Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.124
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731406

RESUMEN

The effects of canopy treatment with chitosan and the effects of the vineyard location on the quality parameters, volatile and non-volatile profiles, and sensory profile of Pinot Noir wines from South Tyrol (Italy) were studied. Multivariate statistical analysis was applied to identify the most relevant compounds associated with the variability in phenolics and anthocyanins (analyzed by UHPLC-MS), volatile components (HS-SPME-GCxGC-ToF/MS), and basic enological parameters. A clear separation of low-altitude wines (350 m.a.s.l.), which had a high concentration of most of the identified volatile compounds, compared to high-altitude wines (800 and 1050-1150 m.a.s.l.) was pointed out. Low altitude minimized the concentration of the most significant anthocyanins in wines from a valley bottom, presumably due to reduced sun exposure. Wines obtained from chitosan-treated canopies, and, more particularly, those subjected to multiple treatments per year showed a higher amount of the main non-volatile phenolics and were sensorially described as having "unpleasant flavors" and "odors", which might suggest that grape metabolism is slightly altered compared to untreated grapevines. Thus, optimization of the treatment with chitosan should be further investigated.


Asunto(s)
Antocianinas , Quitosano , Fenoles , Vitis , Compuestos Orgánicos Volátiles , Vino , Antocianinas/análisis , Quitosano/química , Vino/análisis , Vitis/química , Fenoles/análisis , Compuestos Orgánicos Volátiles/análisis , Italia , Cromatografía Líquida de Alta Presión
2.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731439

RESUMEN

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Asunto(s)
Aminoácidos , Arachis , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Aceite de Cacahuete , Aminoácidos/análisis , Aminoácidos/química , Arachis/química , Odorantes/análisis , Aceite de Cacahuete/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Aromatizantes/química , Aromatizantes/análisis , Pirazinas/química , Pirazinas/análisis , Microextracción en Fase Sólida , Gusto , Calor
3.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731535

RESUMEN

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Asunto(s)
Antioxidantes , Fermentación , Fragaria , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Compuestos Orgánicos Volátiles/análisis , Fragaria/química , Antioxidantes/análisis , Antioxidantes/química , Odorantes/análisis , Fenoles/análisis , Flavonoides/análisis , Frutas/química , Color
4.
Food Res Int ; 186: 114305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729687

RESUMEN

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Asunto(s)
Equidae , Fermentación , Cabras , Kéfir , Leche , Animales , Kéfir/microbiología , Bovinos , Leche/microbiología , Leche/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , Camelus , Microbiología de Alimentos , Lactobacillus/metabolismo , Microbiota , Acetobacter/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análisis
5.
Food Res Int ; 186: 114319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729690

RESUMEN

The "outstanding and unique aged aroma" of Chinese Chenxiang-type baijiu (CXB)-Daoguang 25 (DG25) mainly originates from a "extraordinary storage technology" of Mujiuhai (a wooden container), so it is mysterious and interesting. In this study, an untargeted GC/MS-based metabolomics was used to reveals the volatile differential metabolites for discriminating six different vintages of DG25 combing with chemometrics. A total of 100 volatile metabolites (including unknowns) were extracted and identified, including esters (41%), alcohols (10%) and acids (7%) so on. Finally, 33 differential metabolites were identified as aging-markers. Among them, 25 aging-markers showed a downtrend, including 17 esters such as ethyl acetate, ethyl hexanoate and ethyl palmitate so on. Moreover, it was interesting and to further study that furans showed a significant downtrend. Statistically speaking, ethyl benzoate played an important role in discriminating vintage of 1Y and 3Y, and the other 24 differential metabolites with downtrend discriminating the unstored (0Y-aged) DG25. Eight differential metabolites, such as ethyl octanoate, benzaldehyde, 3-methylbutanol and 1,1-diethoxyaccetal so on increased during aging of DG25, and they played a statistical role in discriminating the 5Y-, 10Y- and 20Y-aged DG25. This study provides a theoretical basis way for the formation mechanism of aging aroma for CXB.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Odorantes , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Odorantes/análisis , Vino/análisis , Bebidas Alcohólicas/análisis
6.
Food Res Int ; 186: 114313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729689

RESUMEN

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Asunto(s)
Acinetobacter , Técnicas de Cocultivo , Microbiología de Alimentos , Pseudomonas , Carne Roja , Stenotrophomonas maltophilia , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crecimiento & desarrollo , Acinetobacter/crecimiento & desarrollo , Acinetobacter/metabolismo , Stenotrophomonas maltophilia/crecimiento & desarrollo , Stenotrophomonas maltophilia/metabolismo , Carne Roja/microbiología , Carne Roja/análisis , Ovinos , Almacenamiento de Alimentos , Frío , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/análisis , Aminoácidos/metabolismo , Aminoácidos/análisis , Oveja Doméstica/microbiología , Proteolisis
7.
Food Res Int ; 186: 114347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729697

RESUMEN

Although Z. mioga flower buds are popular among consumers for its unique spicy flavor, high nutritional and medicinal value, there are few reports on the formation and changes of the flavor during its growth and maturation process. The understanding of the profile of volatile compounds would help to unravel the flavor formation for Z. mioga flower buds during growth. The volatile changes in Z. mioga flower buds were analyzed by GC-MS and a total of 182 volatile compounds identified, and the terpenoids accounted for the most abundant volatile substances. Almost all the identified volatiles presented an intuitive upward trend throughout the growth period and reached the maximum at the later stage of development (DS3 or DS4). Regarding the PCA and HCA results, there were significant differences found among the four stages, and the DS3 was the critical node. The top 50 differential volatiles screened by OPLS-DA and PLS-DA were all up-regulated, and the correlation analysis indicated that terpenoids might synergize with other chemical types of volatiles to jointly affect the flavor formation of Z. mioga flower buds during growth. The association network for flavor omics revealed that the most important sensory flavor for Z. mioga flower buds were woody and sweet, and the main contribution compounds for the unique flavor contained ß-guaiene, ß-farnesene, δ-cadinene and citronellyl isobutanoate. Taken together, the results of this study provided a reference for flavor quality evaluation of flower buds and determination of the best harvest period.


Asunto(s)
Flores , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles , Flores/crecimiento & desarrollo , Flores/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , Terpenos/metabolismo , Terpenos/análisis
8.
Food Res Int ; 186: 114333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729693

RESUMEN

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Asunto(s)
Acrilamida , Asparaginasa , Asparagina , Coffea , Café , Gusto , Acrilamida/análisis , Asparagina/análisis , Coffea/química , Café/química , Humanos , Compuestos Orgánicos Volátiles/análisis , Culinaria/métodos , Alcaloides/análisis , Ácido Clorogénico/análisis , Cafeína/análisis , Masculino , Manipulación de Alimentos/métodos , Reacción de Maillard , Calor , Cromatografía Líquida de Alta Presión , Semillas/química , Femenino
9.
Food Res Int ; 186: 114379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729702

RESUMEN

The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.


Asunto(s)
Altitud , Metabolómica , , Compuestos Orgánicos Volátiles , Té/química , Compuestos Orgánicos Volátiles/análisis , Humanos , Odorantes/análisis , Gusto , Antioxidantes/análisis , Camellia sinensis/química , Aminoácidos/análisis , Flavonoides/análisis , Masculino , China , Femenino
10.
Food Res Int ; 186: 114401, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729704

RESUMEN

Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.


Asunto(s)
Nariz Electrónica , Fermentación , Espectroscopía Infrarroja Corta , Gusto , , Té/química , Té/microbiología , Espectroscopía Infrarroja Corta/métodos , Odorantes/análisis , Quimiometría/métodos , Humanos , Hongos/metabolismo , Aprendizaje Automático , Compuestos Orgánicos Volátiles/análisis
11.
J Agric Food Chem ; 72(19): 11051-11061, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698723

RESUMEN

Multiple analytical methodologies allow quantitation of H2S and methanethiol (MeSH) in wine, but confirmation that the determined concentrations are related to perceived off-aromas, or "reductive" faults, is yet to be provided. Fifty white wines underwent sensory evaluation and measurement of free and salt-treated H2S and MeSH concentrations by gas chromatography with sulfur chemiluminescence detection and/or gas detection tubes. The determined concentrations were compared across techniques and different analysis laboratories. Sulfhydryl off-odors in the wines were best described by boiled and rotten egg and natural gas/sewerage/durian aroma attributes. The wines with the highest ratings for both aromas had high concentrations of free H2S, free MeSH, and/or salt-treated MeSH but were unrelated to salt-treated H2S. The free sulfhydryl concentrations and their associated aromas appeared to be suppressed by specific Cu fractions in the wines. This study provides evidence of the relevant measures of reductive aroma compounds and their relation to off-odors and Cu fractions.


Asunto(s)
Cobre , Odorantes , Compuestos de Sulfhidrilo , Vino , Vino/análisis , Odorantes/análisis , Compuestos de Sulfhidrilo/análisis , Humanos , Cobre/análisis , Cromatografía de Gases/métodos , Gusto , Sulfuro de Hidrógeno/análisis , Femenino , Masculino , Adulto , Oxidación-Reducción , Persona de Mediana Edad , Olfato , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
12.
Food Res Int ; 187: 114315, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763628

RESUMEN

Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.


Asunto(s)
Bacterias , Capsicum , Fermentación , Odorantes , Gusto , Compuestos Orgánicos Volátiles , Capsicum/microbiología , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Odorantes/análisis , Bacterias/metabolismo , Bacterias/clasificación , Microbiología de Alimentos , Hongos/metabolismo , Hongos/clasificación , Aminoácidos/análisis , Aminoácidos/metabolismo , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Redes y Vías Metabólicas , Aromatizantes/metabolismo , Aromatizantes/análisis
13.
Food Res Int ; 187: 114316, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763629

RESUMEN

This study investigates the dynamic changes in the aroma profile of Tuo tea during long-term storage, a process not well understood yet critical to the formation of aged tea's unique characteristics. Aroma profiling of Tuo tea samples stored for 2 to 25 years was conducted using sensory evaluation and the HS-SPME/GC × GC-QTOFMS technique, revealing a progressive transition from fresh, fruity, and floral scents to more stale, woody, and herbal notes. Among 275 identified volatiles, 55 were correlated with storage duration (|r| > 0.8, p < 0.05), and 49 differential compounds (VIP > 1, FC > 1.2, FC < 0.833, p < 0.05) were identified across three storage stages (2-4, 5-10, and 13-25 years). Furthermore, theaspirane, eucalyptol, o-xylene, and 1-ethylidene-1H-indene were selected as potential markers of Tuo tea aging, incorporating the implementation of a Random Forest (RF) model. Additionally, our model exhibited high accuracy in predicting the age of Tuo tea within a prediction error range of -2.51 to 2.84 years. This research contributes to a comprehensive understanding of the impact of storage time on tea aroma and aids in the precise identification of tea age.


Asunto(s)
Almacenamiento de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Odorantes , , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis , Almacenamiento de Alimentos/métodos , Factores de Tiempo , Humanos , Camellia sinensis/química , Microextracción en Fase Sólida
14.
Food Res Int ; 187: 114330, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763633

RESUMEN

Processing technology plays a crucial role in the formation of tea aroma. The dynamic variations in volatile metabolites across different processing stages of fresh scent green tea (FSGT) were meticulously tracked utilizing advanced analytical techniques such as GC-E-Nose, GC-MS, and GC × GC-TOFMS. A total of 244 volatile metabolites were identified by GC-MS and GC × GC-TOFMS, among which 37 volatile compounds were concurrently detected by both methods. Spreading and fixation stages were deemed as pivotal processes for shaping the volatile profiles in FSGT. Notably, linalool, heptanal, 2-pentylfuran, nonanal, ß-myrcene, hexanal, 2-heptanone, pentanal, 1-octen-3-ol, and 1-octanol were highlighted as primary contributors to the aroma profiles of FSGT by combining odor activity value assessment. Furthermore, lipid degradation and glycoside hydrolysis were the main pathways for aroma formation of FSGT. The results not only elucidate the intricate variations in volatile metabolites but also offer valuable insights into enhancing the processing techniques for improved aroma quality of green tea.


Asunto(s)
Manipulación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Odorantes , , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Té/química , Manipulación de Alimentos/métodos , Nariz Electrónica , Aldehídos/análisis , Aldehídos/metabolismo , Monoterpenos Acíclicos/metabolismo , Monoterpenos Acíclicos/análisis , Camellia sinensis/química , Camellia sinensis/metabolismo , Cetonas/análisis , Cetonas/metabolismo , Octanoles
15.
Food Res Int ; 187: 114323, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763630

RESUMEN

The balance regulation between characteristic aroma and hazards in high-temperature processed fish is a hot spot. This study was aimed to explore the interactive relationship between the nutritional value, microstructures, aroma, and harmful substances of hairtail under different frying methods including traditional frying (TF), air frying (AF), and vacuum frying (VF) via chemical pattern recognition. The results indicated that VF-prepared hairtail could form a crunchy mouthfeel and retain the highest content of protein (645.53 mg/g) and the lowest content of fat (242.03 mg/g). Vacuum frying reduced lipid oxidation in hairtail, resulting in the POV reaching 0.02 mg/g, significantly lower than that of TF (0.05 mg/g) and AF (0.21 mg/g), and TBARS reached 0.83 mg/g, significantly lower than that of AF (1.96 mg/g) (P < 0.05), respectively. Notable variations were observedin the aroma profileof hairtail preparedfrom different frying methods. Vacuum frying of hairtail resulted in higher levels of pyrazines and alcohols, whereas traditional frying and air frying were associated with the formation of aldehydes and ketones, respectively. Air frying was not a healthy way to cook hairtail which produced the highest concentration of harmful substances (up to 190.63 ng/g), significantly higher than VF (5.72 ng/g) and TF (52.78 ng/g) (P < 0.05), especially norharman (122.57 ng/g), significantly higher than VF (4.50 ng/g) and TF (32.63 ng/g) (P < 0.05). Norharman and acrylamide were the key harmful substances in hairtail treated with traditional frying. The vacuum frying method was an excellent alternative for deep-fried hairtail as a snack food with fewer harmful substances and a fine aroma, providing a theoretic guidance for preparing healthy hairtail food with high nutrition and superior sensory attraction.


Asunto(s)
Culinaria , Calor , Odorantes , Animales , Culinaria/métodos , Odorantes/análisis , Aldehídos/análisis , Valor Nutritivo , Perciformes , Compuestos Orgánicos Volátiles/análisis , Pirazinas/análisis , Pirazinas/química , Alimentos Marinos/análisis
16.
Food Res Int ; 187: 114366, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763646

RESUMEN

In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.


Asunto(s)
Cerveza , Fermentación , Alimentos Fermentados , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Levaduras , Cerveza/análisis , Cerveza/microbiología , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Levaduras/aislamiento & purificación , Levaduras/metabolismo , Microbiología de Alimentos
17.
Food Res Int ; 187: 114359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763643

RESUMEN

Chinese Xiaokeng green tea (XKGT) possesses elegant and fascinating aroma characteristics, but its key odorants are still unknown. In this study, 124 volatile compounds in the XKGT infusion were identified by headspace-solid phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and solvent extraction-solid phase extraction (SE-SPE) combined with gas chromatography-mass spectrometry (GC-MS). Comparing these three pretreatments, we found HS-SPME was more efficient for headspace compounds while SE-SPE was more efficient for volatiles with higher boiling points. Furthermore, SBSE showed more sensitive to capture ketones then was effective to the application of pretreatment of aroma analysis in green tea. The aroma intensities (AIs) were further identified by gas chromatography-olfactometry (GC-O). According to the AI and relative odor activity value (rOAV), 27 compounds were identified as aroma-active compounds. Quantitative descriptive analysis (QDA) showed that the characteristic aroma attributes of XKGT were chestnut-like, corn-like, fresh, and so on. The results of network analysis showed that (E, Z)-2,6-nonadienal, nonanal, octanal and nerolidol were responsible for the fresh aroma. Similarly, dimethyl sulfide, (E, E)-2,4-heptadienal, (E)-2-octenal and ß-cyclocitral contributed to the corn-like aroma. Furthermore, indole was responsible for the chestnut-like and soybean-like aroma. This study contributes to a better understanding of the molecular mechanism of the aroma characteristics of XKGT.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Odorantes , Olfatometría , Microextracción en Fase Sólida , , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodos , Humanos , Camellia sinensis/química , Extracción en Fase Sólida/métodos
18.
Food Res Int ; 187: 114398, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763656

RESUMEN

Nowadays, it is important to monitor the freshness of meat during storage to protect consumers' health. Volatile organic compounds (VOCs) are responsible for odour and taste of food, and they give an indication about meat quality and freshness. This study had the aim to seek and select potential new markers of meat spoilage through a semi-quantitative analysis in five types of meat (beef, raw and baked ham, pork sausage and chicken) and then to develop a new quantitative analytical method to detect and quantify potential markers on five types of meat simultaneously. Firstly, a new headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method was developed to evaluate the volatile profile of five types of meat, preserved at 4 °C for 5 days. Among the 40 compounds identified, 15 were chosen and selected as potential shelf-life markers on the basis of their presence in most of meat samples or/and for their constant increasing/decreasing trend within the sample. Afterwards, a quantitative HS-SPME-GC-MS analytical method was developed to confirm which VOCs can be considered markers of shelf-life for these meat products, stored at 4 °C for 12 days. Some of the compounds analyzed attracted attention as they can be considered markers of shelf-life for at least 4 types of meat: 1-butanol, 3-methylbutanol, 1-hexanol, 2-nonanone, nonanal, 1-octen-3-ol and linalool. In conclusion, in this study a new quantitative HS-SPME-GC-MS analytical method to quantity 15 VOCs in five types of meat was developed and it was demonstrated that some of the compounds quantified can be considered markers of shelf-life for some of the meat products analyzed.


Asunto(s)
Almacenamiento de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Productos de la Carne , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Productos de la Carne/análisis , Animales , Porcinos , Odorantes/análisis , Bovinos , Aldehídos/análisis , Pollos , Cetonas/análisis , Pentanoles/análisis , Monoterpenos Acíclicos/análisis , Octanoles
19.
Food Res Int ; 187: 114424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763675

RESUMEN

This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 âˆ¼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 âˆ¼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 âˆ¼ 30.65 µmol/g), but lower total sulfhydryl (73.37 âˆ¼ 88.94 µmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to ß-sheets and random coils were observed in FT-3 âˆ¼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.


Asunto(s)
Culinaria , Patos , Congelación , Cromatografía de Gases y Espectrometría de Masas , Gusto , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/análisis , Manipulación de Alimentos/métodos , Oxidación-Reducción , Calidad de los Alimentos , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
20.
Food Res Int ; 187: 114438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763685

RESUMEN

Early changes in sensory quality of phenols-rich virgin olive oil (VOO) and their relationship with the chemical changes are less studied in the literature. Therefore, the objective of this study was to propose a predictive model of dynamics of sensory changes based on specific chemical markers. The evolution of the sensory quality of phenol-rich VOOs from Tuscan cultivars stored under optimal storage conditions (i.e., absence of light, no O2 exposure, low temperature) was investigated using a multi-step methodological approach combining sensory (official sensory analysis (so-called Panel Test), Descriptive Analysis and Temporal Dominance of Sensation) and chemical measurements. The sensory map from descriptive data was related to the phenolic and volatile profiles, measured using HPLC-DAD and HS-SPME-GC-MS, respectively. A predictive model of the sensory changes over storage based on chemical compounds was developed. Results showed that very early changes involving phenolic and volatile compounds profiles occur in VOOs stored under optimal storage conditions, which turn in changes in sensory properties evaluated by the official panel test, the descriptive analysis and the temporal dominance of sensation. Furthermore, a chemical marker of sensory dynamics of oils during storage was identified as the ratio between two groups of secoiridoids. The proposed model, supported by the mentioned chemical marker, has the potential of improving the control of sensory changes in phenols-rich virgin olive oils during storage in optimal conditions.


Asunto(s)
Almacenamiento de Alimentos , Aceite de Oliva , Fenoles , Compuestos Orgánicos Volátiles , Aceite de Oliva/química , Fenoles/análisis , Almacenamiento de Alimentos/métodos , Compuestos Orgánicos Volátiles/análisis , Humanos , Gusto , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Masculino , Femenino , Adulto , Biomarcadores/análisis , Iridoides/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA