship between ALM and AF, among Inverse variance weighted (P = 8.44E-15, odds ratio [OR]: 1.16, 95 % confidence interval [CI]: 1.114-1.198). Furthermore, we performed a sensitivity analysis, which revealed no evidence of pleiotropy (egger_intercept = 0.000089, P = 0.965) or heterogeneity (MR Egger, Q Value = 0.980; Inverse variance weighted, Q Value = 0.927). The leave-one-out method demonstrates that individual SNPs have no driven impact on the whole causal relationship. Multivariable MR analysis indicates that, after excluding the influence of hypertension and coronary heart disease, a causal relationship between ALM and AF still exists (P = 7.74E-40, OR 95 %CI: 1.389 (1.323-1.458)). Importantly, the Radial MR framework analysis and Robust Adjusted Profile Score (RAPS) further exhibit the robustness of this causal relationship. CONCLUSION: A strong association between ALM and AF was confirmed, and high ALM is a risk factor for AF.


Asunto(s)
Fibrilación Atrial , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Fenotipo , Polimorfismo de Nucleótido Simple , Humanos , Fibrilación Atrial/genética , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/fisiopatología , Factores de Riesgo , Medición de Riesgo , Femenino , Masculino , Persona de Mediana Edad , Composición Corporal/genética , Adiposidad/genética , Anciano
15.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38301268

RESUMEN

Androgenic actions of gonadal testosterone are thought to be a major mechanism promoting sex differences in body composition across the lifespan. However, this inference is based on studies of androgen receptor (AR) function in late adolescent or emerging adult rodents. Here we assess body composition and AR expression in skeletal muscle of rats at defined ages, comparing wild-type (WT) to transgenic human skeletal actin-driven AR overexpression (HSAAR) rats which overexpress AR in skeletal muscle. Male and female HSAAR and WT Sprague Dawley rats (N = 288) underwent dual-energy x-ray absorptiometry (DXA) scanning and tissue collection at postnatal day (PND) 1, 10, 21, 42, 70, 183, 243, and 365. Expected sex differences in body composition and muscle mass largely onset with puberty (PND-21), with no associated changes to skeletal muscle AR protein. In adulthood, HSAAR increased tibialis anterior (TA) and extensor digitorum longus mass in males, and reduced the expected gain in gonadal fat mass in both sexes. In WT rats, AR protein was reduced in soleus, but not TA, throughout life. Nonetheless, soleus AR protein expression was greater in male rats than female rats at all ages of sexual development, yet only at PND-70 in TA. Overall, despite muscle AR overexpression effects, results are inconsistent with major sex differences in body composition during sexual development being driven by changes in muscle AR, rather suggesting that changes in ligand promote sexual differentiation of body composition during pubertal timing. Nonetheless, increased skeletal muscle AR in adulthood can be sufficient to increase muscle mass in males, and reduce adipose in both sexes.


Asunto(s)
Longevidad , Receptores Androgénicos , Ratas , Animales , Femenino , Masculino , Humanos , Adolescente , Receptores Androgénicos/metabolismo , Ratas Sprague-Dawley , Andrógenos/metabolismo , Músculo Esquelético/metabolismo , Composición Corporal/genética
16.
BMC Genomics ; 25(1): 14, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166730

RESUMEN

BACKGROUND: Mapping expression quantitative trait loci (eQTLs) in skeletal muscle tissue in pigs is crucial for understanding the relationship between genetic variation and phenotypic expression of carcass traits in meat animals. Therefore, the primary objective of this study was to evaluate the impact of different sets of single nucleotide polymorphisms (SNP), including scenarios removing SNPs pruned for linkage disequilibrium (LD) and SNPs derived from SNP chip arrays and RNA-seq data from liver, brain, and skeletal muscle tissues, on the identification of eQTLs in the Longissimus lumborum tissue, associated with carcass and body composition traits in Large White pigs. The SNPs identified from muscle mRNA were combined with SNPs identified in the brain and liver tissue transcriptomes, as well as SNPs from the GGP Porcine 50 K SNP chip array. Cis- and trans-eQTLs were identified based on the skeletal muscle gene expression level, followed by functional genomic analyses and statistical associations with carcass and body composition traits in Large White pigs. RESULTS: The number of cis- and trans-eQTLs identified across different sets of SNPs (scenarios) ranged from 261 to 2,539 and from 29 to 13,721, respectively. Furthermore, 6,180 genes were modulated by eQTLs in at least one of the scenarios evaluated. The eQTLs identified were not significantly associated with carcass and body composition traits but were significantly enriched for many traits in the "Meat and Carcass" type QTL. The scenarios with the highest number of cis- (n = 304) and trans- (n = 5,993) modulated genes were the unpruned and LD-pruned SNP set scenarios identified from the muscle transcriptome. These genes include 84 transcription factor coding genes. CONCLUSIONS: After LD pruning, the set of SNPs identified based on the transcriptome of the skeletal muscle tissue of pigs resulted in the highest number of genes modulated by eQTLs. Most eQTLs are of the trans type and are associated with genes influencing complex traits in pigs, such as transcription factors and enhancers. Furthermore, the incorporation of SNPs from other genomic regions to the set of SNPs identified in the porcine skeletal muscle transcriptome contributed to the identification of eQTLs that had not been identified based on the porcine skeletal muscle transcriptome alone.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Porcinos/genética , Animales , Fenotipo , Músculo Esquelético/metabolismo , Estudio de Asociación del Genoma Completo , Composición Corporal/genética
17.
Meat Sci ; 210: 109423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38218007

RESUMEN

This study evaluated carcass attributes, meat and belly qualities in finisher boars (n = 79) selected for feed efficiency (low, intermediate and high) based on estimated breeding value for feed conversion ratio within a Large White dam and sire genetic lines. The sire line had lower trimmed fat proportions and higher lean than the dam line (P < 0.01). Genetic lines expressed slight colour changes and drip losses (P < 0.05), with no differences in pH, marbling and cooking traits (P > 0.05). High-efficient animals presented the highest lean yield (P < 0.01), the lowest trimmed fat proportion (P < 0.01) and no effect on meat and belly quality attributes (P > 0.05) compared with other efficient groups. Interaction between efficiency group and genetic line was only detected for belly weight and thickness (P < 0.01). High-efficient animals offer a greater leanness level, with minimal impact on meat and belly quality traits.


Asunto(s)
Carne de Cerdo , Carne Roja , Porcinos/genética , Animales , Masculino , Composición Corporal/genética , Fenotipo , Carne
18.
J Anim Breed Genet ; 141(2): 124-137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37822282

RESUMEN

Body composition traits are complex traits controlled by minor genes and, in hybrid populations, are impacted by additive and nonadditive effects. We aimed to identify candidate genes and increase the accuracy of genomic prediction of body composition traits in crossbred pigs by including dominance genetic effects. Genomic selection (GS) and genome-wide association studies were performed on seven body composition traits in 807 Yunong-black pigs using additive genomic models (AM) and additive-dominance genomic models (ADM) with an imputed high-density single nucleotide polymorphism (SNP) array and the Illumina Porcine SNP50 BeadChip. The results revealed that the additive heritabilities estimated for AM and ADM using the 50 K SNP data ranged from 0.20 to 0.34 and 0.11 to 0.30, respectively. However, the ranges of additive heritability for AM and ADM in the imputed data ranged from 0.20 to 0.36 and 0.12 to 0.30, respectively. The dominance variance accounted for 23% and 27% of the total variance for the 50 K and imputed data, respectively. The accuracy of genomic prediction improved by 5% on average for 50 K and imputed data when dominance effect were considered. Without the dominance effect, the accuracies for 50 K and imputed data were 0.35 and 0.38, respectively, and 0.41 and 0.43, respectively, upon considering it. A total of 12 significant SNP and 16 genomic regions were identified in the AM, and 14 significant SNP and 21 genomic regions were identified in the ADM for both the 50 K and imputed data. There were five overlapping SNP in the 50 K and imputed data. In the AM, a significant SNP (CNC10041568) was found in both body length and backfat thickness traits, which was in the PLAG1 gene strongly and significantly associated with body length and backfat thickness in pigs. Moreover, a significant SNP (CNC10031356) with a heterozygous dominant genotype was present in the ADM. Furthermore, several functionally related genes were associated with body composition traits, including MOS, RPS20, LYN, TGS1, TMEM68, XKR4, SEMA4D and ARNT2. These findings provide insights into molecular markers and GS breeding for the Yunong-black pigs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Animales , Porcinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Fenotipo , Genómica/métodos , Polimorfismo de Nucleótido Simple , Composición Corporal/genética
19.
Mil Med ; 189(3-4): 486-492, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37384593

RESUMEN

INTRODUCTION: Pilots of high-performance F15 and F16 jets must undergo periodic assessment of +8.5 Gz tolerance in a centrifuge, which is classified as a high-intensity exercise. Prior research has indicated that exercise performance may be correlated with alpha-actinin3 (ACTN3) and angiotensin-converting enzyme (ACE) genes, frequently termed the sports genes. This study aimed to investigate how ACTN3 and ACE genotypes correlate with high-g tolerance of Korean F15 and F16 pilots. MATERIALS AND METHODS: A total of 81 Korean F15 and F16 pilots (ages 25-39 years) volunteered to participate in human centrifuge testing at +8.5 Gz. Exercise tolerance was calculated as the mean breathing interval during high-g tests, the target gene genotypes (ACTN3 and ACE) were identified, and body composition measurements were measured. The relationship among the ACTN3 and ACE genotypes, high-g tolerance, and body compositions were evaluated. RESULTS: The ACTN3 genotypes identified included 23 RR (28.4%), 41 RX (50.6%), and 17 XX (21.0%). The ACE genotypes identified included 13 DD (16.0%), 39 DI (48.2%), and 29 II (35.8%). Both genes satisfied an equilibrium check. In multivariate analysis by Roy's max, the interaction of the target genes (ACTN3 and ACE) was significant (P < .05). The ACTN3 gene showed significance (P < .05), while ACE tended toward significance with a correlation of P = .057 with high-g tolerance(s). Body composition parameters including height, body weight, muscle mass, body mass index, body fat (%), and basal metabolic rate showed no significant correlation with either genotype. CONCLUSION: In a preliminary study, the RR ACTN3 genotype showed a significant correlation with +8.5 Gz tolerance. Pilots with the DI genotype showed the highest high-g tolerance in this test; however, the test pass rate was higher in pilots with the DD genotype in the preliminary study. This result shows the possibility of test passing and tolerance superiority consisting of two different factors in the relationship between high-g tolerance and ACE genotype. This study showed that pilots with the RR + DI genotype had the highest high-g tolerance, which correlated with the presence of the R and D alleles of the ACTN3 and ACE genes, respectively. However, body composition parameters were not significantly correlated with genotype. These results could suggest a plural gene effect on high-g tolerance; further follow-up is required to determine the practical usage and applications of these results.


Asunto(s)
Pilotos , Deportes , Humanos , Genotipo , Composición Corporal/genética , Aeronaves , Actinina/genética
20.
J Diabetes Investig ; 15(3): 346-354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38013660

RESUMEN

OBJECTIVE: In this study, we employed a Mendelian randomization (MR) approach to investigate the independent causal associations of six body composition traits with gestational diabetes mellitus (GDM). METHODS: Genome-wide significant levels (P < 10 × 5-8 ) of single nucleotide polymorphisms associated with body water mass, total protein, whole body fat-free mass, weight, whole body fat mass, and body fat percentage were used as instrumental variables. Data on GDM were obtained from the FinnGen Consortium, and both univariable and multivariable Mendelian randomization were performed. We utilized five different analytical methods including inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode to assess the robustness of the results. RESULTS: With univariable Mendelian randomization, the risk of GDM increased per 1-standard deviation (SD) increase in weight (ORweight = 1.297, P = 3.06 × 10-5 ), whole body fat mass (ORwhole body fat mass = 1.408, P = 1.32 × 10-6 ), and the risk of GDM increased per percent increase in body fat percentage (ORbody fat percentage = 1.661, P = 1.01 × 10-8 ). Total protein had a protective effect on the risk of GDM (ORtotal protein = 0.880, P = 0.048). However, there was no significant causal association between increases in body water mass and whole body fat-free mass per SD and the risk of GDM. Causal associations between weight, whole body fat mass, body fat percentage, and total protein with GDM were reduced to null in multivariable Mendelian randomization. CONCLUSION: The present study furnishes genetic evidence to elucidate the causal relationship between body composition traits and GDM. Additionally, further studies are imperative to establish a causal connection between body composition traits and gestational diabetes mellitus.


Asunto(s)
Diabetes Gestacional , Humanos , Femenino , Embarazo , Diabetes Gestacional/epidemiología , Diabetes Gestacional/genética , Análisis de la Aleatorización Mendeliana , Composición Corporal/genética , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA