Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38722625

RESUMEN

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Asunto(s)
Supervivencia Celular , Hidrogeles , Neuronas , Compuestos de Estaño , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Células PC12 , Ratas , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Hidrogeles/química , Andamios del Tejido/química , Neuronas/fisiología , Neuronas/citología , Oro/química , Oro/farmacología , Grafito/química , Grafito/farmacología , Platino (Metal)/química , Estimulación Eléctrica , Nanotubos/química , Proliferación Celular
2.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38763124

RESUMEN

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Asunto(s)
Antibacterianos , Estructuras Metalorgánicas , Fotoquimioterapia , Antibacterianos/farmacología , Antibacterianos/química , Fotoquimioterapia/métodos , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Biopelículas/efectos de los fármacos , Terapia Fototérmica , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Compuestos Férricos/química , Compuestos Férricos/farmacología , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Zeolitas/química , Zeolitas/farmacología
3.
J Dent ; 145: 105022, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38670330

RESUMEN

OBJECTIVES: To evaluate the erosion preventive effect of 38 % silver diamine fluoride (SDF) solution in enamel and dentin of human permanent teeth. METHODS: Ninety enamel and ninety dentin blocks were prepared from permanent molars and allocated into three groups. Gp-SDF received a one-off application of 38 % SDF solution. Gp-SNF received a one-off application of a solution containing 800 ppm stannous chloride and 500 ppm fluoride. Gp-DW received a one-off application of deionized water. The blocks were submitted to acid challenge at pH 3.2, 2 min, 5 times/day for 7 days. All blocks were immersed in human saliva between cycles for one hour. The crystal characteristics, percentage of surface microhardness loss (%SMHL), surface loss, and elemental analysis and surface morphology were examined by X-ray diffraction (XRD), microhardness test, non-contact profilometry, and energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. Data of%SMHL and surface loss were analyzed by one-way ANOVA. RESULTS: XRD spectra revealed that fluorapatite and silver compounds formed in Gp-SDF, while fluorapatite and stannous compounds formed in Gp-SNF. Gp-DW presented only hydroxyapatite. The median (interquartile range) of%SMHL in Gp-SDF, Gp-SNF and Gp-DW were 27.86(3.66), 43.41(2.45), and 46.40(3.54) in enamel (p< 0.001), and 14.21(1.57), 27.99(1.95), and 33.18(1.73) in dentin, respectively (p < 0.001). The mean (standard deviation, µm) of surface loss of Gp-SDF, Gp-SNF, and Gp-DW were 2.81(0.59), 4.28(0.67), and 4.63(0.64) in enamel (p < 0.001) and 4.13(0.69), 6.04(0.61), and 7.72(0.66) in dentin, respectively (p < 0.001). SEM images exhibited less enamel corruption and more dentinal tubular occlusion in Gp-SDF compared to Gp-SNF and Gp-DW. EDS analysis showed silver was detected in Gp-SDF while stannous was detected in the dentin block of Gp-SNF. CONCLUSION: 38 % SDF yielded superior results in protecting enamel and dentin blocks from dental erosion compared to SNF and DW. CLINICAL SIGNIFICANCE: Topical application of 38 % SDF is effective in preventing dental erosion in human enamel and dentin.


Asunto(s)
Esmalte Dental , Dentina , Fluoruros Tópicos , Dureza , Microscopía Electrónica de Rastreo , Compuestos de Amonio Cuaternario , Compuestos de Plata , Espectrometría por Rayos X , Erosión de los Dientes , Difracción de Rayos X , Humanos , Compuestos de Amonio Cuaternario/farmacología , Esmalte Dental/efectos de los fármacos , Fluoruros Tópicos/farmacología , Erosión de los Dientes/prevención & control , Dentina/efectos de los fármacos , Concentración de Iones de Hidrógeno , Apatitas , Compuestos de Estaño/farmacología , Saliva/efectos de los fármacos , Saliva/química , Propiedades de Superficie , Ensayo de Materiales , Factores de Tiempo
4.
Biomater Adv ; 160: 213855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643692

RESUMEN

This research introduces a novel method that leverages Spirulina extract (S.E) as a bio-surfactant in the ultrasound-assisted synthesis (UAS) of Pd3+ (0.25-10 mol%) doped tin oxide (SnO2) self-assembled superstructures. Nanotechnology has witnessed significant advancements in recent years, driven by the exploration of novel synthesis methods and the development of advanced nanomaterials tailored for specific applications. Metal oxide nanoparticles, particularly SnO2, have garnered considerable attention due to their versatile properties and potential applications in various fields, including gas sensing, catalysis, and biomedical engineering. The study explores how varying influential parameters like S.E concentration, sonication time, pH, and sonication power can influence the resulting superstructures' morphology, size, and shape. A theoretical model for forming different hierarchical superstructures (HS) is proposed. X-ray diffraction (XRD) analysis confirms the crystalline tetragonal rutile phase of the SnO2:Pd HS. Raman spectroscopy reveals a red shift in the A1g mode, indicating phonon confinement due to various defects in the SnO2 structure. Further characterization using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) provides insights into particle size, surface morphology, elemental composition, and binding energy. The study also demonstrates the application of optimized SnO2:3Pd HS in developing latent fingerprints (LFPs) on different surfaces using a simple powder dusting (PD) method, with the fingerprints (FPs) visualized under normal light. A mathematical model developed in Python-based software is used to analyze various features of the developed FPs, including pore properties such as number, position, inter-spacing, area, and shape. Additionally, an in vitro MTT assay shows concentration-dependent anticancer activity of SnO2:3Pd nanoparticles (NPs) on MCF7 cell lines, highlighting their potential as a promising cancer treatment option. Overall, the study suggests that the optimized HS can serve as multifunctional platforms for biomedical and dermatoglyphics applications, demonstrating the versatility and potential of the synthesized materials.


Asunto(s)
Antineoplásicos , Paladio , Compuestos de Estaño , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Humanos , Paladio/química , Paladio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas del Metal/química , Células MCF-7
5.
Microb Pathog ; 190: 106639, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38616002

RESUMEN

BACKGROUND INFORMATION: The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS: The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS: The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Compuestos de Estaño , Difracción de Rayos X , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Bacterias/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Microscopía Electrónica de Transmisión , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
6.
Environ Res ; 245: 117878, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38147921

RESUMEN

A tin oxide (SnO2) nanostructure was prepared using Matricaria recutita leaf extract to investigate its anticancer activity against SK-MEL-28 cells. The tetragonal crystal structure of tin oxide nanoparticles with an average crystal size of 27 nm was confirmed by X-ray diffraction (XRD) analysis. The tetragonal crystal structure of the tin oxide nanoparticles, with an average crystallite size of 27 nm, was confirmed by XRD an absorbance peak at 365 nm was identified by UV-visible spectroscopy analysis as belonging to the bio-mediated synthesis of SnO2 nanoparticles. The SnO2 NPs are capped and stabilized with diverse functional groups derived from bioactive molecules, including aldehydes, benzene rings, amines, alcohols, and carbonyl stretch protein molecules. Fourier transform infrared spectroscopy (FTIR) analysis validated the presence of these capping and stabilizing chemical bonds. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed the cauliflower-shaped morphology of the SnO2 nanoparticles with an average particle size of 28 nm. The antimicrobial activity of both prepared and encapsulated samples confirmed their biological activities. Furthermore, both prepared and encapsulated tin oxide samples exhibited excellent anticancer activity against SK-MEL-28 human cancer cells. The present study introduces a reliable and uncomplicated approach to produce SnO2 nanoparticles and demonstrates their effectiveness in various applications, including cancer therapy, drug administration, and disinfectant.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanoestructuras , Humanos , Antiinfecciosos/farmacología , Compuestos de Estaño/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Antibacterianos/química , Difracción de Rayos X
7.
Braz Dent J ; 33(1): 68-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35262555

RESUMEN

This in vitro study evaluated the anti-erosive effect of an experimental varnish containing 5% stannous chloride (SnCl2) associated with different concentrations of NaF (NaF-free, 2.5% NaF, or 5.2% NaF) on bovine enamel and root dentin. One hundred samples were pre-eroded (0.3% citric acid, pH 2.6, 10 min) and randomized into five groups (n=10 for each substrate): Negative control - milli-Q water; NaF-free - Experimental varnish SnCl2-free and NaF-free; 2.5 NaF - Experimental varnish 5% SnCl2 associated with 2.5% NaF; 5.2 NaF: Experimental varnish 5% SnCl2 associated with 5.2% NaF and positive control - Commercial varnish containing 5% NaF (Duraphat). After the varnishes were applied, the erosive and abrasive challenges were carried out for five days. Loss of tooth structure (TSL) was determined by optical profilometry, and the loss of calcium (ΔCa2+) using atomic absorption spectroscopy. Dentin analysis was also performed by SEM. A one-way ANOVA/Bonferroni test was performed to analyze the data (α=0.05). The experimental 2.5 NaF and 5.2 NaF groups showed greater effectiveness in preventing TSL when compared to the other groups (p <0.05), regardless of the substrate. In addition, these groups showed lower loss in Ca2+ content when compared to the other groups (p <0.05), for enamel and dentin. Dentin showed greater TSL and ΔCa2+ loss when compared to enamel in all treatments (p <0.05). The 5.2% and 2.5% NaF-containing experimental varnishes showed promising results in both, the prevention of TSL and the loss of Ca2+, regardless of the substrate studied.


Asunto(s)
Erosión de los Dientes , Animales , Bovinos , Esmalte Dental , Fluoruros/farmacología , Fluoruros Tópicos/farmacología , Fluoruro de Sodio/farmacología , Compuestos de Estaño/farmacología , Erosión de los Dientes/prevención & control , Raíz del Diente
8.
Int J Biol Macromol ; 204: 154-160, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35124024

RESUMEN

Alzheimer's disease (AD) is known as one of the most common forms of dementia, and oligomerization of amyloid ß (Aß42) peptides can result in the onset of AD. Tin oxide nanoparticles (SnO2 NPs) showed several applications in biomedical fields can trigger unwanted interaction with proteins and inducing protein aggregation. Herein, we synthesized SnO2 NPs via the hydrothermal method and characterized by UV-visible, XRD, FTIR, TEM, and DLS techniques. Afterward, the formation of Aß42 amyloid oligomers/protofibrils treated alone and with SnO2 NPs was explored by ThT and Nile red fluorescence and CD spectroscopic methods along with TEM imaging. The neurotoxicity of different spices of Aß42 samples against PC-12 cells was then explored by MTT and caspase-3 activity assays. The characterization of SnO2 NPs confirmed the successful synthesis of crystalline NPs (20-30 nm). Different biophysical and cellular analyses indicated that SnO2 NPs accelerated Aß42 fibrillogenesis and promoted amyloid oligomers/protofibrils cytotoxicity. As compared to the Aß42 samples grown alone, the ThT and ANS fluorescence intensity along with ellipticity results indicated the promotory effect of SnO2 NPs on the formation of oligomers/protofibrils. Also, the cellular results showed that the treated Aß42 samples with SnO2 NPs further reduced cell viability through activation of caspase-3. In conclusion, SnO2 NPs greatly accelerate the fibrillation of Aß42 peptides and lead to the formation of more toxic species. The present data may offer further warrants into nano-based systems for biomedical applications in the central nervous system.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Nanopartículas/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad , Compuestos de Estaño/farmacología
9.
ACS Appl Mater Interfaces ; 14(2): 2650-2662, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34995459

RESUMEN

Smart nanotheranostic systems (SNSs) have attracted extensive attention in antitumor therapy. Nevertheless, constructing SNSs with disease diagnosis ability, improved drug delivery efficiency, inherent imaging performance, and high treatment efficiency remains a scientific challenge. Herein, ultrasmall tin dioxide (SnO2) was assembled with upconversion nanoparticles (UCNPs) to form mesoporous nanocapsules by an in situ hydrothermal deposition method, followed by loading with doxorubicin (DOX) and modification with bovine serum albumin (BSA). pH/near-infrared dual-responsive nanotheranostics was constructed for computed tomography (CT) and magnetic resonance (MR) imaging-induced collaborative cancer treatment. The mesoporous channel of SnO2 was utilized as a reservoir to encapsulate DOX, an antineoplastic drug, for chemotherapy and as a semiconductor photosensitizer for photodynamic therapy (PDT). Furthermore, the DOX-loaded UCNPs@SnO2-BSA nanocapsules combined PDT, Nd3+-doped UCNP-triggered hyperthermia effect, and DOX-triggered chemotherapy simultaneously and demonstrated prominently enhanced treatment efficiency compared to the monotherapy model. Moreover, tin, as one of the trace elements in the human body, has a similar X-ray attenuation coefficient to iodine and therefore can act as a contrast agent for CT imaging to monitor the treatment process. Such an orchestrated synergistic anticancer treatment exhibited apparent inhibition of tumor growth in tumor-bearing mice with negligible side effects. Our study demonstrates nanocapsules with excellent biocompatibility and great potential for cancer treatment.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Doxorrubicina/farmacología , Nanocápsulas/química , Fármacos Fotosensibilizantes/farmacología , Nanomedicina Teranóstica , Compuestos de Estaño/farmacología , Animales , Antibióticos Antineoplásicos/química , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Ensayo de Materiales , Ratones , Ratones Endogámicos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Porosidad , Albúmina Sérica Bovina/química , Propiedades de Superficie , Compuestos de Estaño/química
10.
PLoS One ; 16(10): e0258115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34597348

RESUMEN

PURPOSE: This study aims to prepare folic acid coated tin oxide nanoparticles (FA-SnO2 NPs) for specifically targeting human ovarian cancer cells with minimum side effects against normal cells. METHODS: The prepared FA-SnO2 NPs were characterized by FT-IR, UV-vis spectroscopy, XRD, SEM and TEM. The inhibition effects of FA-SnO2 NPs against SKOV3 cancer cell were tested by MTT and LDH assay. Apoptosis induction in FA-SnO2 NPs treated SKOV3 cells were investigated using Annexin V/PI, AO/EB and Comet assays and the possible mechanisms of the cytotoxic action were studied by Flow cytometry, qRT-PCR, Immunohistochemistry, and Western blotting analyses. The effects of FA-SnO2 NPs on reactive oxygen species generation in SKOV3 cells were also examined. Additionally, the safety of utilization FA-SnO2 NPs were studied in vivo using Wister rats. RESULTS: The obtained FA-SnO2 NPs displayed amorphous spherical morphology with an average diameter of 157 nm and a zeta potential value of -24 mV. Comparing to uncoated SnO2 NPs, FA-SnO2 NPs had a superior inhibition effect towards SKOV3 cell growth that was suggested to be mediated through higher reactive oxygen species generation. It was showed that FA-SnO2 NPs increased significantly the % of apoptotic cells in the sub- G1 and G2/M phases with a higher intensity comet nucleus in SKOV3 treated cells. Furthermore, FA-SnO2 NPs was significantly increased the expression levels of P53, Bax, and cleaved Caspase-3 and accompanied with a significant decrease of Bcl-2 in the treated SKOV3 cells. CONCLUSION: Overall, the results suggested that an increase in cellular FA-SnO2 NPs internalization resulted in a significant induced cytotoxicity in SKOV3 cancer cells in dose-dependent mode through ROS-mediated cell apoptosis that may have occurred through mitochondrial pathway. Additionally, the results confirmed the safety of utilization FA-SnO2 NPs against living systems. So, FA-SnO2 NPs with a specific targeting moiety may be a promising therapeutic candidate for human ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Ácido Fólico/farmacología , Mitocondrias/efectos de los fármacos , Nanopartículas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Compuestos de Estaño/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratas , Ratas Wistar
11.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445294

RESUMEN

Coupling of cells to biomaterials is a prerequisite for most biomedical applications; e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred to neurons attached to the electrodes' surface. Besides, cell survival in vitro also depends on the interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we investigated the interaction of neurons and glial cells with different electrode materials such as TiN and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells) and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results were compared to the spreading dynamics of cells for different culture times as a function of the underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial and the maximum growth areas were already seen after one day; however, adhesion dynamics of neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which are important for many biomedical applications in vitro and in vivo.


Asunto(s)
Interfaces Cerebro-Computador , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Titanio/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Matriz Extracelular/química , Oro/química , Oro/farmacología , Humanos , Ensayo de Materiales , Nanoestructuras/química , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Titanio/química
12.
Chem Biol Interact ; 347: 109596, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34329616

RESUMEN

BACKGROUND: Inhaled nanoparticles (NPs) challenges mobile and immobile barriers in the respiratory tract, which can be represented by type II pneumocytes (immobile) and monocytes (mobile) but what is more important for biological effects, the cell linage, or the type of nanoparticle? Here, we addressed these questions and we demonstrated that the type of NPs exerts a higher influence on biological effects, but cell linages also respond differently against similar type of NPs. DESIGN: Type II pneumocytes and monocytes were exposed to tin dioxide (SnO2) NPs and titanium dioxide (TiO2) NPs (1, 10 and 50 µg/cm2) for 24 h and cell viability, ultrastructure, cell granularity, molecular spectra of lipids, proteins and nucleic acids and cytoskeleton architecture were evaluated. RESULTS: SnO2 NPs and TiO2 NPs are metal oxides with similar physicochemical properties. However, in the absence of cytotoxicity, SnO2 NPs uptake was low in monocytes and higher in type II pneumocytes, while TiO2 NPs were highly internalized by both types of cells. Monocytes exposed to both types of NPs displayed higher number of alterations in the molecular patterns of proteins and nuclei acids analyzed by Fourier-transform infrared spectroscopy (FTIR) than type II pneumocytes. In addition, cells exposed to TiO2 NPs showed more displacements in FTIR spectra of biomolecules than cells exposed to SnO2 NPs. Regarding cell architecture, microtubules were stable in type II pneumocytes exposed to both types of NPs but actin filaments displayed a higher number of alterations in type II pneumocytes and monocytes exposed to SnO2 NPs and TiO2 NPs. NPs exposure induced the formation of large vacuoles only in monocytes, which were not seen in type II pneumocytes. CONCLUSIONS: Most of the cellular effects are influenced by the NPs exposure rather than by the cell type. However, mobile, and immobile barriers in the respiratory tract displayed differential response against SnO2 NPs and TiO2 NPs in absence of cytotoxicity, in which monocytes were more susceptible than type II pneumocytes to NPs exposure.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Monocitos/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Células Epiteliales Alveolares/química , Células Epiteliales Alveolares/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Nanopartículas del Metal/química , Monocitos/química , Monocitos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Compuestos de Estaño/toxicidad , Titanio/química , Titanio/farmacología , Titanio/toxicidad , Vacuolas/metabolismo
13.
Am J Physiol Cell Physiol ; 320(6): C974-C986, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33689477

RESUMEN

The working electrode's surface property is crucial to cell adhesion and signal collection in electric cell-substrate impedance sensing (ECIS). To date, the indium tin oxide (ITO)-based working electrode is of interest in ECIS study due to its high transparency and biocompatibility. Of great concern is the impedance signal loss, distortion, and data interpretation conflict profoundly created by the movement of multiple cells during ECIS study. Here, a carboxyl-terminated ITO substrate was prepared by stepwise surface amino silanization, with N-hydroxy succinimide (NHS) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) treatment, respectively. We investigated the stepwise changes in the property of the treated ITO, cell-substrate adhesion, collective cell mobility, and time course of change in absolute impedance from multiple Chinese hamster ovary (CHO) cells [(Δt-Δ|Z|)CELLS]. The carboxyl-terminated ITO substrate with a surface roughness of 6.37 nm shows enhanced conductivity, 75% visible light transparency, improved cell adherence, reduced collective cell migration speed by approximately twofold, and diminished signal distortion in the [(Δt-Δ|Z|)CELLS]. Thus, our study provides an ITO surface-treatment strategy to reduce multiple cell movement effects and to obtain essential cell information from the ECIS study of multiple cells through undistorted (Δt-Δ|Z|)CELLS.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Compuestos de Estaño/farmacología , Animales , Técnicas Biosensibles/métodos , Células CHO , Movimiento Celular/efectos de los fármacos , Cricetulus , Impedancia Eléctrica , Electrodos
14.
Int J Nanomedicine ; 16: 89-104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33447029

RESUMEN

BACKGROUND: Therapeutic selectivity and drug resistance are critical issues in cancer therapy. Currently, zinc oxide nanoparticles (ZnO NPs) hold considerable promise to tackle this problem due to their tunable physicochemical properties. This work was designed to prepare SnO2-doped ZnO NPs/reduced graphene oxide nanocomposites (SnO2-ZnO/rGO NCs) with enhanced anticancer activity and better biocompatibility than those of pure ZnO NPs. MATERIALS AND METHODS: Pure ZnO NPs, SnO2-doped ZnO (SnO2-ZnO) NPs, and SnO2-ZnO/rGO NCs were prepared via a facile hydrothermal method. Prepared samples were characterized by field emission transmission electron microscopy (FETEM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectrometer, and dynamic light scattering (DLS) techniques. Selectivity and anticancer activity of prepared samples were assessed in human breast cancer (MCF-7) and human normal breast epithelial (MCF10A) cells. Possible mechanisms of anticancer activity of prepared samples were explored through oxidative stress pathway. RESULTS: XRD spectra of SnO2-ZnO/rGO NCs confirmed the formation of single-phase of hexagonal wurtzite ZnO. High resolution TEM and SEM mapping showed homogenous distribution of SnO2 and rGO in ZnO NPs with high quality lattice fringes without any distortion. Band gap energy of SnO2-ZnO/rGO NCs was lower compared to SnO2-ZnO NPs and pure ZnO NPs. The SnO2-ZnO/rGO NCs exhibited significantly higher anticancer activity against MCF-7 cancer cells than those of SnO2-ZnO NPs and ZnO NPs. The SnO2-ZnO/rGO NCs induced apoptotic response through the upregulation of caspase-3 gene and depletion of mitochondrial membrane potential. Mechanistic study indicated that SnO2-ZnO/rGO NCs kill cancer cells through oxidative stress pathway. Moreover, biocompatibility of SnO2-ZnO/rGO NCs was also higher against normal breast epithelial (MCF10A cells) in comparison to SnO2-ZnO NPs and ZnO NPs. CONCLUSION: SnO2-ZnO/rGO NCs showed enhanced anticancer activity and better biocompatibility than SnO2-ZnO NPs and pure ZnO NPs. This work suggested a new approach to improve the selectivity and anticancer activity of ZnO NPs. Studies on antitumor activity of SnO2-ZnO/rGO NCs in animal models are further warranted.


Asunto(s)
Antineoplásicos/farmacología , Grafito/síntesis química , Grafito/farmacología , Nanocompuestos/química , Estrés Oxidativo , Compuestos de Estaño/síntesis química , Óxido de Zinc/síntesis química , Óxido de Zinc/farmacología , Apoptosis/efectos de los fármacos , Dispersión Dinámica de Luz , Grafito/química , Humanos , Células MCF-7 , Nanocompuestos/ultraestructura , Nanopartículas/química , Fenómenos Ópticos , Estrés Oxidativo/efectos de los fármacos , Espectrometría por Rayos X , Compuestos de Estaño/farmacología , Difracción de Rayos X , Óxido de Zinc/química
15.
ACS Appl Mater Interfaces ; 13(2): 2204-2217, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33399455

RESUMEN

In this article, we demonstrate that specifically engineered oxide nanoparticles (NPs) have the potential to act as theranostic materials that are able to generate or prevent oxidative stress through their oxi-redox activity in various types of malignant and nonmalignant cells. The oxi-redox activity is related to the type and presence of surface defects, which is modified with appropriate synthesis conditions. In the present work, we used MDA-MB-231 and MCF-7 human breast cancer cells and nonmalignant MCF-10A human breast cells to demonstrate how controlled oxidative stress mediated by specifically nanoengineered indium tin oxide (ITO) NPs can selectively induce cell death in the cancer cells while reducing the oxidative stress in the normal cells and supporting their proliferation. The ITO NPs are also promising nanotheranostic materials for cancer therapy and contrast agents because of their multimodal imaging capabilities. We demonstrate that the synthesized ITO NPs can selectively increase the generation of reactive oxygen species (ROS) in both breast tumor cell lines, resulting in activation of apoptosis, and can also greatly suppress the cellular proliferation in both types of tumor cells. In contrast, the ITO NPs exhibit ROS scavenging-like behavior, significantly decreasing the ROS levels in MCF-10A cells exposed to the additional ROS, hydrogen peroxide (H2O2), so that they protect the proliferation of nonmalignant MCF-10A cells from ROS damage. In addition, fluorescent microscopy images revealed that the ITO NPs emit strong fluorescence that could be used to reveal their location. Moreover, computed tomography imaging demonstrated that the ITO NPs exhibited a comparable capability toward anatomical contrast enhancement. These results suggest that the synthesized ITO NPs have the potential to be a novel selective therapeutic agent with a multimodal imaging property for anticancer treatment.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas , Estrés Oxidativo/efectos de los fármacos , Compuestos de Estaño/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Nanopartículas/química , Oxidantes/química , Oxidantes/farmacología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Nanomedicina Teranóstica , Compuestos de Estaño/química , Tomografía Computarizada por Rayos X
16.
J Enzyme Inhib Med Chem ; 36(1): 372-376, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33390061

RESUMEN

Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s-1 and kcat/KM value of 3.9 × 107 M-1 s-1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2-94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71-0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1-9.3 mM.


Asunto(s)
Aniones/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Burkholderia/enzimología , Anhidrasas Carbónicas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Arsenicales/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácidos Borónicos/farmacología , Burkholderia/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacología , Ácidos Sulfónicos/farmacología , Compuestos de Estaño/farmacología , Zinc/química , Zinc/metabolismo
17.
ACS Appl Mater Interfaces ; 12(37): 41047-41061, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32816454

RESUMEN

Tumor hypoxia compromises the therapeutic efficacy of oxygen (O2)-dependent treatment methods as the endogenous O2 levels have an important influence on the production of reaction oxygen species. Herein, a synergistic multifunctional mesoporous Fe@Sn-UCNPs bio-photocatalytic nanoplatform is provided to comprehensively realize endogenous hydrogen peroxide (H2O2)-activatable, self-supplied O2, photothermal performance, and near-infrared-mediated magnetic targeting PDT/PTT simultaneously for relieving tumor hypoxia. Such a nanoplatform is constructed by encapsulating magnetic Fe3O4 with lanthanide-ion-doped mesoporous tin oxide upconversion nanoparticles and further modified with phosphorylated serine and poly(ethylene glycol) for enhancing the biocompatibility and solubility. The nanoparticles can be activated by endogenous H2O2 and in situ generated O2 to relieve hypoxia through catalytic reaction. Therefore, H2O2-responsive/O2-evolving nanoparticles can elevate the O2 level in the tumor site for an apparently enhanced PDT effect in vitro and in vivo. What is more, Fe@Sn-UCNPs demonstrate enhanced photothermal conversion efficiency based on the special nanostructure and much more circuit loops for electron transitions between Fe3O4 and Sn-UCNPs, and the electronic structure of Fe@Sn-UCNPs was calculated. In addition, such Fe@Sn-UCNPs also exhibit multimodality imaging performance (including photothermal, magnetic resonance, and computed tomography imaging) for monitoring and tracking the in vivo tumor therapeutic process. This work provides novel insight into the smart Fe@Sn-UCNPs as an "all-in-one" theranostic nanosystem for cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Compuestos de Estaño/farmacología , Animales , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HEK293 , Humanos , Peróxido de Hidrógeno/análisis , Rayos Infrarrojos , Hierro/química , Hierro/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos , Nanopartículas/química , Oxígeno/análisis , Tamaño de la Partícula , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Porosidad , Propiedades de Superficie , Compuestos de Estaño/química , Hipoxia Tumoral/efectos de los fármacos
18.
Int J Biol Macromol ; 162: 220-228, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32544578

RESUMEN

In this work, we present Co3S4-SnO2 supported polyvinylpyrrolidone-cellulose (PVPCS) nano-structure for Lidocaine degradation. The nanostructure was characterized by various techniques i.e. morphological and optical ones. The results have demonstrated that Co3S4-SnO2 nanocomposites were evenly supported on the PVPCS. Moreover, the photocatalysis performances of the catalysts were investigated under ultra-violet (UV) light irradiation. The nano-structure Co3S4-SnO2/PVPCS composite (98.72%) revealed the highest photocatalysis performance as compared to SnO2 nanoparticles, and Co3S4-SnO2 nanocomposites. The photo-stability of nano-structure Co3S4-SnO2/PVPCS composite was characterized using cyclic catalytic experimental. Results demonstrated a substantially stable performance of the nano-structure Co3S4-SnO2/PVPCS composite. The biological properties of Co3S4-SnO2/PVPCS composite were investigated through the antibacterial (versus Staphylococcus aureus, and Escherichia coli) and antifungal studies (Candida albicans). As the results declared, Co3S4-SnO2 nanocomposites have substantial biological properties as compared to SnO2 nanoparticles, and Co3S4-SnO2 nanocomposites.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Celulosa/química , Cobalto/química , Nanocompuestos/química , Povidona/análogos & derivados , Compuestos de Estaño/química , Antibacterianos/química , Candida albicans/efectos de los fármacos , Candida albicans/efectos de la radiación , Catálisis , Cobalto/farmacología , Cobalto/efectos de la radiación , Portadores de Fármacos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Nanopartículas/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Procesos Fotoquímicos , Povidona/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación , Compuestos de Estaño/farmacología , Compuestos de Estaño/efectos de la radiación , Rayos Ultravioleta , Difracción de Rayos X
19.
Bioorg Med Chem Lett ; 30(11): 127140, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32247730

RESUMEN

A prodrug based on a known antibacterial compound is reported to target Staphylococcus aureus and Escherichia coli under reductive conditions. The prodrug was prepared by masking the N-terminus and side chain amines of a component lysine residue as 4-nitrobenzyl carbamates. Activation to liberate the antibacterial was demonstrated on treatment with a model reductant, tin(II) chloride. The bioactivity of 1 was confirmed in antibacterial susceptibility assays whereas prodrug 2 was inactive.


Asunto(s)
Antibacterianos/química , Profármacos/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Profármacos/síntesis química , Profármacos/farmacología , Staphylococcus aureus/efectos de los fármacos , Compuestos de Estaño/farmacología
20.
Recent Pat Nanotechnol ; 14(3): 239-249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32167434

RESUMEN

BACKGROUND: The ability to form biofilm and produce several virulence factors has caused numerous human pathogens to become tremendously resistant towards traditional antibiotic treatments, thus, new alternative strategies are urgently in demand. One of the strategies that have recently been developed involves the application of metallic Nanoparticles (NPs). Up to the present, promising results in terms of antimicrobial and antibiofilm activities have been observed in a wide range of metal NPs. METHODS: The present study has selected three metal oxides such as ZnO, SnO2 and CeO2 NPs to comparatively investigate their antibiofilm and antibacterial properties against two Gram-positive human pathogens, which are Listeria monocytogenes and Staphylococcus aureus. RESULTS: The anti-biofilm activities of ZnO, SnO2 and CeO2 NPs against S. aureus and L. monocytogenes were assayed by crystal violet staining and confirmed by microscopic visualization using SEM. The synthesis of amyloid protein by S. aureus and exopolysaccharide by L. monocytogenes in the presence of ZnO, SnO2 and CeO2 NPs was evaluated by Congo red assay. DISCUSSION: Results have shown that ZnO, SnO2 and CeO2 NPs effectively inhibited biofilm formation of both L. monocytogenes and S. aureus. The microscopic analysis also confirmed the antibiofilm activity of these NPs. It was also found that only ZnO NPs inhibited cell growth as well as the production of amyloid protein in S. aureus. CONCLUSION: Overall, these results indicated that ZnO, SnO2 and CeO2 NPs can be considered as potential agents for treating the infections caused by L. monocytogenes and S. aureus, especially those associated with biofilm formation. Based on the present study, further studies are required to understand their mechanisms at both phenotypic and molecular levels, as well as their in vivo cytotoxicity, thereby enabling the applications of these metal oxide NPs in biomedical fields and food industry.


Asunto(s)
Biopelículas/efectos de los fármacos , Cerio/farmacología , Listeria monocytogenes/fisiología , Nanopartículas del Metal/química , Staphylococcus aureus/fisiología , Compuestos de Estaño/farmacología , Óxido de Zinc/farmacología , Humanos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/ultraestructura , Nanopartículas del Metal/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/ultraestructura , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA