Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.819
Filtrar
1.
Front Immunol ; 15: 1327372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736889

RESUMEN

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with arrhythmogenic right ventricular cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. Cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interactions; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Linfocitos B , Cardiomiopatía Dilatada , Miocardio , Humanos , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/genética , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Miocardio/metabolismo , Miocardio/inmunología , Miocardio/patología , Masculino , Femenino , Comunicación Celular/inmunología , Perfilación de la Expresión Génica , Persona de Mediana Edad , Adulto , Transcriptoma , Regulación de la Expresión Génica
2.
Front Immunol ; 15: 1369356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765006

RESUMEN

Non-small cell lung carcinoma (NSCLC) accounts for 85% of lung cancers, the leading cause of cancer associated deaths in the US and worldwide. Within NSCLC tumors, there is a subpopulation of cancer cells termed cancer stem cells (CSCs) which exhibit stem-like properties that drive NSCLC progression, metastasis, relapse, and therapeutic resistance. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells that carry vital messages for short- and long-range intercellular communication. Numerous studies have implicated NSCLC CSC-derived EVs in the factors associated with NSCLC lethality. In this review, we have discussed mechanisms of EV-directed cross-talk between CSCs and cells of the tumor microenvironment that promote stemness, tumor progression and metastasis in NSCLC. The mechanistic studies discussed herein have provided insights for developing novel NSCLC diagnostic and prognostic biomarkers and strategies to therapeutically target the NSCLC CSC niche.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Células Madre Neoplásicas , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Comunicación Celular
3.
J Immunol Res ; 2024: 6343757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715844

RESUMEN

This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-ß, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.


Asunto(s)
Efecto Espectador , Técnicas de Cocultivo , Coinfección , Citocinas , Infecciones por VIH , Hepacivirus , Células Estrelladas Hepáticas , Hepatitis C , Cirrosis Hepática , Humanos , Células Estrelladas Hepáticas/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/inmunología , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Hepatitis C/complicaciones , Hepatitis C/inmunología , Células Jurkat , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Cirrosis Hepática/etiología , Citocinas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/virología , VIH/fisiología , Estrés Oxidativo , Comunicación Celular , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Matriz Extracelular/metabolismo
4.
J Transl Med ; 22(1): 422, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702814

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and characterized by desmoplastic matrix. The heterogeneity and crosstalk of tumor microenvironment remain incompletely understood. METHODS: To address this gap, we performed Weighted Gene Co-expression Network Analysis (WGCNA) to identify and construct a cancer associated fibroblasts (CAFs) infiltration biomarker. We also depicted the intercellular communication network and important receptor-ligand complexes using the single-cell transcriptomics analysis of tumor and Adjacent normal tissue. RESULTS: Through the intersection of TCGA DEGs and WGCNA module genes, 784 differential genes related to CAFs infiltration were obtained. After a series of regression analyses, the CAFs score was generated by integrating the expressions of EVA1A, APBA2, LRRTM4, GOLGA8M, BPIFB2, and their corresponding coefficients. In the TCGA-CHOL, GSE89748, and 107,943 cohorts, the high CAFs score group showed unfavorable survival prognosis (p < 0.001, p = 0.0074, p = 0.028, respectively). Additionally, a series of drugs have been predicted to be more sensitive to the high-risk group (p < 0.05). Subsequent to dimension reduction and clustering, thirteen clusters were identified to construct the single-cell atlas. Cell-cell interaction analysis unveiled significant enhancement of signal transduction in tumor tissues, particularly from fibroblasts to malignant cells via diverse pathways. Moreover, SCENIC analysis indicated that HOXA5, WT1, and LHX2 are fibroblast specific motifs. CONCLUSIONS: This study reveals the key role of fibroblasts - oncocytes interaction in the remodeling of the immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Subsequently, it may trigger cascade activation of downstream signaling pathways such as PI3K-AKT and Notch in tumor, thus initiating tumorigenesis. Targeted drugs aimed at disrupting fibroblasts-tumor cell interaction, along with associated enrichment pathways, show potential in mitigating the immunosuppressive microenvironment that facilitates tumor progression.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual , Microambiente Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Humanos , Microambiente Tumoral/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Pronóstico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Comunicación Celular
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38706319

RESUMEN

Inference of cell-cell communication (CCC) provides valuable information in understanding the mechanisms of many important life processes. With the rise of spatial transcriptomics in recent years, many methods have emerged to predict CCCs using spatial information of cells. However, most existing methods only describe CCCs based on ligand-receptor interactions, but lack the exploration of their upstream/downstream pathways. In this paper, we proposed a new method to infer CCCs, called Intercellular Gene Association Network (IGAN). Specifically, it is for the first time that we can estimate the gene associations/network between two specific single spatially adjacent cells. By using the IGAN method, we can not only infer CCCs in an accurate manner, but also explore the upstream/downstream pathways of ligands/receptors from the network perspective, which are actually exhibited as a new panoramic cell-interaction-pathway graph, and thus provide extensive information for the regulatory mechanisms behind CCCs. In addition, IGAN can measure the CCC activity at single cell/spot resolution, and help to discover the CCC spatial heterogeneity. Interestingly, we found that CCC patterns from IGAN are highly consistent with the spatial microenvironment patterns for each cell type, which further indicated the accuracy of our method. Analyses on several public datasets validated the advantages of IGAN.


Asunto(s)
Comunicación Celular , Redes Reguladoras de Genes , Comunicación Celular/genética , Humanos , Biología Computacional/métodos , Algoritmos , Análisis de la Célula Individual/métodos , Transducción de Señal
6.
Methods Mol Biol ; 2800: 11-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709474

RESUMEN

Fibroblasts are the major producers of the extracellular matrix and regulate its organization. Aberrant signaling in diseases such as fibrosis and cancer can impact the deposition of the matrix proteins, which can in turn act as an adhesion scaffold and signaling reservoir promoting disease progression. To study the composition and organization of the extracellular matrix as well as its interactions with (tumor) cells, this protocol describes the generation and analysis of 3D fibroblast-derived matrices and the investigation of (tumor) cells seeded onto the 3D scaffolds by immunofluorescent imaging and cell adhesion, colony formation, migration, and invasion/transmigration assays.


Asunto(s)
Adhesión Celular , Movimiento Celular , Matriz Extracelular , Fibroblastos , Transducción de Señal , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Línea Celular Tumoral , Técnicas de Cultivo de Célula/métodos , Neoplasias/metabolismo , Neoplasias/patología , Comunicación Celular , Técnicas de Cultivo Tridimensional de Células/métodos , Animales , Andamios del Tejido/química
7.
Biochem Biophys Res Commun ; 716: 150024, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701555

RESUMEN

Macro-autophagy (autophagy hereafter) is an evolutionarily conserved cellular process that has long been recognized as an intracellular mechanism for maintaining cellular homeostasis. It involves the formation of a membraned structure called the autophagosome, which carries cargo that includes toxic protein aggregates and dysfunctional organelles to the lysosome for degradation and recycling. Autophagy is primarily considered and studied as a cell-autonomous mechanism. However, recent studies have illuminated an underappreciated facet of autophagy, i.e., non-autonomously regulated autophagy. Non-autonomously regulated autophagy involves the degradation of autophagic components, including organelles, cargo, and signaling molecules, and is induced in neighboring cells by signals from primary adjacent or distant cells/tissues/organs. This review provides insight into the complex molecular mechanisms governing non-autonomously regulated autophagy, highlighting the dynamic interplay between cells within tissue/organ or distinct cell types in different tissues/organs. Emphasis is placed on modes of intercellular communication that include secreted molecules, including microRNAs, and their regulatory roles in orchestrating this phenomenon. Furthermore, we explore the multidimensional roles of non-autonomously regulated autophagy in various physiological contexts, spanning tissue development and aging, as well as its importance in diverse pathological conditions, including cancer and neurodegeneration. By studying the complexities of non-autonomously regulated autophagy, we hope to gain insights into the sophisticated intercellular dynamics within multicellular organisms, including mammals. These studies will uncover novel avenues for therapeutic intervention to modulate intercellular autophagic pathways in altered human physiology.


Asunto(s)
Autofagia , Humanos , Autofagia/fisiología , Animales , Comunicación Celular , MicroARNs/metabolismo , MicroARNs/genética , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Transducción de Señal , Autofagosomas/metabolismo
8.
Am J Reprod Immunol ; 91(5): e13857, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716824

RESUMEN

Preeclampsia, poses significant risks to both maternal and fetal well-being. Exosomes released by the placenta play a crucial role in intercellular communication and are recognized as potential carriers of essential information for placental development. These exosomes transport a payload of proteins, nucleic acids, and lipids that mirror the placental microenvironment. This review delves into the functional roles of placental exosomes and its contents shedding light on their involvement in vascular regulation and immune modulation in normal pregnancy. Discernible changes are reported in the composition and quantity of placental exosome contents in pregnancies affected by preeclampsia. The exosomes from preeclamptic mothers affect vascularization and fetal kidney development. The discussion also explores the implications of utilizing placental exosomes as biomarkers and the prospects of translating these findings into clinical applications. In conclusion, placental exosomes hold promise as a valuable avenue for deciphering the complexities of preeclampsia, providing crucial diagnostic and prognostic insights. As the field progresses, a more profound comprehension of the distinct molecular signatures carried by placental exosomes may open doors to innovative strategies for managing and offering personalized care to pregnancies affected by preeclampsia.


Asunto(s)
Exosomas , Placenta , Preeclampsia , Humanos , Embarazo , Preeclampsia/metabolismo , Exosomas/metabolismo , Femenino , Placenta/metabolismo , Placenta/inmunología , Biomarcadores/metabolismo , Animales , Comunicación Celular
9.
Front Immunol ; 15: 1397005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779660

RESUMEN

As major components of the tumor microenvironment, both mesenchymal stem cells (MSCs) and macrophages can be remodelled and exhibit different phenotypes and functions during tumor initiation and progression. In recent years, increasing evidence has shown that tumor-associated macrophages (TAMs) play a crucial role in the growth, metastasis, and chemotherapy resistance of hematological malignancies, and are associated with poor prognosis. Consequently, TAMs have emerged as promising therapeutic targets. Notably, MSCs exert a profound influence on modulating immune cell functions such as macrophages and granulocytes, thereby playing a crucial role in shaping the immunosuppressive microenvironment surrounding tumors. However, in hematological malignancies, the cellular and molecular mechanisms underlying the interaction between MSCs and macrophages have not been clearly elucidated. In this review, we provide an overview of the role of TAMs in various common hematological malignancies, and discuss the latest advances in understanding the interaction between MSCs and macrophages in disease progression. Additionally, potential therapeutic approaches targeting this relationship are outlined.


Asunto(s)
Células Madre Mesenquimatosas , Microambiente Tumoral , Humanos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral/inmunología , Animales , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Comunicación Celular/inmunología
10.
Front Immunol ; 15: 1387292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779674

RESUMEN

Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.


Asunto(s)
Comunicación Celular , Diálisis Peritoneal , Peritoneo , Células del Estroma , Humanos , Diálisis Peritoneal/efectos adversos , Peritoneo/patología , Peritoneo/inmunología , Animales , Células del Estroma/inmunología , Comunicación Celular/inmunología , Inflamación/inmunología , Peritonitis/inmunología
11.
Proc Natl Acad Sci U S A ; 121(22): e2400648121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781210

RESUMEN

After central nervous system injury, a rapid cellular and molecular response is induced. This response can be both beneficial and detrimental to neuronal survival in the first few days and increases the risk for neurodegeneration if persistent. Semaphorin4B (Sema4B), a transmembrane protein primarily expressed by cortical astrocytes, has been shown to play a role in neuronal cell death following injury. Our study shows that after cortical stab wound injury, cytokine expression is attenuated in Sema4B-/- mice, and microglia/macrophage reactivity is altered. In vitro, Sema4B enhances the reactivity of microglia following injury, suggesting astrocytic Sema4B functions as a ligand. Moreover, injury-induced microglia reactivity is attenuated in the presence of Sema4B-/- astrocytes compared to Sema4B+/- astrocytes. In vitro experiments indicate that Plexin-B2 is the Sema4B receptor on microglia. Consistent with this, in microglia/macrophage-specific Plexin-B2-/- mice, similar to Sema4B-/- mice, microglial/macrophage reactivity and neuronal cell death are attenuated after cortical injury. Finally, in Sema4B/Plexin-B2 double heterozygous mice, microglial/macrophage reactivity is also reduced after injury, supporting the idea that both Sema4B and Plexin-B2 are part of the same signaling pathway. Taken together, we propose a model in which following injury, astrocytic Sema4B enhances the response of microglia/macrophages via Plexin-B2, leading to increased reactivity.


Asunto(s)
Astrocitos , Ratones Noqueados , Microglía , Proteínas del Tejido Nervioso , Semaforinas , Animales , Microglía/metabolismo , Microglía/patología , Semaforinas/metabolismo , Semaforinas/genética , Astrocitos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Comunicación Celular , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/genética , Ratones Endogámicos C57BL , Macrófagos/metabolismo
12.
Science ; 384(6698): eadh1938, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781370

RESUMEN

The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture. We used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex. Integration with paired single-nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we mapped the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Humanos , Corteza Prefontal Dorsolateral/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Masculino , Femenino , Comunicación Celular , RNA-Seq , Perfilación de la Expresión Génica , Neuronas/metabolismo , Neuronas/fisiología , Adulto , Análisis de Secuencia de ARN
13.
Science ; 384(6698): eadi5199, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781369

RESUMEN

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.


Asunto(s)
Redes Reguladoras de Genes , Genómica , Sitios de Carácter Cuantitativo , Análisis de la Célula Individual , Humanos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Cromatina/metabolismo , Cromatina/genética , Comunicación Celular/genética , Encéfalo/metabolismo , Envejecimiento/genética , Trastornos Mentales/genética
14.
BMC Immunol ; 25(1): 31, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734625

RESUMEN

BACKGROUND: Thyroid eye disease (TED) is an inflammatory process involving lymphocyte-mediated immune response and orbital tissue damage. The anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies produced by B lymphocytes are involved in the activation of orbital fibroblasts and the inflammatory process of orbital tissue damage in TED. The purpose of this study was to explore the role of IGF-1R in the mechanistic connection between orbital fibroblasts and B lymphocytes in TED. METHODS: Orbital fibroblasts sampled from orbital connective tissues and peripheral B lymphocytes isolated from peripheral blood, which were obtained from 15 patients with TED and 15 control patients, were co-cultured at a ratio of 1:20. The level of IGF-1R expression in orbital fibroblasts was evaluated by flow cytometry and confocal microscopy. Transient B lymphocyte depletion was induced with anti-CD20 monoclonal antibody rituximab, while the IGF-1R pathway was blocked by the IGF-1R binding protein. The expression levels of interleukin-6 (IL-6) and regulated upon activation, normal T cell expressed and secreted (RANTES) in the co-culture model were quantified via ELISA. RESULTS: IGF-1R expression was significantly elevated in TED orbital fibroblasts compared to that of controls. A 24-h co-culture of orbital fibroblasts with peripheral B lymphocytes induced elevated expression levels of IL-6 and RANTES in each group (TED patients and controls), with the highest levels occurring in TED patients (T + T group). Rituximab and IGF-1R binding protein significantly inhibited increased levels of IL-6 and RANTES in the co-culture model of TED patients. CONCLUSIONS: IGF-1R may mediate interaction between orbital fibroblasts and peripheral B lymphocytes; thus, blocking IGF-1R may reduce the local inflammatory response in TED. Rituximab-mediated B lymphocyte depletion played a role in inhibiting inflammatory responses in this in vitro co-culture model, providing a theoretical basis for the clinical application of anti-CD20 monoclonal antibodies in TED.


Asunto(s)
Linfocitos B , Técnicas de Cocultivo , Fibroblastos , Oftalmopatía de Graves , Receptor IGF Tipo 1 , Humanos , Oftalmopatía de Graves/metabolismo , Oftalmopatía de Graves/inmunología , Fibroblastos/metabolismo , Receptor IGF Tipo 1/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Adulto , Rituximab/farmacología , Rituximab/uso terapéutico , Órbita/metabolismo , Órbita/inmunología , Depleción Linfocítica , Interleucina-6/metabolismo , Células Cultivadas , Quimiocina CCL5/metabolismo , Comunicación Celular , Anciano
15.
J Transl Med ; 22(1): 444, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734658

RESUMEN

BACKGROUND: Characterization of shared cancer mechanisms have been proposed to improve therapy strategies and prognosis. Here, we aimed to identify shared cell-cell interactions (CCIs) within the tumor microenvironment across multiple solid cancers and assess their association with cancer mortality. METHODS: CCIs of each cancer were identified by NicheNet analysis of single-cell RNA sequencing data from breast, colon, liver, lung, and ovarian cancers. These CCIs were used to construct a shared multi-cellular tumor model (shared-MCTM) representing common CCIs across cancers. A gene signature was identified from the shared-MCTM and tested on the mRNA and protein level in two large independent cohorts: The Cancer Genome Atlas (TCGA, 9185 tumor samples and 727 controls across 22 cancers) and UK biobank (UKBB, 10,384 cancer patients and 5063 controls with proteomics data across 17 cancers). Cox proportional hazards models were used to evaluate the association of the signature with 10-year all-cause mortality, including sex-specific analysis. RESULTS: A shared-MCTM was derived from five individual cancers. A shared gene signature was extracted from this shared-MCTM and the most prominent regulatory cell type, matrix cancer-associated fibroblast (mCAF). The signature exhibited significant expression changes in multiple cancers compared to controls at both mRNA and protein levels in two independent cohorts. Importantly, it was significantly associated with mortality in cancer patients in both cohorts. The highest hazard ratios were observed for brain cancer in TCGA (HR [95%CI] = 6.90[4.64-10.25]) and ovarian cancer in UKBB (5.53[2.08-8.80]). Sex-specific analysis revealed distinct risks, with a higher mortality risk associated with the protein signature score in males (2.41[1.97-2.96]) compared to females (1.84[1.44-2.37]). CONCLUSION: We identified a gene signature from a comprehensive shared-MCTM representing common CCIs across different cancers and revealed the regulatory role of mCAF in the tumor microenvironment. The pathogenic relevance of the gene signature was supported by differential expression and association with mortality on both mRNA and protein levels in two independent cohorts.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Microambiente Tumoral/genética , Estudios de Cohortes , Transcriptoma/genética , Persona de Mediana Edad , Comunicación Celular
16.
Clin Transl Med ; 14(5): e1701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778448

RESUMEN

BACKGROUND: Mucinous colorectal adenocarcinoma (MCA) is a distinct subtype of colorectal cancer (CRC) with the most aggressive pattern, but effective treatment of MCA remains a challenge due to its vague pathological characteristics. An in-depth understanding of transcriptional dynamics at the cellular level is critical for developing specialised MCA treatment strategies. METHODS: We integrated single-cell RNA sequencing and spatial transcriptomics data to systematically profile the MCA tumor microenvironment (TME), particularly the interactome of stromal and immune cells. In addition, a three-dimensional bioprinting technique, canonical ex vivo co-culture system, and immunofluorescence staining were further applied to validate the cellular communication networks within the TME. RESULTS: This study identified the crucial intercellular interactions that engaged in MCA pathogenesis. We found the increased infiltration of FGF7+/THBS1+ myofibroblasts in MCA tissues with decreased expression of genes associated with leukocyte-mediated immunity and T cell activation, suggesting a crucial role of these cells in regulating the immunosuppressive TME. In addition, MS4A4A+ macrophages that exhibit M2-phenotype were enriched in the tumoral niche and high expression of MS4A4A+ was associated with poor prognosis in the cohort data. The ligand-receptor-based intercellular communication analysis revealed the tight interaction of MUC1+ malignant cells and ZEB1+ endothelial cells, providing mechanistic information for MCA angiogenesis and molecular targets for subsequent translational applications. CONCLUSIONS: Our study provides novel insights into communications among tumour cells with stromal and immune cells that are significantly enriched in the TME during MCA progression, presenting potential prognostic biomarkers and therapeutic strategies for MCA. KEY POINTS: Tumour microenvironment profiling of MCA is developed. MUC1+ tumour cells interplay with FGF7+/THBS1+ myofibroblasts to promote MCA development. MS4A4A+ macrophages exhibit M2 phenotype in MCA. ZEB1+ endotheliocytes engage in EndMT process in MCA.


Asunto(s)
Adenocarcinoma Mucinoso , Neoplasias Colorrectales , Mucina-1 , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Microambiente Tumoral/genética , Análisis de la Célula Individual/métodos , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/patología , Mucina-1/genética , Mucina-1/metabolismo , Comunicación Celular/genética
17.
PLoS One ; 19(5): e0302853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768139

RESUMEN

BACKGROUND: Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS: The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION: Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.


Asunto(s)
Insuficiencia Renal Crónica , Análisis de la Célula Individual , Transcriptoma , Humanos , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Ligandos , Perfilación de la Expresión Génica , Comunicación Celular/genética , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 121(22): e2322479121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771871

RESUMEN

The significance of biochemical cues in the tumor immune microenvironment in affecting cancer metastasis is well established, but the role of physical factors in the microenvironment remains largely unexplored. In this article, we investigated how the mechanical interaction between cancer cells and immune cells, mediated by extracellular matrix (ECM), influences immune escape of cancer cells. We focus on the mechanical regulation of macrophages' targeting ability on two distinct types of colorectal carcinoma (CRC) cells with different metastatic potentials. Our results show that macrophages can effectively target CRC cells with low metastatic potential, due to the strong contraction exhibited by the cancer cells on the ECM, and that cancer cells with high metastatic potential demonstrated weakened contractions on the ECM and can thus evade macrophage attack to achieve immune escape. Our findings regarding the intricate mechanical interactions between immune cells and cancer cells can serve as a crucial reference for further exploration of cancer immunotherapy strategies.


Asunto(s)
Neoplasias Colorrectales , Matriz Extracelular , Macrófagos , Escape del Tumor , Microambiente Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Macrófagos/inmunología , Humanos , Microambiente Tumoral/inmunología , Matriz Extracelular/metabolismo , Matriz Extracelular/inmunología , Línea Celular Tumoral , Metástasis de la Neoplasia , Animales , Ratones , Comunicación Celular/inmunología
19.
Zool Res ; 45(3): 601-616, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766744

RESUMEN

Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.


Asunto(s)
Comunicación Celular , Meiosis , Animales , Masculino , Ratones , Meiosis/fisiología , Humanos , Células de Sertoli/metabolismo , Células de Sertoli/fisiología , Testículo/metabolismo , Testículo/citología , Espermatogénesis/fisiología , Regulación de la Expresión Génica , Azoospermia/genética , Transcripción Genética , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/metabolismo , Análisis de Expresión Génica de una Sola Célula
20.
Cells ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727289

RESUMEN

Extracellular vesicles (EVs) are membrane-bound particles released by cells to perform multitudes of biological functions. Owing to their significant implications in diseases, the pathophysiological role of EVs continues to be extensively studied, leading research to neglect the need to explore their role in normal physiology. Despite this, many identified physiological functions of EVs, including, but not limited to, tissue repair, early development and aging, are attributed to their modulatory role in various signaling pathways via intercellular communication. EVs are widely perceived as a potential therapeutic strategy for better prognosis, primarily through utilization as a mode of delivery vehicle. Moreover, disease-associated EVs serve as candidates for the targeted inhibition by pharmacological or genetic means. However, these attempts are often accompanied by major challenges, such as off-target effects, which may result in adverse phenotypes. This renders the clinical efficacy of EVs elusive, indicating that further understanding of the specific role of EVs in physiology may enhance their utility. This review highlights the essential role of EVs in maintaining cellular homeostasis under different physiological settings, and also discusses the various aspects that may potentially hinder the robust utility of EV-based therapeutics.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Animales , Comunicación Celular , Transducción de Señal , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA