Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.860
Filtrar
1.
Water Sci Technol ; 89(10): 2732-2745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822611

RESUMEN

In this work, microalgae cultivation trials were carried out in a membrane bioreactor to investigate fouling when the cultures of Chlorellavulgaris were grown under mixotrophic, heterotrophic, and phototrophic cultivation regimes. The Chlorella cultures were cultivated in wastewater as a source of nutrients that contained a high concentration of ammonium. In mixotrophic cultivation trials, the results showed that the elevated contents of carbohydrates in the soluble microbial product and proteins in extracellular polymeric substances probably initiated membrane fouling. In this case, the highest protein content was also found in extracellular polymeric substances due to the high nitrogen removal rate. Consequently, transmembrane pressure significantly increased compared to the phototrophic and heterotrophic regimes. The data indicated that cake resistance was the main cause of fouling in all cultivations. Higher protein content in the cake layer made the membrane surface more hydrophobic, while carbohydrates had the opposite effect. Compared to a mixotrophic culture, a phototrophic culture had a larger cell size and higher hydrophobicity, leading to less membrane fouling. Based on our previous data, the highest ammonia removal rate was reached in the mixotrophic cultures; nevertheless, membrane fouling appeared to be the fundamental problem.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Membranas Artificiales , Microalgas , Aguas Residuales , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/química , Compuestos de Amonio/metabolismo , Procesos Heterotróficos , Eliminación de Residuos Líquidos/métodos , Incrustaciones Biológicas , Chlorella/crecimiento & desarrollo , Chlorella/metabolismo , Procesos Fototróficos
2.
Nat Commun ; 15(1): 4085, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744837

RESUMEN

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Asunto(s)
Amoníaco , Compuestos de Amonio , Bacterias , Ecosistema , Óxido Nitroso , Ríos , Óxido Nitroso/metabolismo , Ríos/microbiología , Ríos/química , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Amoníaco/metabolismo , Metagenoma , Agricultura , Nitratos/metabolismo , Desnitrificación , Nitrificación , Redes y Vías Metabólicas/genética
3.
J Environ Manage ; 359: 121009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718600

RESUMEN

Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.


Asunto(s)
Procesos Autotróficos , Nitritos , Nitrógeno , Aguas Residuales , Nitrógeno/metabolismo , Nitritos/metabolismo , Nitrificación , Desnitrificación , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos , Biopelículas , Reactores Biológicos , Compuestos de Amonio/metabolismo
4.
Bioresour Technol ; 402: 130839, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744396

RESUMEN

The performance of an anaerobic ammonium oxidation (anammox) reactor with the magnetic field of 40 mT was systematically investigated. The total nitrogen removal rate was enhanced by 16% compared with that of the control group. The enhancing mechanism was elucidated from the improved mass transfer efficiency, the complicated symbiotic interspecific relationship and the improved levels of functional genes. The magnetic field promoted formation of the loose anammox granular sludge and the homogeneous and well-connected porous structure to enhance the mass transfer. Consequently, Candidatus Brocadia predominated in the sludge with an increase in abundance of 13%. Network analysis showed that the positive interactions between Candidatus Brocadia and heterotrophic bacteria were strengthened, which established a more complicated stable microbial community. Moreover, the magnetic field increased the levels of hdh by 26% and hzs by 35% to promote the nitrogen metabolic process. These results provided novel insights into the magnetic field-enhanced anammox process.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Campos Magnéticos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/microbiología , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo
5.
Water Res ; 257: 121698, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705066

RESUMEN

Research has revealed that comammox Nitrospira and anammox bacteria engage in dynamic interactions in partial nitritation-anammox reactors, where they compete for ammonium and nitrite or comammox Nitrospria supply nitrite to anammox bacteria. However, two gaps in the literature are present: the know-how to manipulate the interactions to foster a stable and symbiotic relationship and the assessment of how effective this partnership is for treating low-strength ammonium wastewater at high hydraulic loads. In this study, we employed a membrane bioreactor designed to treat synthetic ammonium wastewater at a concentration of 60 mg N/L, reaching a peak loading of 0.36 g N/L/day by gradually reducing the hydraulic retention time to 4 hr. Throughout the experiment, the reactor achieved an approximately 80 % nitrogen removal rate through strategically adjusting intermittent aeration at every stage. Notably, the genera Ca. Kuenena, Nitrosomonas, and Nitrospira collectively constituted approximately 40 % of the microbial community. Under superior intermittent aeration conditions, the expression of comammox amoA was consistently higher than that of Nitrospira nxrB and AOB amoA in the biofilm, despite the higher abundance of Nitrosomonas than comammox Nitrospira, implying that the biofilm environment is favorable for fostering cooperation between comammox and anammox bacteria. We then assessed the in situ activity of comammox Nitrospira in the reactor by selectively suppressing Nitrosomonas using 1-octyne, thereby confirming that comammox Nitrospira played the primary role in facilitating the nitritation (33.1 % of input ammonium) rather than complete nitrification (7.3 % of input ammonium). Kinetic analysis revealed a specific ammonia-oxidizing rate 5.3 times higher than the nitrite-oxidizing rate in the genus Nitrospira, underscoring their critical role in supplying nitrite. These findings provide novel insights into the cooperative interplay between comammox Nitrospira and anammox bacteria, potentially reshaping the management of nitrogen cycling in engineered environments, and aiding the development of microbial ecology-driven wastewater treatment technologies.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Aguas Residuales , Reactores Biológicos/microbiología , Aguas Residuales/microbiología , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Nitrificación , Nitritos/metabolismo , Oxidación-Reducción
6.
Water Res ; 257: 121700, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705068

RESUMEN

Sulfur-based denitrification is a promising technology in treatments of nitrate-contaminated wastewaters. However, due to weak bioavailability and electron-donating capability of elemental sulfur, its sulfur-to-nitrate ratio has long been low, limiting the support for dissimilatory nitrate reduction to ammonium (DNRA) process. Using a long-term sulfur-packed reactor, we demonstrate here for the first time that DNRA in sulfur-based system is not negligible, but rather contributes a remarkable 40.5 %-61.1 % of the total nitrate biotransformation for ammonium production. Through combination of kinetic experiments, electron flow analysis, 16S rRNA amplicon, and microbial network succession, we unveil a cryptic in-situ sulfur disproportionation (SDP) process which significantly facilitates DNRA via enhancing mass transfer and multiplying 86.7-210.9 % of bioavailable electrons. Metagenome assembly and single-copy gene phylogenetic analysis elucidate the abundant genomes, including uc_VadinHA17, PHOS-HE36, JALNZU01, Thiobacillus, and Rubrivivax, harboring complete genes for ammonification. Notably, a unique group of self-SDP-coupled DNRA microorganism was identified. This study unravels a previously concealed fate of DNRA, which highlights the tremendous potential for ammonium recovery and greenhouse gas mitigation. Discovery of a new coupling between nitrogen and sulfur cycles underscores great revision needs of sulfur-driven denitrification technology.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitrógeno , Azufre , Azufre/metabolismo , Compuestos de Amonio/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Desnitrificación , Reactores Biológicos , Aguas Residuales , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
7.
Bioresour Technol ; 402: 130770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697366

RESUMEN

Ammonia inhibition is a common issue encountered in anaerobic digestion (AD) when treating nitrogen-rich substrates. This study proposed a novel approach, the electrodialysis-integrated AD (ADED) system, for in-situ recovery of ammonium (NH4+) while simultaneously enhancing AD performance. The ADED reactor was operated at two different NH4+-N concentrations (5,000 mg/L and 10,000 mg/L) to evaluate its performance against a conventional AD reactor. The results indicate that the ADED technology effectively reduced the NH4+-N concentration to below 2,000 mg/L, achieving this with a competitive energy consumption. Moreover, the ADED reactor demonstrated a 1.43-fold improvement in methane production when the influent NH4+-N was 5,000 mg/L, and it effectively prevented complete inhibition of methane production at the influent NH4+-N of 10,000 mg/L. The life cycle impact assessment reveals that ADED technology offers a more environmentally friendly alternative by recovering valuable fertilizer from the AD system.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Metano , Metano/metabolismo , Anaerobiosis , Compuestos de Amonio/metabolismo , Diálisis/métodos , Amoníaco
8.
Bioresour Technol ; 402: 130773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701987

RESUMEN

This study explored the use of biochar to accelerate the establishment of anaerobic ammonium oxidation (anammox) reactors operating at 15 ± 1℃. Incorporating 10 g/L bamboo charcoal in S1 accelerated the start-up of anammox in 87 days, which was significantly shorter than 103 days in S0 (without biochar). After 140 days, S1 exhibited a 10.9 % increase in nitrogen removal efficiency due to a 28.9 % elevation in extracellular polymeric substances, bolstering anammox bacterial resilience. Predominant anammox bacteria (Cadidatus Brocadia and Cadidatus Jettenia) showed relative abundances of 3.19 % and 0.38 % in S1, respectively, which were significantly higher than 0.40 % and 0.05 % in S0. Biochar provides favorable habitats for the enrichment of anammox bacteria and accelerates the establishment of anammox at low temperatures. This finding holds promise for enhancing the efficiency of anammox in cold climates and advancing sustainable wastewater nitrogen removal.


Asunto(s)
Reactores Biológicos , Carbón Orgánico , Nitrógeno , Oxidación-Reducción , Carbón Orgánico/química , Frío , Anaerobiosis , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Purificación del Agua/métodos , Aguas Residuales/química
9.
Bioresour Technol ; 402: 130808, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723724

RESUMEN

The substantial discharge of ferroferric oxide nanoparticles (Fe3O4 NPs) into sewage threatens the survival of functional microorganisms in wastewater treatment. This study elucidated responses of anaerobic ammonium oxidation (anammox) consortia to inhibition from high Fe3O4 NPs concentration and recovery mechanisms. The nitrogen removal efficiency decreased by 20.3 % and recovered after 55 days under 1000 mg/L Fe3O4 NPs concentration. Toxicity was attributed to reactive oxygen species (ROS) production. The excessive ROS damaged membrane integrity, nitrogen metabolism, and DNA synthesis, resulting in the inhibition of anammox bacteria activity. However, recovery mechanisms of anammox consortia activity were activated in response to 1000 mg/L Fe3O4 NPs. The increase of heme oxygenase-1, thioredoxin, and nicotinamide adenine dinucleotide-quinone oxidoreductase genes alleviated oxidative stress. Furthermore, the activation of metabolic processes associated with membrane and DNA repair promoted recovery of anammox bacteria activity. This study provided new insights into NPs contamination and control strategies during anammox process.


Asunto(s)
Oxidación-Reducción , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Amonio/metabolismo , Anaerobiosis , Nitrógeno , Bacterias/metabolismo , Consorcios Microbianos , Estrés Oxidativo/efectos de los fármacos , Aguas Residuales/química
10.
Sci Total Environ ; 936: 173451, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782266

RESUMEN

Hydroponic experiment was conducted to explore the effects of two nitrogen (N) levels with five nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N) ratios on the growth status and Cd migration patterns of wheat seedlings under Cd5 and Cd30 level. Results showed that higher Cd were detrimental to the growth, absorption of K and Ca, expression of genes mediating NO3--N and NH4+-N transport, which also increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in shoots and roots of wheat seedlings. Higher N treatment alleviated the inhibitory effects of Cd stress on the biomass, root development, photosynthesis and increased the tolerance index of wheat seedlings. The ratio of NO3--N and NH4+-N was the main factor driving Cd accumulation in wheat seedlings, the combined application of NH4+-N and NO3--N was more conducive for the growth, nitrogen assimilation and Cd tolerance to the Cd stressed wheat seedlings. Increased NO3--N application rates significantly up-regulated the expression levels of TaNPF2.12, TaNRT2.2, increased NH4+-N application rates significantly up-regulated the expression levels of TaAMT1.1. The high proportion of NO3--N promoted the absorption of K, Ca and Cd in the shoots and roots of wheat seedlings, while NH4+-N was the opposite. Under low Cd conditions, the NO3--N to NH4+-N ratio of 1:1 was more conducive to the growth of wheat seedlings, under high Cd stress, the optimal of NO3--N to NH4+-N was 1:2 for inhibiting the accumulation of Cd in wheat seedlings. The results indicated that increasing NH4+-N ratio appropriately could inhibit wheat Cd uptake by increasing NH4+, K+ and Ca2+ for K and Ca channels, and promote wheat growth by promoting N assimilation process.


Asunto(s)
Cadmio , Nitrógeno , Plantones , Triticum , Triticum/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Plantones/metabolismo , Nitrógeno/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Compuestos de Amonio/metabolismo , Raíces de Plantas/metabolismo
11.
Water Res ; 257: 121668, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692262

RESUMEN

Recovering ammonia nitrogen from wastewater is a sustainable strategy that simultaneously addresses both nitrogen removal and fertilizer production. Membrane electrochemical system (MES), which utilizes electrochemical redox reactions to transport ammonium ions through cation exchange membranes, has been considered as an effective technology for ammonia recovery from wastewater. In this study, we develop a mathematical model to systematically investigate the impact of co-existing ions on the transport of ammonium (NH4+) ions in MES. Our analysis elucidates the importance of pH values on both the NH4+ transport and inert ion (Na+) transport. We further comprehensively assess the system performance by varying the concentration of Na+ in the system. We find that while the inert cation in the initial anode compartment competes with NH4+ transport, NH4+ dominates the cation transport in most cases. The transport number of Na+ surpasses NH4+ only if the fraction of Na+ to total cation is extremely high (>88.5%). Importantly, introducing Na+ ions into the cathode compartment significantly enhances the ammonia transport due to the Donnan dialysis. The analysis of selective ion transport provides valuable insights into optimizing both selectivity and efficiency in ammonia recovery from wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Purificación del Agua , Compuestos de Amonio/análisis , Compuestos de Amonio/química , Purificación del Agua/métodos , Aguas Residuales/química , Técnicas Electroquímicas , Cationes/química , Intercambio Iónico , Modelos Teóricos , Concentración de Iones de Hidrógeno
12.
J Environ Manage ; 359: 121007, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703646

RESUMEN

Single-stage microaerobic systems have been proven to be effective for concurrent removal of ammonium and organic carbon from sewage. While mechanistic models derived from activated sludge models (ASMs) have simulated nutrients removal under microaerobic conditions, classic ASMs exhibit limitations in capturing the intricate effects of carbon to nitrogen (C/N) ratio on nitrogen removal performance. To address this issue, a mechanistic model modified from the classic ASMs was proposed to capture the combined inhibitory effects of carbon and ammonium on microaerobic systems. This modified model was established based on experimental data from a single-stage microaerobic reactor encompassing simultaneous nitrification-denitrification and anammox processes. The inhibition coefficient of C/N ratio was integrated into the process rate equations, and its effectiveness was validated through model performance evaluation. Compared to the classic models, the modified one achieved superior predictions for nitrite and nitrate nitrogen concentrations. Simulations revealed that under optimized conditions with a C/N of 4.57 and a dissolved oxygen (DO) of 0.41 mg/L, the system could achieve up to 95.5% of total nitrogen (TN) removal efficiency. Based on the simulation of substrate uptake/production rate, increasing the nitrogen loading rate (NLR) rather than organic loading rate (OLR) was crucial for efficient nitrogen removal. The proposed modified model served as a valuable tool for designing and optimizing similar biological wastewater treatment systems.


Asunto(s)
Carbono , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Compuestos de Amonio , Nitrificación , Desnitrificación , Modelos Teóricos
13.
Sci Total Environ ; 931: 172970, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705293

RESUMEN

Rivers in agricultural countries widely suffer from diffuse nitrate (NO3-) pollution. Although pollution sources and fates of riverine NO3- have been reported worldwide, the driving mechanisms of riverine NO3- pollution associated with mineral dissolution in piedmont zones remain unclear. This study combined hydrogeochemical compositions, stable isotopes (δ18O-NO3-, δ15N-NO3-, δ18O-H2O, and δ2H-H2O), and molecular bioinformation to determine the pollution sources, biogeochemical evolution, and natural attenuation of riverine NO3- in a typical piedmont zone (Qingshui River). High NO3- concentration (37.5 ± 9.44 mg/L) was mainly observed in the agricultural reaches of the river, with ~15.38 % of the samples exceeding the acceptable limit for drinking purpose (44 mg/L as NO3-) set by the World Health Organization. Ammonium inputs, microbial nitrification, and HNO3-induced calcite dissolution were the dominant driving factors that control riverine NO3- contamination in the piedmont zone. Approximately 99.4 % of riverine NO3- contents were derived from NH4+-containing pollutants, consisted of manure & domestic sewage (74.0 % ± 13.0 %), NH4+-synthetic fertilizer (16.1 % ± 8.99 %), and soil organic nitrogen (9.35 % ± 4.49 %). These NH4+-containing pollutants were converted to HNO3 (37.2 ± 9.38 mg/L) by nitrifying bacteria, and then the produced HNO3 preferentially participated in the carbonate (mainly calcite) dissolution, which accounted for 40.0 % ± 12.1 % of the total riverine Ca2+ + Mg2+, also resulting in the rapid release of NO3- into the river water. Thus, microbial nitrification could be a new and non-negligible contributor of riverine NO3- pollution, whereas the involvement of HNO3 in calcite dissolution acted as an accelerator of riverine NO3- pollution. However, denitrification had lesser contribution to natural attenuation for high NO3- pollution. The obtained results indicated that the mitigation of riverine NO3- pollution should focus on the management of ammonium discharges, and the HNO3-induced carbonate dissolution needs to be considered in comprehensively understanding riverine NO3- pollution in piedmont zones.


Asunto(s)
Compuestos de Amonio , Carbonato de Calcio , Monitoreo del Ambiente , Nitratos , Nitrificación , Ríos , Contaminantes Químicos del Agua , China , Ríos/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Carbonato de Calcio/química
14.
Chemosphere ; 358: 142216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705403

RESUMEN

As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus, along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment.


Asunto(s)
Bacterias , Reactores Biológicos , Desnitrificación , Hierro , Nitrificación , Nitrógeno , Aguas Residuales , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Bacterias/metabolismo , Hierro/metabolismo , Hierro/química , Eliminación de Residuos Líquidos/métodos , Microbiota , Aerobiosis , Amoníaco/metabolismo , Compuestos de Amonio/metabolismo
15.
Plant Physiol Biochem ; 211: 108666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723490

RESUMEN

Nitrogen (N) is the nutrient most applied in agriculture as fertilizer (as nitrate, Nit; ammonium, A; and/or urea, U, forms) and its availability strongly constrains the crop growth and yield. To investigate the early response (24 h) of N-deficient tomato plants to these three N forms, a physiological and molecular study was performed. In comparison to N-deficient plants, significant changes in the transcriptional, metabolomic and ionomic profiles were observed. As a probable consequence of N mobility in plants, a wide metabolic modulation occurred in old leaves rather than in young leaves. The metabolic profile of U and A-treated plants was more similar than Nit-treated plant profile, which in turn presented the lowest metabolic modulation with respect to N-deficient condition. Urea and A forms induced some changes at the biosynthesis of secondary metabolites, amino acids and phytohormones. Interestingly, a specific up-regulation by U and down-regulation by A of carbon synthesis occurred in roots. Along with the gene expression, data suggest that the specific N form influences the activation of metabolic pathways for its assimilation (cytosolic GS/AS and/or plastidial GS/GOGAT cycle). Urea induced an up-concentration of Cu and Mn in leaves and Zn in whole plant. This study highlights a metabolic reprogramming depending on the N form applied, and it also provide evidence of a direct relationship between urea nutrition and Zn concentration. The understanding of the metabolic pathways activated by the different N forms represents a milestone in improving the efficiency of urea fertilization in crops.


Asunto(s)
Compuestos de Amonio , Nitratos , Solanum lycopersicum , Urea , Urea/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Hojas de la Planta/metabolismo , Metabolómica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaboloma , Fertilizantes , Nitrógeno/metabolismo
16.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599628

RESUMEN

Yeasts are prevalent in the open ocean, yet we have limited understanding of their ecophysiological adaptations, including their response to nitrogen availability, which can have a major role in determining the ecological potential of other planktonic microbes. In this study, we characterized the nitrogen uptake capabilities and growth responses of marine-occurring yeasts. Yeast isolates from the North Atlantic Ocean were screened for growth on diverse nitrogen substrates, and across a concentration gradient of three environmentally relevant nitrogen substrates: nitrate, ammonium, and urea. Three strains grew with enriched nitrate while two did not, demonstrating that nitrate utilization is present but not universal in marine yeasts, consistent with existing knowledge of nonmarine yeast strains. Naganishia diffluens MBA_F0213 modified the key functional trait of cell size in response to nitrogen concentration, suggesting yeast cell morphology changes along chemical gradients in the marine environment. Meta-analysis of the reference DNA barcode in public databases revealed that the genus Naganishia has a global ocean distribution, strengthening the environmental applicability of the culture-based observations. This study provides novel quantitative understanding of the ecophysiological and morphological responses of marine-derived yeasts to variable nitrogen availability in vitro, providing insight into the functional ecology of yeasts within pelagic open ocean environments.


Asunto(s)
Nitratos , Nitrógeno , Agua de Mar , Nitrógeno/metabolismo , Agua de Mar/microbiología , Nitratos/metabolismo , Océano Atlántico , Levaduras/metabolismo , Levaduras/genética , Levaduras/crecimiento & desarrollo , Compuestos de Amonio/metabolismo , Urea/metabolismo
17.
Bioresour Technol ; 400: 130693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608785

RESUMEN

The synchronous bioelectricity generation and dissimilatory nitrate reduction to ammonium (DNRA) pathway in Klebsiella variicola C1 was investigated. The presence of bioelectricity facilitated cell growth on the anodic biofilms, consequently enhancing the nitrate removal efficiency decreasing total nitrogen levels and causing a negligible accumulation of NO2- in the supernatant. Genomic analysis revealed that K. variicola C1 possessed a complete DNRA pathway and largely annotated electron shuttles. The up-regulated expression of genes narG and nirB, encoding nitrite oxidoreductase and nitrite reductase respectively, was closely associated with increased extracellular electron transfer (EET). High-throughput sequencing analysis was employed to investigate the impact of bioelectricity on microbial community composition within cathodic biofilms. Results indicated that Halomonas, Marinobacter and Prolixibacteraceae were enriched at the cathode electrodes. In conclusion, the integration of a DNRA strain with MFC facilitated the efficient removal of wastewater containing high concentrations of NO3- and enabled the environmentally friendly recovery of NH4+.


Asunto(s)
Compuestos de Amonio , Fuentes de Energía Bioeléctrica , Biopelículas , Electrodos , Nitratos , Fuentes de Energía Bioeléctrica/microbiología , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Klebsiella/metabolismo , Klebsiella/genética , Aguas Residuales/microbiología , Microbiota/fisiología , Oxidación-Reducción , Electricidad
18.
J Environ Manage ; 358: 120812, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615397

RESUMEN

Coke wastewater is a complex industrial wastewater due to its high content of toxic compounds such as cyanides, thiocyanates, phenols, tar, oils, and fats. After a series of treatments, wastewater with a high ammonium content is obtained (around 4,150 mg·L-1). A stripping process is used to reduce it. Certain pollutants in the influent, such as tar, polycyclic aromatic hydrocarbons (PAHs), oils, fats and total suspended solids (TSS), interfere with stripping and therefore must be previously removed. In this study, the performance of a pilot-scale airlift sand filter was evaluated under real conditions for the reduction of the concentration of tar, PAHs, oils, fats and TSS, before stripping. Prior to the sand filter, a cationic flocculant was added to the influent (2 ppm). High (10 mm.min-1), medium (7.5 mm.min-1) and low sand speeds (1.9-2.6 mm.min-1) were assessed. The latter conditions gave the best results: a decrease of 98.2% in TSS, 99.7% in oils, fats and grease and 97.6% in PAHs. The final effluent (≤ 1.6 mg PAHs·L-1, ≤ 5 mg TSS·L-1 and ≤ 0.05 mg·L-1 of fats, oils and grease) was suitable for the stripping process.


Asunto(s)
Compuestos de Amonio , Coque , Filtración , Hidrocarburos Policíclicos Aromáticos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos de Amonio/análisis , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Grasas/química , Grasas/análisis , Aceites/química
19.
Chemosphere ; 357: 142070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641297

RESUMEN

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Asunto(s)
Compuestos de Amonio , Calcio , Teoría Funcional de la Densidad , Nitratos , Nitrógeno , Fósforo , Adsorción , Calcio/química , Nitrógeno/química , Fósforo/química , Nitratos/química , Compuestos de Amonio/química , Compuestos Férricos/química , Modelos Químicos , Concentración de Iones de Hidrógeno
20.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557720

RESUMEN

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Asunto(s)
Compuestos de Amonio , Microbiota , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Reactores Biológicos/microbiología , Bacterias , Biopelículas , Nitrógeno , Aguas del Alcantarillado , Desnitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA