Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
1.
J Hazard Mater ; 478: 135442, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39128150

RESUMEN

The brominated azo dye (BAD) Disperse Blue (DB79) is a widespread environmental pollutant. The long-term toxicological effects of DB79 and the mechanisms thereof must be understood to allow assessment of the risks of DB79 pollution. A dual-omics approach employing in silico analysis, bioinformatics, and in vitro bioassays was used to investigate the transgenerational (F0-F2) toxicity of DB79 in zebrafish at environmentally relevant concentrations and identify molecular initiating events and key events associated with DB79-induced fertility disorders. Exposure to 500 µg/L DB79 decreased fecundity in the F0 and F1 generations by > 30 % and increased the condition factor of the F1 generation 1.24-fold. PPARα/RXR and PXR ligand binding activation were found to be critical molecular initiating events associated with the decrease in fecundity. Several key events (changes in fatty acid oxidation and uptake, lipoprotein metabolism, and xenobiotic metabolism and transport) involved in lipid dysregulation and xenobiotic disposition were found to be induced by DB79 through bioinformatic annotation using dual-omics data. The biomolecular underpinnings of decreased transgenerational fertility in zebrafish attributable to BAD exposure were elucidated and novel biomolecular targets in the adverse outcome pathway framework were identified. These results will inform future studies and facilitate the development of mitigation strategies.


Asunto(s)
Fertilidad , Contaminantes Químicos del Agua , Pez Cebra , Animales , Fertilidad/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Compuestos Azo/toxicidad , Femenino , Masculino , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo
2.
Fish Physiol Biochem ; 50(4): 1811-1829, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970761

RESUMEN

Environmental pollution, particularly from textile industry effluents, raises concerns globally. The aim of this study is to investigate the hepatotoxicity of Sudan Black B (SBB), a commonly used textile azo dye, on embryonic zebrafish. SBB exposure led to concentration-dependent mortality, reaching 100% at 0.8 mM, accompanied by growth retardation and diverse malformations in zebrafish. Biochemical marker analysis indicated adaptive responses to SBB, including increased SOD, CAT, NO, and LDH, alongside decreased GSH levels. Liver morphology analysis unveiled significant alterations, impacting metabolism and detoxification. Also, glucose level was declined and lipid level elevated in SBB-exposed in vivo zebrafish. Inflammatory gene expressions (TNF-α, IL-10, and INOS) showcased a complex regulatory interplay, suggesting an organismal attempt to counteract pro-inflammatory states during SBB exposure. The increased apoptosis revealed a robust hepatic cellular response due to SBB, aligning with observed liver tissue damage and inflammatory events. This multidimensional study highlights the intricate web of responses due to SBB exposure, which is emphasizing the need for comprehensive understanding and targeted mitigation strategies. The findings bear the implications for both aquatic ecosystems and potentially parallels to human health, underscoring the imperative for sustained research in this critical domain.


Asunto(s)
Compuestos Azo , Hígado , Contaminantes Químicos del Agua , Pez Cebra , Animales , Compuestos Azo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Larva/efectos de los fármacos , Colorantes/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Naftalenos
3.
Arch Toxicol ; 98(8): 2577-2588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38695895

RESUMEN

Grouping/read-across is widely used for predicting the toxicity of data-poor target substance(s) using data-rich source substance(s). While the chemical industry and the regulators recognise its benefits, registration dossiers are often rejected due to weak analogue/category justifications based largely on the structural similarity of source and target substances. Here we demonstrate how multi-omics measurements can improve confidence in grouping via a statistical assessment of the similarity of molecular effects. Six azo dyes provided a pool of potential source substances to predict long-term toxicity to aquatic invertebrates (Daphnia magna) for the dye Disperse Yellow 3 (DY3) as the target substance. First, we assessed the structural similarities of the dyes, generating a grouping hypothesis with DY3 and two Sudan dyes within one group. Daphnia magna were exposed acutely to equi-effective doses of all seven dyes (each at 3 doses and 3 time points), transcriptomics and metabolomics data were generated from 760 samples. Multi-omics bioactivity profile-based grouping uniquely revealed that Sudan 1 (S1) is the most suitable analogue for read-across to DY3. Mapping ToxPrint structural fingerprints of the dyes onto the bioactivity profile-based grouping indicated an aromatic alcohol moiety could be responsible for this bioactivity similarity. The long-term reproductive toxicity to aquatic invertebrates of DY3 was predicted from S1 (21-day NOEC, 40 µg/L). This prediction was confirmed experimentally by measuring the toxicity of DY3 in D. magna. While limitations of this 'omics approach are identified, the study illustrates an effective statistical approach for building chemical groups.


Asunto(s)
Compuestos Azo , Colorantes , Daphnia , Contaminantes Químicos del Agua , Daphnia/efectos de los fármacos , Animales , Compuestos Azo/toxicidad , Compuestos Azo/química , Colorantes/toxicidad , Contaminantes Químicos del Agua/toxicidad , Metabolómica , Pruebas de Toxicidad/métodos , Transcriptoma/efectos de los fármacos , Daphnia magna , Multiómica
4.
Ecotoxicol Environ Saf ; 279: 116450, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768540

RESUMEN

The purpose of this study is to evaluate the decolorization ability and detoxification effect of LAC-4 laccase on various types of single and mixed dyes, and lay a good foundation for better application of laccase in the efficient treatment of dye pollutants. The reaction system of the LAC-4 decolorizing single dyes (azo, anthraquinone, triphenylmethane, and indigo dyes, 17 dyes in total) were established. To explore the decolorization effect of the dye mixture by LAC-4, two dyes of the same type or different types were mixed at the same concentration (100 mg/L) in the reaction system containing 0.5 U laccase, and time-course decolorization were performed on the dye mixture. The combined dye mixtures consisted of azo + azo, azo + anthraquinone, azo + indigo, azo + triphenylmethane, indigo + triphenylmethane, and triphenylmethane + triphenylmethane. The results obtained in this study were as follows. Under optimal conditions of 30 °C and pH 5.0, LAC-4 (0.5 U) can efficiently decolorize four different types of dyes. The 24-hour decolorization efficiencies of LAC-4 for 800 mg/L Orange G and Acid Orange 7 (azo), Remazol Brilliant Blue R (anthraquinone), Bromophenol Blue and Methyl Green (triphenylmethane), and Indigo Carmine (indigo) were 75.94%, 93.30%, 96.56%, 99.94%, 96.37%, and 37.23%, respectively. LAC-4 could also efficiently decolorize mixed dyes with different structures. LAC-4 can achieve a decolorization efficiency of over 80% for various dye mixtures such as Orange G + Indigo Carmine (100 mg/L+100 mg/L), Reactive Orange 16 + Methyl Green (100 mg/L+100 mg/L), and Remazol Brilliant Blue R + Methyl Green (100 mg/L+100 mg/L). During the decolorization process of the mixed dyes by laccase, four different interaction relationships were observed between the dyes. Decolorization efficiencies and rates of the dyes that were difficult to be degraded by laccase could be greatly improved when mixed with other dyes. Degradable dyes could greatly enhance the ability of LAC-4 to decolorize extremely difficult-to-degrade dyes. It was also found that the decolorization efficiencies of the two dyes significantly increased after mixing. The possible mechanisms underlying the different interaction relationships were further discussed. Free, but not immobilized, LAC-4 showed a strong continuous batch decolorization ability for single dyes, two-dye mixtures, and four-dye mixtures with different structures. LAC-4 exhibited high stability, sustainable degradability, and good reusability in the continuous batch decolorization. The LAC-4-catalyzed decolorization markedly reduced or fully abolished the toxic effects of single dyes (azo, anthraquinone, and indigo dye) and mix dyes (nine dye mixtures containing four structural types of dyes) on plants. Our findings indicated that LAC-4 laccase had significant potential for use in bioremediation due to its efficient degradation and detoxification of single and mixed dyes with different structural types.


Asunto(s)
Compuestos Azo , Biodegradación Ambiental , Colorantes , Lacasa , Reishi , Compuestos de Tritilo , Antraquinonas/química , Antraquinonas/metabolismo , Compuestos Azo/toxicidad , Compuestos Azo/metabolismo , Colorantes/química , Colorantes/toxicidad , Colorantes/metabolismo , Concentración de Iones de Hidrógeno , Carmin de Índigo/metabolismo , Lacasa/metabolismo , Compuestos de Tritilo/química , Descoloración del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
5.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753198

RESUMEN

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Asunto(s)
Biodegradación Ambiental , Colorantes , Cebollas , Industria Textil , Triticum , Colorantes/metabolismo , Colorantes/química , Colorantes/toxicidad , Triticum/microbiología , Cebollas/efectos de los fármacos , Compuestos Azo/metabolismo , Compuestos Azo/toxicidad , Textiles , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Pruebas de Mutagenicidad
6.
Environ Sci Pollut Res Int ; 31(23): 33190-33211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676865

RESUMEN

The textile industry, with its extensive use of dyes and chemicals, stands out as a significant source of water pollution. Exposure to certain textile dyes, such as azo dyes and their breakdown products like aromatic amines, has been associated with health concerns like skin sensitization, allergic reactions, and even cancer in humans. Annually, the worldwide production of synthetic dyes approximates 7 × 107 tons, of which the textile industry accounts for over 10,000 tons. Inefficient dyeing procedures result in the discharge of 15-50% of azo dyes, which do not adequately bind to fibers, into wastewater. This review delves into the genotoxic impact of azo dyes, prevalent in the textile industry, on aquatic ecosystems and human health. Examining different families of textile dye which contain azo group in their structure such as Sudan I and Sudan III Sudan IV, Basic Red 51, Basic Violet 14, Disperse Yellow 7, Congo Red, Acid Red 26, and Acid Blue 113 reveals their carcinogenic potential, which may affect both industrial workers and aquatic life. Genotoxic and carcinogenic characteristics, chromosomal abnormalities, induced physiological and neurobehavioral changes, and disruptions to spermatogenesis are evident, underscoring the harmful effects of these dyes. The review calls for comprehensive investigations into the toxic profile of azo dyes, providing essential insights to safeguard the aquatic ecosystem and human well-being. The importance of effective effluent treatment systems is underscored to mitigate adverse impacts on agricultural lands, water resources, and the environment, particularly in regions heavily reliant on wastewater irrigation for food production.


Asunto(s)
Compuestos Azo , Colorantes , Colorantes/toxicidad , Compuestos Azo/toxicidad , Humanos , Industria Textil , Contaminantes Químicos del Agua/toxicidad , Textiles
7.
ACS Chem Biol ; 19(2): 451-461, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318850

RESUMEN

Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.


Asunto(s)
Compuestos Azo , Luz , Humanos , Compuestos Azo/toxicidad , Compuestos Azo/química , Proteínas/metabolismo , Isomerismo , Porinas/metabolismo
8.
Int Microbiol ; 27(4): 1269-1283, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38177873

RESUMEN

Textile effluent carries a range of dyes that may be recalcitrant and resistant to biodegradation. A unique consortium of the Fimbristylis dichotoma and Saccharomyces cerevisiae is exploited for the biodegradation of an azo dye Rubine GFL and actual textile effluent. This consortium enhances the rate of biodegradation of Rubine GFL and actual textile effluent with an excellent rate of biodegradation of 92% for Rubine GFL and 68% for actual textile effluent when compared to the individual one within 96 h. Speedy decolorization of Rubine GFL and actual textile effluent was observed due to the induction of oxido-reductive enzymes of the FD-SC consortium. Along with the significant reduction in the values of COD, BOD, ADMI, TSS, and TDS with 70, 64, 65, 41, and 52%, respectively, in experimental sets treated with FD-SC consortium. The biodegradation of Rubine GFL was confirmed with UV-Vis spectroscopy at the preliminary level, and then, metabolites formed after degradation were detected and identified by FTIR, HPLC, and GC-MS techniques. Also, decolorization of the dye was observed in the sections of the root cortex of Fimbristylis dichotoma. The toxicity of dye and metabolites formed after degradation was assessed by seed germination and bacterial count assay, where increased germination % and bacterial count from 31×107CFUs to 92 × 107 CFUs reflect the nontoxic nature of metabolites. Furthermore, the nontoxic nature of metabolites was confirmed by fish toxicity on Cirrhinus mrigala showed normal structures of fish gills and liver in the groups treated with FD-SC consortium proving the better tactic for biodegradation of dyes and textile effluent.


Asunto(s)
Biodegradación Ambiental , Colorantes , Saccharomyces cerevisiae , Contaminantes Químicos del Agua , Colorantes/metabolismo , Colorantes/toxicidad , Saccharomyces cerevisiae/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Aguas Residuales/microbiología , Aguas Residuales/química , Consorcios Microbianos , Compuestos Azo/metabolismo , Compuestos Azo/toxicidad , Residuos Industriales
9.
Mol Biol Rep ; 51(1): 150, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236489

RESUMEN

BACKGROUND: Azo dyes are widely used in the food industry to prevent color loss during processing and storage of products. This study aimed to investigate the effect of a diazo dye Brilliant Black PN (E151) on oxidative stress-related parameters in fruit flies (Drosophila melanogaster) at biochemical and molecular levels. METHODS AND RESULTS: Third instar larvae were transferred to a medium containing the dye at different doses (1, 2.5, and 5 mg/mL). Gene expression and activity of superoxide dismutase, catalase (CAT), glutathione peroxidase (GPX), and acetylcholinesterase (AChE) enzymes were determined in the heads of adult flies obtained from these larvae. In addition, the glutathione (GSH) and malondialdehyde levels were measured using spectrophotometric analysis. Mitochondrial DNA (mtDNA) copy number was also detected by real-time PCR. The results showed that treatment with 5 mg/mL of the dye caused a decrease in both gene expression and enzyme activity of CAT and GPx. Moreover, the same dose of dye treatment decreased AChE activity, GSH level, and mtDNA copy number. CONCLUSIONS: As a result, Brilliant Black PN dye can trigger toxicity by altering the level and activity of oxidative stress-related biomarkers in a dose-dependent manner. Therefore, more comprehensive studies are needed to elucidate the side effect mechanism and toxicity of this dye.


Asunto(s)
Acetilcolinesterasa , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Acetilcolinesterasa/genética , Drosophila , Compuestos Azo/toxicidad , ADN Mitocondrial/genética , Glutatión , Larva , Estrés Oxidativo
10.
Molecules ; 29(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257390

RESUMEN

The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.


Asunto(s)
Compuestos Azo , Lacasa , Polyporaceae , Compuestos Azo/toxicidad , Biodegradación Ambiental , Colorantes/toxicidad , Poli A
11.
Environ Sci Pollut Res Int ; 31(1): 657-667, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38015401

RESUMEN

Azo dyes find applications across various sectors including food, pharmaceuticals, cosmetics, printing, and textiles. The contaminating effects of dyes on aquatic environments arise from toxic effects caused by their long-term presence in the environment, buildup in sediments, particularly in aquatic species, degradation of pollutants into mutagenic or mutagenic compounds, and low aerobic biodegradability. Therefore, we theoretically propose the first steps of the degradation of azo dyes based on the interaction of hydroperoxyl radical (•OOH) with the dye. This interaction is studied by the OC and ON mechanisms in three azo dyes: azobenzene (AB), disperse orange 3 (DO3), and disperse red 1 (DR1). Rate constants calculated at several temperatures show a preference for the OC mechanism in all the dyes with lower activation energies than the ON mechanism. The optical properties were calculated and because the dye-•OOH systems are open shell, to verify the validity of the results, a study of the spin contamination of the ground [Formula: see text] and excited states [Formula: see text] was previously performed. Most of the excited states calculated are acceptable as doublet states. The absorption spectra of the dye-•OOH systems show a decrease in the intensity of the bands compared to the isolated dyes and the appearance of a new band of the type π → π* at a longer wavelength in the visible region, achieving up to 868 nm. This demonstrates that the reaction with the •OOH radical could be a good alternative for the degradation of the azo dyes.


Asunto(s)
Compuestos Azo , Contaminantes Químicos del Agua , Compuestos Azo/toxicidad , Colorantes/toxicidad , Alérgenos , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad
12.
Braz J Biol ; 83: e277577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055583

RESUMEN

Amazonian strains of Cyathus spp. and Geastrum spp. were studied for the ability to discolor the trypan blue azo dye and reduce its toxicity. Discoloration of trypan blue dye (0.05%) was evaluated in solid and aqueous medium over different periods. The reduction of dye toxicity after treatment was assessed by seed germination and the development of lettuce seedlings (Lactuca sativa L.) and toxicity test in Artemia salina (L.) larvae. All evaluated strains showed the potential to reduce the color intensity of trypan blue dye. Cyathus strains reached 96% discoloration, and C. albinus and C. limbatus also reduced dye toxicity. Geastrum strains showed a high efficiency degree in color reduction, reaching 98% discoloration, however, the by-products generated during the process presented toxicity and require further investigation. For the first time, Amazonian strains of gasteroid fungi degrading trypan blue are reported, some even reducing its toxicity. Thus, making them promising sources of enzymes of interest to bioremediation scenarios involving synthetic dyes.


Asunto(s)
Basidiomycota , Azul de Tripano , Compuestos Azo/toxicidad , Compuestos Azo/metabolismo , Biodegradación Ambiental , Basidiomycota/metabolismo , Hongos , Colorantes/toxicidad
13.
Food Chem Toxicol ; 182: 114193, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37980979

RESUMEN

Tartrazine (E102, FD&C Yellow 5) is a vibrant yellow azo dye added to many processed foods. The safety of this ubiquitous chemical has not been fully elucidated, and it has been linked to allergic reactions and ADHD in some individuals. In our study, bacterial species isolated from human stool decolourised tartrazine and, upon exposure to air, a purple compound formed. Tartrazine is known to undergo reduction in the gut to sulfanilic acid and 4-amino-3-carboxy-5-hydroxy-1-(4-sulfophenyl)pyrazole (SCAP). These metabolites and their derivatives are relevant to the toxicology of tartrazine. The toxicity of sulfanilic acid has been studied before, but the oxidative instability of SCAP has previously prevented full characterisation. We have verified the chemical identity of SCAP and confirmed that the purple-coloured oxidation derivative is 4-(3-carboxy-5-hydroxy-1-(4-sulfophenyl)-1H-pyrazol-4-yl)imino-5-oxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid (purpurazoic acid, PPA), as proposed by Westöö in 1965. A yellow derivative of SCAP is proposed to be the hydrolysed oxidation product, 4,5-dioxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid. SCAP and PPA are moderately toxic to human cells (IC50 89 and 78 µM against HEK-293, respectively), but had no apparent effect on Escherichia coli and Bacillus subtilis bacteria. These results prompt further analyses of the toxicology of tartrazine and its derivatives.


Asunto(s)
Compuestos Azo , Tartrazina , Humanos , Tartrazina/toxicidad , Tartrazina/química , Compuestos Azo/toxicidad , Células HEK293 , Oxidación-Reducción , Ácidos Carboxílicos , Pirazoles
14.
Food Chem Toxicol ; 178: 113932, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451600

RESUMEN

Azo compounds are widely distributed synthetic chemicals in the modern world. Their most important applications are as dyes, but, in addition, several azo compounds are used as pharmaceuticals. Ingested azo compounds can be reduced by the action of bacteria in the gut, where the oxygen tension is low, and the development of microbiome science has allowed more precise delineation of the roles of specific bacteria in these processes. Reduction of the azo bond of an azo compound generates two distinct classes of aromatic amine metabolites: the starting material that was used in the synthesis of the azo compound and a product which is formed de novo by metabolism. Reductive metabolism of azo compounds can have toxic consequences, because many aromatic amines are toxic/genotoxic. In this review, we discuss aspects of the development and application of azo compounds in industry and medicine. Current understanding of the toxicology of azo compounds and their metabolites is illustrated with four specific examples - Disperse Dyes used for dyeing textiles; the drugs phenazopyridine and eltrombopag; and the ubiquitous food dye, tartrazine - and knowledge gaps are identified. SUBMISSION TO: FCT VSI: Toxicology of Dyes.


Asunto(s)
Compuestos Azo , Colorantes , Compuestos Azo/toxicidad , Compuestos Azo/química , Colorantes/toxicidad , Colorantes/química , Tartrazina , Bacterias/metabolismo , Aminas/química
15.
Food Chem Toxicol ; 178: 113935, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37429408

RESUMEN

Azo dyes, including Tartrazine, Sunset Yellow, and Carmoisine, are added to foods to provide color, but they have no value with regard to nutrition, food preservation, or health benefits. Because of their availability, affordability, stability, and low cost, and because they provide intense coloration to the product without contributing unwanted flavors, the food industry often prefers to use synthetic azo dyes rather than natural colorants. Food dyes have been tested by regulatory agencies responsible for guaranteeing consumer safety. Nevertheless, the safety of these colorants remains controversial; they have been associated with adverse effects, particularly due to the reduction and cleavage of the azo bond. Here, we review the features, classification, regulation, toxicity, and alternatives to the use of azo dyes in food.


Asunto(s)
Compuestos Azo , Colorantes de Alimentos , Compuestos Azo/toxicidad , Compuestos Azo/análisis , Tartrazina/toxicidad , Tartrazina/análisis , Colorantes/toxicidad , Alimentos , Industria de Alimentos , Colorantes de Alimentos/toxicidad
16.
Environ Res ; 231(Pt 2): 116142, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37217122

RESUMEN

The present study identifies and analyses the degraded products of three azo dyes (Reactive Orange 16, Reactive Red 120, and Direct Red 80) and proffers their in silico toxicity predictions. In our previously published work, the synthetic dye effluents were degraded using an ozonolysis-based Advanced Oxidation Process. In the present study, the degraded products of the three dyes were analysed using GC-MS at endpoint strategy and further subjected to in silico toxicity analysis using Toxicity Estimation Software Tool (TEST), Prediction Of TOXicity of chemicals (ProTox-II), and Estimation Programs Interface Suite (EPI Suite). Several physiological toxicity endpoints, such as hepatotoxicity, carcinogenicity, mutagenicity, cellular and molecular interactions, were considered to assess the Quantitative Structure-Activity Relationships (QSAR) and adverse outcome pathways. The environmental fate of the by-products in terms of their biodegradability and possible bioaccumulation was also assessed. Results of ProTox-II suggested that the azo dye degradation products are carcinogenic, immunotoxic, and cytotoxic and displayed toxicity towards Androgen Receptor and Mitochondrial Membrane Potential. TEST results predicted LC50 and IGC50 values for three organisms Tetrahymena pyriformis, Daphnia magna, and Pimephales promelas. EPISUITE software via the BCFBAF module surmises that the degradation products' bioaccumulation (BAF) and bioconcentration factors (BCF) are high. The cumulative inference of the results suggests that most degradation by-products are toxic and need further remediation strategies. The study aims to complement existing tests to predict toxicity and prioritise the elimination/reduction of harmful degradation products of primary treatment procedures. The novelty of this study is that it streamlines in silico approaches to predict the nature of toxicity of degradation by-products of toxic industrial affluents like azo dyes. These approaches can assist the first phase of toxicology assessments for any pollutant for regulatory decision-making bodies to chalk out appropriate action plans for their remediation.


Asunto(s)
Rutas de Resultados Adversos , Relación Estructura-Actividad Cuantitativa , Protoporfirinógeno-Oxidasa/metabolismo , Mutágenos/toxicidad , Compuestos Azo/toxicidad , Colorantes/toxicidad
17.
Environ Int ; 176: 107952, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224677

RESUMEN

BACKGROUND: Azo dyes are used in textiles and leather clothing. Human exposure can occur from wearing textiles containing azo dyes. Since the body's enzymes and microbiome can cleave azo dyes, potentially resulting in mutagenic or carcinogenic metabolites, there is also an indirect health concern on the parent compounds. While several hazardous azo dyes are banned, many more are still in use that have not been evaluated systematically for potential health concerns. This systematic evidence map (SEM) aims to compile and categorize the available toxicological evidence on the potential human health risks of a set of 30 market-relevant azo dyes. METHODS: Peer-reviewed and gray literature was searched and over 20,000 studies were identified. These were filtered using Sciome Workbench for Interactive computer-Facilitated Text-mining (SWIFT) Review software with evidence stream tags (human, animal, in vitro) yielding 12,800 unique records. SWIFT Active (a machine-learning software) further facilitated title/abstract screening. DistillerSR software was used for additional title/abstract, full-text screening, and data extraction. RESULTS: 187 studies were identified that met populations, exposures, comparators, and outcomes (PECO) criteria. From this pool, 54 human, 78 animal, and 61 genotoxicity studies were extracted into a literature inventory. Toxicological evidence was abundant for three azo dyes (also used as food additives) and sparse for five of the remaining 27 compounds. Complementary search in ECHA's REACH database for summaries of unpublished study reports revealed evidence for all 30 dyes. The question arose of how this information can be fed into an SEM process. Proper identification of prioritized dyes from various databases (including U.S. EPA's CompTox Chemicals Dashboard) turned out to be a challenge. Evidence compiled by this SEM project can be evaluated for subsequent use in problem formulation efforts to inform potential regulatory needs and prepare for a more efficient and targeted evaluation in the future for human health assessments.


Asunto(s)
Compuestos Azo , Carcinógenos , Exposición a Riesgos Ambientales , Humanos , Compuestos Azo/toxicidad , Carcinógenos/análisis , Carcinógenos/toxicidad , Colorantes/toxicidad , Colorantes/química , Mutágenos/toxicidad , Mutágenos/análisis , Textiles
18.
Environ Res ; 216(Pt 1): 114407, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216116

RESUMEN

Fungal abetted processes are among the finest approaches for the transformation or degradation and decolorization of dyes in effluents. In this piece of research; biodegradation and metabolic pathways of two toxic dyes Congo Red (CR) and Reactive black 5 (RB5) by two strains of Aspergillus sp. fungus in batch experiments has been investigated. Morphological characteristics of the isolates were observed with both light and electron microscopies. Based on molecular characterization the isolates were identified as Aspergillus flavus and Aspergillus niger. The degradation was also optimized via. operational parameters such as pH, temperature, incubation time, inoculums size, dye concentration, carbon sources and nitrogen sources. Degradation measurements revealed that the isolates effectively degraded 90% and 96% of CR and RB5 respectively. Metabolites were identified with Liquid chromatography-mass spectrometry (LCMS) and degradation pathways of the dyes were proposed. Toxicity assay Phaseolus mungo seeds showed that pure CR and RB5 dyes exhibits significant toxicity whereas fungal treated dye solution resulted in an abatement of the toxicity and cell viability was increased. The results stipulated in this article clearly showed the effectiveness of the isolates on detoxification of CR and RB5 dyes.


Asunto(s)
Colorantes , Aguas Residuales , Colorantes/química , Cinética , Biodegradación Ambiental , Rojo Congo/metabolismo , Aspergillus niger/metabolismo , Compuestos Azo/toxicidad , Compuestos Azo/metabolismo
19.
Chemosphere ; 313: 137614, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36565768

RESUMEN

Development of science has taken over our lives and made it mandatory to live with science. Synthetic technology takes more than it has given for our welfare. In the process of meeting the demand of the consumers, industries supported synthetic products to meet the same. One such sector that employs synthetic azo dyes for food coloring is the food industry. The result of the process is the production of a variety of colored foods which looks more appealing and palatable. The process not only meets the consumer's demand it also has an impact on customers' health because the consumption of azo-toxic dye-treated foods regularly or in direct contact with synthetic azo dyes can also cause severe human health consequences. Nanotechnology is a rapidly evolving branch of research in which nanosensors are being developed for a variety of applications, including sensing various azo-toxic dyes in food products, which provides a wider scope in the future, with the innovation in designing different nanosensors. The current review focuses on the different types of nanosensors, their key role in sensing, and the sensing of azo toxic dyes using nanosensors, their advantages over other sensors, applications of nanomaterials, and the health impacts of azo dyes on humans, appropriate parameters for maximum permissible limits, and an Acceptable Daily Intake (ADI) of azo toxic dye to be followed. The regulations followed on the application of colorants to the food are also elaborated. The review also focuses on the application of enzyme-based biosensors in detecting azo dyes in food products.


Asunto(s)
Colorantes , Nanoestructuras , Humanos , Colorantes/toxicidad , Compuestos Azo/toxicidad , Nanoestructuras/toxicidad , Nivel sin Efectos Adversos Observados
20.
Chemosphere ; 313: 137505, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509189

RESUMEN

No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.


Asunto(s)
Compuestos Azo , Trametes , Simulación del Acoplamiento Molecular , Biodegradación Ambiental , Compuestos Azo/toxicidad , Compuestos Azo/metabolismo , Colorantes/química , Lacasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA