Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.112
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125961

RESUMEN

Garlic is a vegetable with numerous pro-health properties, showing high antioxidant capacity, and cytotoxicity for various malignant cells. The inhibition of cell proliferation by garlic is mainly attributed to the organosulfur compounds (OSCs), but it is far from obvious which constituents of garlic indeed participate in the antioxidant and cytotoxic action of garlic extracts. This study aimed to obtain insight into this question by examining the antioxidant activity and cytotoxicity of six OSCs and five phenolics present in garlic. Three common assays of antioxidant activity were employed (ABTS● decolorization, DPPH● decolorization, and FRAP). Cytotoxicity of both classes of compounds to PEO1 and SKOV-3 ovarian cancer cells, and MRC-5 fibroblasts was compared. Negligible antioxidant activities of the studied OSCs (alliin, allicin, S-allyl-D-cysteine, allyl sulfide, diallyl disulfide, and diallyl trisulfide) were observed, excluding the possibility of any significant contribution of these compounds to the total antioxidant capacity (TAC) of garlic extracts estimated by the commonly used reductive assays. Comparable cytotoxic activities of OSCs and phenolics (caffeic, p-coumaric, ferulic, gallic acids, and quercetin) indicate that both classes of compounds may contribute to the cytotoxic action of garlic.


Asunto(s)
Compuestos Alílicos , Antioxidantes , Disulfuros , Ajo , Fenoles , Extractos Vegetales , Sulfuros , Ácidos Sulfínicos , Ajo/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Fenoles/farmacología , Fenoles/química , Disulfuros/farmacología , Disulfuros/química , Línea Celular Tumoral , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ácidos Sulfínicos/farmacología , Ácidos Sulfínicos/química , Sulfuros/farmacología , Sulfuros/química , Compuestos Alílicos/farmacología , Compuestos Alílicos/química , Compuestos de Azufre/farmacología , Compuestos de Azufre/química , Cisteína/análogos & derivados , Cisteína/química , Cisteína/farmacología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39063490

RESUMEN

With increasingly stringent emission limits on sulfur and sulfur-containing substances, the reduction and removal of sulfur compounds from fuels has become an urgent task. Emissions of sulfur-containing compounds pose a significant threat to the environment and human health. Ionic liquids (ILs) have attracted much attention in recent years as green solvents and functional materials, and their unique properties make them useful alternatives to conventional desulfurization organic solvents. This paper reviews the advantages and disadvantages of traditional desulfurization technologies such as hydrodesulfurization, oxidative desulfurization, biological desulfurization, adsorptive desulfurization, extractive desulfurization, etc. It focuses on the synthesis of ionic liquids and their applications in oxidative desulfurization, extractive desulfurization, extractive oxidative desulfurization, and catalytic oxidative desulfurization, and it analyzes the problems of ionic liquids that need to be solved urgently in desulfurization, looking forward to the development of sulfuric compounds as a kind of new and emerging green solvent in the field of desulfurization.


Asunto(s)
Tecnología Química Verde , Líquidos Iónicos , Líquidos Iónicos/química , Tecnología Química Verde/métodos , Azufre/química , Compuestos de Azufre/química , Oxidación-Reducción
3.
J Oleo Sci ; 73(8): 1083-1090, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019618

RESUMEN

Growing evidence indicates that the intake of trans fatty acids (TFAs) increases the risk of numerous diseases, such as cardiovascular diseases. Recently, our group found that certain natural sulfur compounds (allyl isothiocyanate [AITC] and diallyl disulfide [DADS]) promote cis to trans isomerization of fatty acid esters during heat treatment. However, little information is available on the fatty acid isomerization with them. In this study, we investigated the effects of oxygen and α-tocopherol (antioxidant) on isomerization of oleic acid (18:1) methyl ester (OA-ME) in the presence of AITC and DADS. Furthermore, the effect of the simultaneous use of AITC and DADS was evaluated. Our results indicate that oxygen enhances the AITC-induced trans isomerization, and DADS was found to promote trans isomerization but inhibit AITC-induced trans isomerization during heating. Both AITC- and DADS-induced trans isomerization were inhibited by α-tocopherol. These results indicate that the trans isomerization of fatty acids induced by sulfur compounds can be controlled by devising a cooking process and the food ingredients used together.


Asunto(s)
Disulfuros , Isotiocianatos , Ácidos Oléicos , alfa-Tocoferol , Isomerismo , alfa-Tocoferol/química , Disulfuros/química , Ácidos Oléicos/química , Isotiocianatos/química , Compuestos Alílicos/química , Oxígeno/química , Antioxidantes/química , Calor , Compuestos de Azufre/química , Culinaria , Ácido Oléico/química , Ácidos Grasos trans/química , Ésteres/química , Estereoisomerismo , Cisteína/análogos & derivados
4.
Compr Rev Food Sci Food Saf ; 23(4): e13389, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031671

RESUMEN

Volatile sulfur compounds (VSCs) significantly influence food flavor and garner considerable attention in flavor research due to their low sensory thresholds, diverse odor attributes, and high reactivity. Extensive research studies have explored VSC formation through thermal processes such as the Maillard reaction, thermal pyrolysis, oxidation, and enzymatic reactions. However, understanding of the specific reaction mechanisms and processes remains limited. This is due to the dispersed nature of existing studies, the undefined intermediates involved, and the complexity of the matrices and processing conditions. Given these limitations, the authors have shifted their focus from foods to sulfides. The structure, source, and chemical characteristics of common precursors (sulfur-containing amino acids and derivatives, thiamine, thioglucoside, and lentinic acid) and their corresponding reactive intermediates (hydrogen sulfide, thiol, alkyl sulfide, alkyl sulfenic acid, and thial) are provided, and the degradation mechanisms, reaction rules, and matrix conditions are summarized based on their chemical characteristics. Additionally, the VSC formation processes in several typical foods during processing are elucidated, adhering to these identified rules. This article provides a comprehensive overview of VSCs, from precursors and intermediates to end products, and is crucial for understanding the mechanisms behind VSC formation and managing the flavor qualities of processed foods.


Asunto(s)
Manipulación de Alimentos , Calor , Odorantes , Compuestos de Azufre , Compuestos de Azufre/química , Odorantes/análisis , Manipulación de Alimentos/métodos , Compuestos Orgánicos Volátiles/química , Gusto , Reacción de Maillard , Análisis de los Alimentos
5.
Arch Biochem Biophys ; 758: 110048, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848996

RESUMEN

The inherent structural properties of enzymes are critical in defining catalytic function. Often, studies to evaluate the relationship between structure and function are limited to only one defined structural element. The two-component flavin-dependent desulfonase family of enzymes involved in bacterial sulfur acquisition utilize a comprehensive range of structural features to carry out the desulfonation of organosulfur compounds. These metabolically essential two-component FMN-dependent desulfonase systems have been proposed to utilize oligomeric changes, protein-protein interactions for flavin transfer, and common mechanistic steps for carbon-sulfur bond cleavage. This review is focused on our current functional and structural understanding of two-component FMN-dependent desulfonase systems from multiple bacterial sources. Mechanistic and structural comparisons from recent independent studies provide fresh insights into the overall functional properties of these systems and note areas in need of further investigation. The review acknowledges current studies focused on evaluating the structural properties of these enzymes in relationship to their distinct catalytic function. The role of these enzymes in maintaining adequate sulfur levels, coupled with the conserved nature of these enzymes in diverse bacteria, underscore the importance in understanding the functional and structural nuances of these systems.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterias/enzimología , Compuestos de Azufre/metabolismo , Compuestos de Azufre/química , Hidrolasas/química , Hidrolasas/metabolismo , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Azufre/metabolismo , Azufre/química , Flavinas/metabolismo , Flavinas/química , Relación Estructura-Actividad , Carbono/metabolismo , Carbono/química
6.
J Org Chem ; 89(11): 8005-8010, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38804706

RESUMEN

Trace palladium in synthetic materials can be rapidly and inexpensively semiquantified by a catalysis-based fluorometric method that converts resorufin allyl ether to resorufin. However, whether sulfur compounds would interfere with this method has not been systematically studied. Herein, we show that although thiourea in solution interferes with quantification, sulfide, thiol, and thiocarbamate do not. The fluorometric method can also detect palladium bound to sulfur-based scavenger resin and outperform inductively coupled plasma mass spectrometry for detecting trace palladium in ibuprofen.


Asunto(s)
Fluorometría , Ibuprofeno , Paladio , Paladio/química , Ibuprofeno/química , Ibuprofeno/análisis , Catálisis , Fluorometría/métodos , Estructura Molecular , Compuestos de Azufre/química , Compuestos de Azufre/análisis
7.
Nature ; 630(8015): 206-213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778111

RESUMEN

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Próstata , Radioisótopos , Radiofármacos , Animales , Humanos , Masculino , Ratones , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Fluoruros/química , Fluoruros/metabolismo , Glutamato Carboxipeptidasa II/química , Glutamato Carboxipeptidasa II/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Terapia Molecular Dirigida/métodos , Proyectos Piloto , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico , Radiofármacos/química , Radiofármacos/uso terapéutico , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Tirosina/metabolismo , Tirosina/química , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Talanta ; 275: 126119, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640521

RESUMEN

Present work reported a novel nanozyme g-C3N4@Cu, N-CDs with excellent peroxidase-like activity obtained by loading Cu and N co-doped carbon dots on g-C3N4 (graphitic carbon nitride). g-C3N4@Cu, N-CDs can catalyze H2O2 to generate hydroxyl radical •OH, which oxidizes o-phenylenediamine to 2,3-diaminophenazine, which emits orange fluorescence under ultraviolet light irradiation. The experimental results confirmed that 1,4-benzenedithiol (BDT) could inhibit the peroxidase-like activity of g-C3N4@Cu, N-CDs. Based the principle above, a colorimetric-fluorescence dual-mode sensor for rapidly sensing of BDT was creatively constructed with assisting of a smartphone. The sensor showed excellent linearity over ranges of 0.75-132 µM and 0.33-60.0 µM with detection limits of 0.32 µM and 0.25 µM for colorimetric and fluorescence detection, respectively. Moreover, a smartphone-assisted colorimetric array sensor was constructed to distinguish six sulfur-containing compounds according to the difference in the degree of inhibition of nanozyme activity by different sulfur-containing compounds. The array sensor could distinguish sulfur-containing compounds at low concentration as low as 0.4 µM. The results validated that the designed sensor was a convenient and fast platform, which could be utilized as a reliably portable tool for the efficient and accurate detection of BDT and the discrimination of multiple sulfur compounds in real water samples.


Asunto(s)
Colorimetría , Cobre , Teléfono Inteligente , Sulfuros , Colorimetría/métodos , Cobre/química , Sulfuros/química , Compuestos de Cadmio/química , Contaminantes Químicos del Agua/análisis , Peroxidasa/química , Peroxidasa/metabolismo , Fluorescencia , Compuestos de Azufre/análisis , Compuestos de Azufre/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Carbono/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Grafito , Compuestos de Nitrógeno
9.
J Hazard Mater ; 470: 134127, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554521

RESUMEN

Developing methods for the accurate identification and analysis of sulfur-containing compounds (SCCs) is of great significance because of their essential roles in living organisms and the diagnosis of diseases. Herein, Se-doping improved oxidase-like activity of iron-based carbon material (Fe-Se/NC) was prepared and applied to construct a four-channel colorimetric sensor array for the detection and identification of SCCs (including biothiols and sulfur-containing metal salts). Fe-Se/NC can realize the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by activating O2 without relying on H2O2, which can be inhibited by different SCCs to diverse degrees to produce different colorimetric response changes as "fingerprints" on the sensor array. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that nine kinds of SCCs could be well discriminated. The sensor array was also applied for the detection of SCCs with a linear range of 1-50 µM and a limit of detection of 0.07-0.2 µM. Moreover, colorimetric sensor array inspired by the different levels of SCCs in real samples were used to discriminate cancer cells and food samples, demonstrating its potential application in the field of disease diagnosis and food monitoring. ENVIRONMENTAL IMPLICATIONS: In this work, a four-channel colorimetric sensor array for accurate SCCs identification and detection was successfully constructed. The colorimetric sensor array inspired by the different levels of SCCs in real samples were also used to discriminate cancer cells and food samples. Therefore, this Fe-Se/NC based sensor array is expected to be applied in the field of environmental monitoring and environment related disease diagnosis.


Asunto(s)
Bencidinas , Carbono , Colorimetría , Hierro , Carbono/química , Hierro/química , Hierro/análisis , Colorimetría/métodos , Bencidinas/química , Humanos , Compuestos de Azufre/análisis , Compuestos de Azufre/química , Análisis de Componente Principal , Línea Celular Tumoral , Límite de Detección , Oxidación-Reducción , Oxidorreductasas , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis
10.
Food Chem ; 448: 139075, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531300

RESUMEN

Sulfur-containing compounds are responsible for the aroma of Toona sinensis shoot (TS). In this study, vacuum-freeze-drying (VFD), microwave-drying (MD), and hot-air-drying at 100 and 40 °C (HAD100 and HAD40, respectively), were applied to dehydrate perishable TS for preservation. VFD-TS retained most aroma of fresh/raw TS after rehydration. The content of sulfur-containing compounds reached to 118.00 µg/g with leading by methyl thiirane, (E,E)/(E,Z)/(Z,Z)-bis-(1-propenyl) disulfides, and (Z)/(E)-2-mercapto-3,4-dimethyl-2,3-dihydrothiophenes accounting for 86.33 %. They were undetected in the rehydrated MD-TS and HAD100-TS, as the indigenous enzymes in TS were deactivated under their dehydration conditions. Interestingly, the sulfur-containing compounds was restored by 77.47 % after the TS was treated by gamma-glutamyl transferase (GGT). Thus, the release of sulfur-containing compounds from TS could depend on GGT reaction. It was different from alliaceous vegetables relying on alliinase reaction. The results revealed the aroma formation in TS and provided an approach to enhance the aroma of TS dried by different methods.


Asunto(s)
Desecación , gamma-Glutamiltransferasa , Desecación/métodos , gamma-Glutamiltransferasa/metabolismo , Humanos , Odorantes/análisis , Brotes de la Planta/química , Gusto , Compuestos de Azufre/química , Compuestos de Azufre/análisis , Liofilización
11.
J Environ Manage ; 354: 120321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377755

RESUMEN

Due to the malodorous effects and health risks of volatile sulfur compounds (VSCs) emitted from wastewater treatment plants (WWTPs), odor collection devices have been extensively utilized; however, their effectiveness has rarely been tested. In the present investigation, the characteristics of VSCs released in a WWTP equipped with gas collection hoods are methodically examined by gas chromatography. The obtained results indicate that the concentration of VSCs in the ambient air can be substantially reduced, and the primary treatment unit still achieves the highest concentration of VSCs. Compared to WWTPs without odor collection devices, the concentration of H2S in this WWTP is not dominant, but its sensory effects and health risks are still not negligible. Additionally, research on the emission of VSCs from sludge reveals that the total VSCs emitted from dewatering sludge reaches the highest level. Volatile organic sulfur compounds play a dominant role in the component and sensory effects of VSCs released by sludge. This study provides both data and theoretical support for analyzing the effectiveness of odor collection devices in WWTPs, as well as reducing the source of VSCs. The findings can be effectively employed to optimize these devices and improve their performance.


Asunto(s)
Compuestos Orgánicos Volátiles , Purificación del Agua , Compuestos de Azufre/análisis , Compuestos de Azufre/química , Aguas del Alcantarillado , Odorantes/análisis , Medición de Riesgo , Compuestos Orgánicos Volátiles/análisis
12.
Food Chem ; 441: 138237, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38176137

RESUMEN

A reliable, simple, and sensitive method capable of quantifying six organosulfur compounds (OSCs) was established. The samples were extracted by water containing 3 % formic acid with a simple vortex, ultrasound, and centrifugation step, and the solutions were analyzed by ultra-high-performance liquid chromatography separation system coupled with a triple-quadrupole mass spectrometry (UHPLC - MS/MS). Then the method was applied for the analysis of six OSCs in five varieties of two types Welsh onions in China, and the moisture content, reducing sugar, total polyphenols, and 21 free amino acids were also analyzed to study the characters of these Welsh onions intensively. Multivariate statistical analysis was used to investigate the differences in OSCs and free amino acids profiles among the samples. This study showed that enzymatic inhibition method combined with UHPLC - MS/MS is an effective technique to analyze OSCs in Welsh onion, and could be valuable for the routine quantitation of OSCs in other foods.


Asunto(s)
Cebollas , Espectrometría de Masas en Tándem , Cebollas/química , Cromatografía Líquida de Alta Presión/métodos , Aminoácidos/química , China , Compuestos de Azufre/química
13.
J Food Sci ; 88(11): 4424-4439, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37786327

RESUMEN

The purpose of this study was to optimize black garlic encapsulation parameters (core/coating ratio, extract concentration, and coacervate/maltodextrin [MD] ratio) using central composite design of the response surface methodology based on encapsulation efficiency (EE) (%). The optimum parameters were determined as 4.0 for the coating material/core ratio, 50% for the extract concentration, and 6.0 for the MD/coacervate ratio depending on the EE (%). The antioxidant activity values were determined as 101 and 134 µmol Trolox/100 g dry weight (DW) for the 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods, respectively, whereas the total phenolic content was 49 mg gallic acid equivalent/100 g DW for the encapsulated black garlic samples. S-Allyl-l-cysteine (SAC), γ-l-glutamyl-SAC (GSAC), γ-l-glutamyl-(S)-trans-1-propenyl-l-cysteine, and allicin were the organosulfur (OS) compounds determined in the samples. The SAC concentration of the encapsulated black garlic samples was determined as 22.36 mg/g, whereas the GSAC content was found at a lower concentration (0.33 mg/g) compared to SAC. The allicin content was quantified to be 0.31 mg/g. The encapsulated samples were also characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The FT-IR analysis revealed specific functional groups, including hydroxyl, carbonyl, and glycosidic linkage. The interaction between lentil protein isolate and pectin was strong enough to encourage capsule formation as visualized in the SEM images. This study shows the potential of black garlic coacervates as a functional ingredient for the food industry due to their stability, solubility, and preservation of OS and antioxidant compounds.


Asunto(s)
Ajo , Ajo/química , Antioxidantes/metabolismo , Cisteína/química , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Azufre/química , Extractos Vegetales/química
14.
Sci Rep ; 13(1): 13175, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580412

RESUMEN

This study aimed to measure the levels of volatile sulfur compounds and investigate the occurrence of halitosis in patients with gingivitis and periodontitis. Additionally, the incidence rates of gingivitis and periodontitis in patients with halitosis were investigated. Through various statistical analyses, we attempted to determine the relationship between periodontal disease and halitosis. One-hundred-and-four participants (52 females and 52 males, mean age: 46.49 ± 16.03 years) were enrolled in this cross-sectional study, comprising 33 healthy controls, 43 patients with gingivitis, and 28 patients with periodontitis. Gas chromatography was used to measure hydrogen sulfide (H2S) and methyl mercaptan (CH3SH), which are representative VSCs. The VSC cut-off values for diagnosing halitosis were 65.79 ppb for women and 79.94 ppb for men. Total VSC level was significantly higher in the gingivitis than the healthy control group (186.72 ± 374.83 ppb vs. 19.80 ± 40.19 ppb, p = 0.035). There was no significant difference between the gingivitis and periodontitis (153.79 ± 278.51 ppb) groups. H2S level was significantly higher in the gingivitis (100.51 ± 183.69 ppb) and periodontitis (91.57 ± 132.06 ppb) groups than in healthy controls (14.97 ± 31.22 ppb), and CH3SH level was significantly higher in gingivitis group (29.31 ± 59.16 ppb) than in the healthy control (5.73 ± 14.10 ppb) (all p < 0.05). Halitosis was found in 3% of healthy controls and 39.5% and 42.9% of patients with gingivitis and periodontitis patients, respectively, making it significantly higher in the gingivitis and periodontitis groups than the healthy controls (p = 0.005). Conversely, among participants with halitosis, 53.1% had gingivitis, 37.5% had periodontitis, and 90.6 incidence had periodontal disease. Multivariate logistic regression analysis to predict the presence of halitosis, found periodontal disease was a significant predictor of halitosis (OR = 3.607, 95% CI 1.023-12.718, p = 0.046). Considering area under curve value for halitosis, the cut-off value of healthy control (H2S:61.5 ppb, CH3SH:3.5 ppb), gingivitis (H2S:50.0 ppb, CH3SH:6 ppb), and periodontitis (H2S:62.0 ppb, CH3SH:3.5 ppb) were (all p < 0.05). Our results emphasize the close and strong relationship between periodontal disease and halitosis through human clinical evidence based on the high co-occurrence rate of mutual diseases. Additionally, the presence of periodontal disease increased the probability of halitosis by 3.607 times. These results suggest that H2S can be used as a biomarker of halitosis in patients with periodontal disease.


Asunto(s)
Gingivitis , Halitosis , Enfermedades Periodontales , Periodontitis , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Halitosis/diagnóstico , Halitosis/epidemiología , Halitosis/etiología , Estudios Transversales , Compuestos de Azufre/química , Periodontitis/complicaciones , Periodontitis/epidemiología , Gingivitis/complicaciones , Gingivitis/diagnóstico , Gingivitis/epidemiología , Enfermedades Periodontales/complicaciones
15.
J Environ Manage ; 345: 118632, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499412

RESUMEN

Long-term monitoring of volatile sulfur compounds (VSCs) released at the water-air interface from different treatment units of an anaerobic/oxic (A/O) wastewater treatment plant (WWTP) was carried out to assess the temporal and spatial emission characteristics of VSCs, to explore relationships between wastewater quality and VSC release. The VSC from non-aerated and aerated units were collected using dynamic and static chambers, respectively, and determined using gas chromatography. The VSC emission fluxes diminished in the order of primary sedimentation tank (PST) > anaerobic areas (ANA) > oxic section 1 (OX1). VSCs were not detected in the oxic section 2 (OX2), the oxic areas section 3 (OX3), and the final setting basin (FSB). Release capacities of VSCs descended in the order of summer > fall > spring > winter, with July, August, and September being the months with the highest VSC release capacities. VSC emission fluxes correlated well with wastewater temperatures, sulfate concentrations, and COD. VSC emission flux empirical equations based on wastewater temperature, sulfate concentrations, and COD were established. Based on the established VSC emission empirical equation, a control strategy to reduce the operating costs of deodorization facilities was proposed. This strategy is economically efficient and reduces the consumption of electrical energy.


Asunto(s)
Aguas Residuales , Purificación del Agua , Compuestos de Azufre/análisis , Compuestos de Azufre/química
16.
Redox Biol ; 65: 102807, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37437449

RESUMEN

Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of putative copper-binding sites in human SELENBP1 produced as recombinant protein in E. coli resulted in loss of its enzymatic function. On the other hand, the eponymous binding of selenium (as selenite) was no requirement for MTO activity and only moderately increased SELENBP1-catalyzed oxidation of methanethiol. Furthermore, SEMO-1, the SELENBP1 ortholog recently identified in the nematode C. elegans, also requires copper ions, and MTO activity was enhanced or abrogated, respectively, if worms were grown in the presence of cupric chloride or of a Cu chelator. In addition to methanethiol, we identified novel substrates of SELENBP1 from the group of volatile sulfur compounds, ranging from ethanethiol to 1-pentanethiol as well as 2-propene-1-thiol. Gut microbiome-derived methanethiol as well as food-derived volatile sulfur compounds (VSCs) account for malodors that may contribute to extraoral halitosis in humans, if not metabolized properly. As SELENBP1 is particularly abundant in tissues exposed to VSCs, such as colon, liver, and lung, it appears to contribute to copper-dependent VSC degradation.


Asunto(s)
Caenorhabditis elegans , Cobre , Animales , Humanos , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Azufre/química , Oxidorreductasas/metabolismo , Ceruloplasmina/metabolismo
17.
Sci Total Environ ; 892: 164652, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37295514

RESUMEN

A challenge to successfully implementing an injection-based remedial treatment in aquifers is to ensure that the oxidative reaction is efficient and lasts long enough to contact the contaminated plume. Our objective was to determine the efficacy of zinc ferrite nanocomposites (ZnFe2O4) and sulfur-containing reductants (SCR) (i.e., dithionite; DTN and bisulfite; BS) to co-activate persulfate (S2O82-; PS) and treat herbicide-contaminated water. We also evaluated the ecotoxicity of the treated water. While both SCRs delivered excellent PS activation in a 1:0.4 ratio (PS:SCR), the reaction was relatively short-lived. By including ZnFe2O4 in the PS/BS or PS/DTN activations, herbicide degradation rates dramatically increased by factors of 2.5 to 11.3. This was due to the SO4- and OH reactive radical species that formed. Radical scavenging experiments and ZnFe2O4 XPS spectra results revealed that SO4- was the dominant reactive species that originated from S(IV)/PS activation in solution and from the Fe(II)/PS activation that occurred on the ZnFe2O4 surface. Based on liquid chromatography mass spectrometry (LC-MS), atrazine and alachlor degradation pathways are proposed that involve both dehydration and hydroxylation. In 1-D column experiments, five different treatment scenarios were run using 14C-labeled and unlabeled atrazine, and 3H2O to quantify changes in breakthrough curves. Our results confirmed that ZnFe2O4 successfully prolonged the PS oxidative treatment despite the SCR being completely dissociated. Toxicity testing showed treated 14C-atrazine was more biodegradable than the parent compound in soil microcosms. Post-treatment water (25 %, v/v) also had less impact on both Zea Mays L. and Vigna radiata L. seedling growth, but more impact on root anatomies, while ≤4 % of the treated water started to exert cytotoxicity (<80 % viability) on ELT3 cell lines. Overall, the findings confirm that ZnFe2O4/SCR/PS reaction is efficient and relatively longer lasting in treating herbicide-contaminated groundwater.


Asunto(s)
Compuestos Férricos , Agua Subterránea , Herbicidas , Sustancias Reductoras , Compuestos de Azufre , Contaminantes Químicos del Agua , Purificación del Agua , Compuestos de Zinc , Herbicidas/química , Herbicidas/metabolismo , Agua Subterránea/química , Compuestos de Zinc/química , Compuestos de Azufre/química , Sustancias Reductoras/química , Compuestos Férricos/química , Atrazina/química , Atrazina/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Línea Celular , Restauración y Remediación Ambiental , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Nanoestructuras/química , Purificación del Agua/métodos , Supervivencia Celular/efectos de los fármacos
18.
Food Chem ; 426: 136668, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356241

RESUMEN

Pickle like odor (PLO) is undesirable in Maotai-flavor baijiu; however, its formation mechanism is unclear. Furthermore, there is a lack of understanding of the spatiotemporal accumulation of volatile compounds (including PLO compounds, PLOC) and of the microorganisms responsible for the production of PLOC during stacking fermentation. In this study, we analyzed the spatiotemporal distribution differences of 132 volatile compounds in piled fermented grains. PLOC (n = 5) were higher in pile surface than in pile center, reaching their highest levels at 6th and 5th rounds, respectively. The microorganisms in pile center were more conducive to the formation of alcohols, while those in the pile surface more promoted the synthesis of esters. Rhodococcus and Zygosaccharomyces promoted the formation of PLOC. Acetobacter was negatively correlated with the content of sulfur compounds by promoting their conversion into non-volatile sulfur compounds, thereby reducing the content of PLOC. This study provides information on the spatiotemporal differences of volatile compounds (especially PLOC) in piled fermented grains and identified the microorganisms that produce PLOC.


Asunto(s)
Fermentación , Alimentos Fermentados , Bebidas Alcohólicas , Odorantes , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Microbiología de Alimentos , Compuestos Orgánicos Volátiles/química
19.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37279910

RESUMEN

Yeasts undergo intensive metabolic changes during the early stages of fermentation. Previous reports suggest the early production of hydrogen sulfide (H2S) is associated with the release of a range of volatile sulfur compounds (VSCs), as well as the production of varietal thiol compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) from six-carbon precursors, including (E)-hex-2-enal. In this study, we investigated the early H2S potential, VSCs/thiol output, and precursor metabolism of 11 commonly used laboratory and commercial Saccharomyces cerevisiae strains in chemically defined synthetic grape medium (SGM) within 12 h after inoculation. Considerable variability in early H2S potential was observed among the strains surveyed. Chemical profiling suggested that early H2S production correlates with the production of dimethyl disulfide, 2-mercaptoethanol, and diethyl sulfide, but not with 3SH or 3SHA. All strains were capable of metabolizing (E)-hex-2-enal, while the F15 strain showed significantly higher residue at 12 h. Early production of 3SH, but not 3SHA, can be detected in the presence of exogenous (E)-hex-2-enal and H2S. Therefore, the natural variability of early yeast H2S production contributes to the early output of selected VSCs, but the threshold of which is likely not high enough to contribute substantially to free varietal thiols in SGM.


Asunto(s)
Sulfuro de Hidrógeno , Vitis , Vino , Saccharomyces cerevisiae/metabolismo , Sulfuro de Hidrógeno/metabolismo , Compuestos de Sulfhidrilo/análisis , Compuestos de Sulfhidrilo/metabolismo , Fermentación , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Vitis/metabolismo , Vino/análisis
20.
Eur J Med Chem ; 257: 115502, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37224761

RESUMEN

SuFEx click chemistry has been a method for the rapid synthesis of functional molecules with desirable properties. Here, we demonstrated a workflow that allows for in situ synthesis of sulfonamide inhibitors based on SuFEx reaction for high-throughput testing of their cholinesterase activity. According to fragment-based drug discovery (FBDD), sulfonyl fluorides [R-SO2F] with moderate activity were identified as fragment hits, rapidly diversified into 102 analogs in SuFEx reactions, and the sulfonamides were directly screened to yield drug-like inhibitors with 70-fold higher potency (IC50 = 94 nM). Moreover, the improved molecule J8-A34 can ameliorate cognitive function in Aß1-42-induced mouse model. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, this methodology can accelerate the development of robust biological probes and drug candidates.


Asunto(s)
Fluoruros , Compuestos de Azufre , Animales , Ratones , Fluoruros/química , Estructura Molecular , Compuestos de Azufre/química , Química Clic , Sulfonamidas/farmacología , Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA