Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.706
Filtrar
1.
ACS Infect Dis ; 10(5): 1839-1855, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38725407

RESUMEN

Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Bacterias Gramnegativas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Hidrocarburos/química , Hidrocarburos/farmacología , Hemólisis/efectos de los fármacos , Conformación Proteica en Hélice alfa
2.
Sci Rep ; 14(1): 11995, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796582

RESUMEN

Machine learning models are revolutionizing our approaches to discovering and designing bioactive peptides. These models often need protein structure awareness, as they heavily rely on sequential data. The models excel at identifying sequences of a particular biological nature or activity, but they frequently fail to comprehend their intricate mechanism(s) of action. To solve two problems at once, we studied the mechanisms of action and structural landscape of antimicrobial peptides as (i) membrane-disrupting peptides, (ii) membrane-penetrating peptides, and (iii) protein-binding peptides. By analyzing critical features such as dipeptides and physicochemical descriptors, we developed models with high accuracy (86-88%) in predicting these categories. However, our initial models (1.0 and 2.0) exhibited a bias towards α-helical and coiled structures, influencing predictions. To address this structural bias, we implemented subset selection and data reduction strategies. The former gave three structure-specific models for peptides likely to fold into α-helices (models 1.1 and 2.1), coils (1.3 and 2.3), or mixed structures (1.4 and 2.4). The latter depleted over-represented structures, leading to structure-agnostic predictors 1.5 and 2.5. Additionally, our research highlights the sensitivity of important features to different structure classes across models.


Asunto(s)
Péptidos Antimicrobianos , Aprendizaje Automático , Péptidos Antimicrobianos/química , Descubrimiento de Drogas/métodos , Conformación Proteica en Hélice alfa , Modelos Moleculares
3.
Protein Sci ; 33(6): e4976, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757374

RESUMEN

G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.


Asunto(s)
Receptores de Neurotensina , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/genética , Humanos , Micelas , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/metabolismo , Dicroismo Circular , Conformación Proteica en Hélice alfa , Detergentes/química , Modelos Moleculares
4.
Biochim Biophys Acta Biomembr ; 1866(5): 184333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740122

RESUMEN

Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the "two stage" folding, later developed to "three stage" folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.


Asunto(s)
Bacteriorodopsinas , Pliegue de Proteína , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Simulación de Dinámica Molecular , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Estructura Secundaria de Proteína , Conformación Proteica en Hélice alfa
5.
Nat Commun ; 15(1): 4670, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821983

RESUMEN

The major ampullate Spidroin 1 (MaSp1) is the main protein of the dragline spider silk. The C-terminal (CT) domain of MaSp1 is crucial for the self-assembly into fibers but the details of how it contributes to the fiber formation remain unsolved. Here we exploit the fact that the CT domain can form silk-like fibers by itself to gain knowledge about this transition. Structural investigations of fibers from recombinantly produced CT domain from E. australis MaSp1 reveal an α-helix to ß-sheet transition upon fiber formation and highlight the helix No4 segment as most likely to initiate the structural conversion. This prediction is corroborated by the finding that a peptide corresponding to helix No4 has the ability of pH-induced conversion into ß-sheets and self-assembly into nanofibrils. Our results provide structural information about the CT domain in fiber form and clues about its role in triggering the structural conversion of spidroins during fiber assembly.


Asunto(s)
Fibroínas , Arañas , Fibroínas/química , Fibroínas/metabolismo , Animales , Arañas/metabolismo , Seda/química , Seda/metabolismo , Dominios Proteicos , Secuencia de Aminoácidos , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentración de Iones de Hidrógeno , Conformación Proteica en Hélice alfa , Estructura Secundaria de Proteína
6.
Arch Biochem Biophys ; 756: 110023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705227

RESUMEN

Myeloperoxidase is a critical component of the antibacterial arsenal of neutrophils, whereby it consumes H2O2 as an oxidant to convert halogen and pseudohalogen anions into cytotoxic hypohalous acids. Following phagocytosis by neutrophils, the human pathogen Staphylococcus aureus secretes a potent myeloperoxidase inhibitory protein, called SPIN, as part of its immune evasion repertoire. The matured S. aureus SPIN polypeptide consists of only 73 residues yet contains two functional domains: whereas the 60 residue C-terminal helical bundle domain is responsible for MPO binding, the 13 residue N-terminal domain is required to inhibit MPO. Previous studies have informed understanding of the SPIN N-terminal domain, but comparatively little is known about the helical domain insofar as the contribution of individual residues is concerned. To address this limitation, we carried out a residue-level structure/function investigation on the helical bundle domain of S. aureus SPIN. Using sequence conservation and existing structures of SPIN bound to human MPO as a guide, we selected residues L49, E50, H51, E52, Y55, and Y75 for interrogation by site-directed mutagenesis. We found that loss of L49 or E52 reduced SPIN activity by roughly an order of magnitude, but that loss of Y55 or H51 caused progressively greater loss of inhibitory potency. Direct binding studies by SPR showed that loss of inhibitory potency in these SPIN mutants resulted from a diminished initial interaction between the inhibitor and MPO. Together, our studies provide new insights into the structure/function relationships of SPIN and identify positions Y55 and H51 as critical determinants of SPIN function.


Asunto(s)
Peroxidasa , Staphylococcus aureus , Staphylococcus aureus/enzimología , Humanos , Peroxidasa/química , Peroxidasa/metabolismo , Peroxidasa/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Dominios Proteicos , Secuencia de Aminoácidos , Mutagénesis Sitio-Dirigida , Modelos Moleculares , Conformación Proteica en Hélice alfa
7.
Sci Adv ; 10(19): eade9520, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718112

RESUMEN

Fast collective motions are widely present in biomolecules, but their functional relevance remains unclear. Herein, we reveal that fast collective motions of backbone are critical to the water transfer of aquaporin Z (AqpZ) by using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. A total of 212 residue site-specific dipolar order parameters and 158 15N spin relaxation rates of the backbone are measured by combining the 13C- and 1H-detected multidimensional ssNMR spectra. Analysis of these experimental data by theoretic models suggests that the small-amplitude (~10°) collective motions of the transmembrane α helices on the nanosecond-to-microsecond timescales are dominant for the dynamics of AqpZ. The MD simulations demonstrate that these collective motions are critical to the water transfer efficiency of AqpZ by facilitating the opening of the channel and accelerating the water-residue hydrogen bonds renewing in the selectivity filter region.


Asunto(s)
Acuaporinas , Simulación de Dinámica Molecular , Agua , Agua/química , Acuaporinas/química , Acuaporinas/metabolismo , Conformación Proteica en Hélice alfa , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Proteínas de Escherichia coli
8.
J Med Chem ; 67(10): 8172-8185, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38695666

RESUMEN

Several novel and effective cysteine targeting (Cys) covalent drugs are in clinical use. However, the target area containing a druggable Cys residue is limited. Therefore, methods for creating covalent drugs that target different residues are being looked for; examples of such ligands include those that target the residues lysine (Lys) and tyrosine (Tyr). Though the histidine (His) side chain is more frequently found in protein binding locations and has higher desirable nucleophilicity, surprisingly limited research has been done to specifically target this residue, and there are not many examples of His-targeting ligands that have been rationally designed. In the current work, we created novel stapled peptides that are intended to target hMcl-1 His 252 covalently. We describe the in vitro (biochemical, NMR, and X-ray) and cellular design and characterization of such agents. Our findings further suggest that the use of electrophiles to specifically target His residues is warranted.


Asunto(s)
Histidina , Péptidos , Histidina/química , Humanos , Péptidos/química , Péptidos/farmacología , Conformación Proteica en Hélice alfa , Cristalografía por Rayos X , Modelos Moleculares , Diseño de Fármacos , Ligandos
9.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791287

RESUMEN

Residue contact maps provide a condensed two-dimensional representation of three-dimensional protein structures, serving as a foundational framework in structural modeling but also as an effective tool in their own right in identifying inter-helical binding sites and drawing insights about protein function. Treating contact maps primarily as an intermediate step for 3D structure prediction, contact prediction methods have limited themselves exclusively to sequential features. Now that AlphaFold2 predicts 3D structures with good accuracy in general, we examine (1) how well predicted 3D structures can be directly used for deciding residue contacts, and (2) whether features from 3D structures can be leveraged to further improve residue contact prediction. With a well-known benchmark dataset, we tested predicting inter-helical residue contact based on AlphaFold2's predicted structures, which gave an 83% average precision, already outperforming a sequential features-based state-of-the-art model. We then developed a procedure to extract features from atomic structure in the neighborhood of a residue pair, hypothesizing that these features will be useful in determining if the residue pair is in contact, provided the structure is decently accurate, such as predicted by AlphaFold2. Training on features generated from experimentally determined structures, we leveraged knowledge from known structures to significantly improve residue contact prediction, when testing using the same set of features but derived using AlphaFold2 structures. Our results demonstrate a remarkable improvement over AlphaFold2, achieving over 91.9% average precision for a held-out subset and over 89.5% average precision in cross-validation experiments.


Asunto(s)
Proteínas de la Membrana , Modelos Moleculares , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Sitios de Unión , Bases de Datos de Proteínas , Biología Computacional/métodos
10.
Arch Biochem Biophys ; 756: 109981, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593862

RESUMEN

Glycine rich polyproline II helix assemblies are an emerging class of natural domains found in several proteins with different functions and diverse origins. The distinct properties of these domains relative to those composed of α-helices and ß-sheets could make glycine-rich polyproline II helix assemblies a useful building block for protein design. Whereas the high population of polyproline II conformers in disordered state ensembles could facilitate glycine-rich polyproline II helix folding, the architectonic bases of these structures are not well known. Here, we compare and analyze their structures to uncover common features. These protein domains are found to be highly tolerant of distinct flanking sequences. This speaks to the robustness of this fold and strongly suggests that glycine rich polyproline II assemblies could be grafted with other protein domains to engineer new structures and functions. These domains are also well packed with few or no cavities. Moreover, a significant trend towards antiparallel helix configuration is observed in all these domains and could provide stabilizing interactions among macrodipoles. Finally, extensive networks of Cα-H···OC hydrogen bonds are detected in these domains. Despite their diverse evolutionary origins and activities, glycine-rich polyproline II helix assemblies share architectonic features which could help design novel proteins.


Asunto(s)
Péptidos , Péptidos/química , Dominios Proteicos , Conformación Proteica en Hélice alfa , Enlace de Hidrógeno , Secuencia de Aminoácidos , Pliegue de Proteína , Modelos Moleculares , Glicina/química , Estructura Secundaria de Proteína
11.
Biochemistry ; 63(9): 1118-1130, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38623827

RESUMEN

Acyl capping groups stabilize α-helices relative to free N-termini by providing one additional C═Oi···Hi+4-N hydrogen bond. The electronic properties of acyl capping groups might also directly modulate α-helix stability: electron-rich N-terminal acyl groups could stabilize the α-helix by strengthening both i/i + 4 hydrogen bonds and i/i + 1 n → π* interactions. This hypothesis was tested in peptides X-AKAAAAKAAAAKAAGY-NH2, where X = different acyl groups. Surprisingly, the most electron-rich acyl groups (pivaloyl and iso-butyryl) strongly destabilized the α-helix. Moreover, the formyl group induced nearly identical α-helicity to that of the acetyl group, despite being a weaker electron donor for hydrogen bonds and for n → π* interactions. Other acyl groups exhibited intermediate α-helicity. These results indicate that the electronic properties of the acyl carbonyl do not directly determine the α-helicity in peptides in water. In order to understand these effects, DFT calculations were conducted on α-helical peptides. Using implicit solvation, α-helix stability correlated with acyl group electronics, with the pivaloyl group exhibiting closer hydrogen bonds and n → π* interactions, in contrast to the experimental results. However, DFT and MD calculations with explicit water solvation revealed that hydrogen bonding to water was impacted by the sterics of the acyl capping group. Formyl capping groups exhibited the closest water-amide hydrogen bonds, while pivaloyl groups exhibited the longest. In α-helices in the PDB, the highest frequency of close amide-water hydrogen bonds is observed when the N-cap residue is Gly. The combination of experimental and computational results indicates that solvation (hydrogen bonding of water) to the N-terminal amide groups is a central determinant of α-helix stability.


Asunto(s)
Amidas , Enlace de Hidrógeno , Conformación Proteica en Hélice alfa , Estabilidad Proteica , Agua , Agua/química , Amidas/química , Péptidos/química , Teoría Funcional de la Densidad , Modelos Moleculares , Estructura Secundaria de Proteína
12.
J Phys Chem B ; 128(16): 3856-3869, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38606880

RESUMEN

We have studied in silico the effect of proline, a model cosolvent, on local and global friction coefficients in (un)folding of several typical alanine-based α-helical peptides. Local friction is related to dwell times of a single, ensemble-averaged hydrogen bond (HB) within each peptide. Global friction is related to energy dissipated in a series of configurational changes of each peptide experienced by increasing the number of HBs during folding. Both of these approaches are important in relation to future atomic force microscopic-based measurements of internal friction via force-clamp single-molecule force spectroscopy. Molecular dynamics (MD) simulations for six peptides, namely, ALA5, ALA8, ALA15, ALA21, (AAQAA)3, and H2N-GN(AAQAA)2G-COONH2, have been conducted at 2 and 5 M proline solutions in water. Using previously obtained MD data for these peptides in pure water as well as upgraded theoretical models, we obtained variations of local and global internal friction coefficients as a function of solution viscosity. The results showed the substantial role of proline in stabilizing the folded state and slowing the overall folding dynamics. Consequently, larger friction coefficients were obtained at larger viscosities. The local and global internal friction, i.e., respective, friction coefficients approximated to zero viscosity, was also obtained. The evolution of friction coefficients with viscosity was weakly dependent on the number of concurrent folding pathways but was rather dominated by a stabilizing effect of proline on the folded states. Obtained values of local and global internal friction showed qualitatively similar results and a clear dependency on the structure of the studied peptide.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Prolina , Pliegue de Proteína , Prolina/química , Péptidos/química , Conformación Proteica en Hélice alfa , Alanina/química , Enlace de Hidrógeno , Fricción
13.
Sci Rep ; 14(1): 9168, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649777

RESUMEN

Fluorinated graphene, a two-dimensional nanomaterial composed of three atomic layers, a central carbon layer sandwiched between two layers of fluorine atoms, has attracted considerable attention across various fields, particularly for its potential use in biomedical applications. Nonetheless, scant effort has been devoted to assessing the potential toxicological implications of this nanomaterial. In this study, we scrutinize the potential impact of fluorinated graphene on a protein model, HP35 by utilizing extensive molecular dynamics (MD) simulation methods. Our MD results elucidate that upon adsorption to the nanomaterial, HP35 undergoes a denaturation process initiated by the unraveling of the second helix of the protein and the loss of the proteins hydrophobic core. In detail, substantial alterations in various structural features of HP35 ensue, including alterations in hydrogen bonding, Q value, and RMSD. Subsequent analyses underscore that hydrophobic and van der Waals interactions (predominant), alongside electrostatic energy (subordinate), exert influence over the adsorption of HP35 on the fluorinated graphene surface. Mechanistic scrutiny attests that the unrestrained lateral mobility of HP35 on the fluorinated graphene nanomaterial primarily causes the exposure of HP35's hydrophobic core, resulting in the eventual structural denaturation of HP35. A trend in the features of 2D nanostructures is proposed that may facilitate the denaturation process. Our findings not only substantiate the potential toxicity of fluorinated graphene but also unveil the underlying molecular mechanism, which thereby holds significance for the prospective utilization of such nanomaterials in the field of biomedicine.


Asunto(s)
Grafito , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Proteínas de Neurofilamentos , Fragmentos de Péptidos , Conformación Proteica en Hélice alfa , Grafito/química , Grafito/toxicidad , Interacciones Hidrofóbicas e Hidrofílicas , Desplegamiento Proteico/efectos de los fármacos , Halogenación , Adsorción , Nanoestructuras/química , Nanoestructuras/toxicidad
14.
J Am Chem Soc ; 146(18): 12766-12777, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656109

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) pose significant health risks due to their widespread presence in various environmental and biological matrices. However, the molecular-level mechanisms underlying the interactions between PFAS and biological constituents, including proteins, carbohydrates, lipids, and DNA, remain poorly understood. Here, we investigate the interactions between a legacy PFAS, viz. perfluorooctanoic acid (PFOA), and the milk protein ß-lactoglobulin (BLG) obtained using a combination of experimental and computational techniques. Circular dichroism studies reveal that PFOA perturbs the secondary structure of BLG, by driving a dose-dependent loss of α-helicity and alterations in its ß-sheet content. Furthermore, exposure of the protein to PFOA attenuates the on-rate constant for the binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANS), suggesting potential functional impairment of BLG by PFOA. Steered molecular dynamics and umbrella sampling calculations reveal that PFOA binding leads to the formation of an energetically favorable novel binding pocket within the protein, when residues 129-142 are steered to unfold from their initial α-helical structure, wherein a host of intermolecular interactions between PFOA and BLG's residues serve to insert the PFOA into the region between the unfolded helix and beta-sheets. Together, the data provide a novel understanding of the atomic and molecular mechanism(s) by which PFAS modulates structure and function in a globular protein, leading to a beginning of our understanding of altered biological outcomes.


Asunto(s)
Caprilatos , Fluorocarburos , Lactoglobulinas , Fluorocarburos/química , Caprilatos/química , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Sitios de Unión , Unión Proteica , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Modelos Moleculares , Dicroismo Circular
15.
Biomacromolecules ; 25(5): 3112-3121, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38651274

RESUMEN

Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 µg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed ß-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Escherichia coli/efectos de los fármacos , Animales , Pruebas de Sensibilidad Microbiana , Polielectrolitos/química , Polielectrolitos/farmacología , Péptidos/química , Péptidos/farmacología , Conformación Proteica en Hélice alfa , Micelas , Infecciones por Escherichia coli/tratamiento farmacológico , Hemólisis/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratones , Ácido Poliglutámico/química , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/farmacología , Humanos
16.
J Biol Chem ; 300(5): 107283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608728

RESUMEN

Over the past 3 decades, a diverse collection of small protein domains have been used as scaffolds to generate general purpose protein-binding reagents using a variety of protein display and enrichment technologies. To expand the repertoire of scaffolds and protein surfaces that might serve this purpose, we have explored the utility of (i) a pair of anti-parallel alpha-helices in a small highly disulfide-bonded 4-helix bundle, the CC4 domain from reversion-inducing Cysteine-rich Protein with Kazal Motifs and (ii) a concave beta-sheet surface and two adjacent loops in the human FN3 domain, the scaffold for the widely used monobody platform. Using M13 phage display and next generation sequencing, we observe that, in both systems, libraries of ∼30 million variants contain binding proteins with affinities in the low µM range for baits corresponding to the extracellular domains of multiple mammalian proteins. CC4- and FN3-based binding proteins were fused to the N- and/or C-termini of Fc domains and used for immunostaining of transfected cells. Additionally, FN3-based binding proteins were inserted into VP1 of AAV to direct AAV infection to cells expressing a defined surface receptor. Finally, FN3-based binding proteins were inserted into the Pvc13 tail fiber protein of an extracellular contractile injection system particle to direct protein cargo delivery to cells expressing a defined surface receptor. These experiments support the utility of CC4 helices B and C and of FN3 beta-strands C, D, and F together with adjacent loops CD and FG as surfaces for engineering general purpose protein-binding reagents.


Asunto(s)
Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Humanos , Biblioteca de Péptidos , Células HEK293 , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Animales , Técnicas de Visualización de Superficie Celular
17.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673750

RESUMEN

Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in cattle raised in North America. At the feedlot, cattle are subject to metaphylactic treatment with macrolides to prevent BRD, a practice that may promote antimicrobial resistance and has resulted in an urgent need for novel strategies. Mannheimia haemolytica is one of the major bacterial agents of BRD. The inhibitory effects of two amphipathic, α-helical (PRW4, WRL3) and one ß-sheet (WK2) antimicrobial peptides were evaluated against multidrug-resistant (MDR) M. haemolytica isolated from Alberta feedlots. WK2 was not cytotoxic against bovine turbinate (BT) cells by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. All three peptides inhibited M. haemolytica, with WK2 being the most efficacious against multiple isolates. At 8-16 µg/mL, WK2 was bactericidal against Mh 330 in broth, and at 32 µg/mL in the presence of BT cells, it reduced the population by 3 logs CFU/mL without causing cytotoxic effects. The membrane integrity of Mh 330 was examined using NPN (1-N-phenylnaphthylamine) and ONPG (o-Nitrophenyl ß-D-galactopyranoside), with both the inner and outer membranes being compromised. Thus, WK2 may be a viable alternative to the use of macrolides as part of BRD prevention and treatment strategies.


Asunto(s)
Péptidos Antimicrobianos , Mannheimia haemolytica , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Complejo Respiratorio Bovino/tratamiento farmacológico , Complejo Respiratorio Bovino/microbiología , Mannheimia haemolytica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
18.
J Chem Inf Model ; 64(8): 3350-3359, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38566451

RESUMEN

The B domain of protein A (BdpA), a small three-helix bundle, folds on a time scale of a few microseconds with heterogeneous native and unfolded states. It is widely used as a model for understanding protein folding mechanisms. In this work, we use structure-based models (SBMs) and atomistic simulations to comprehensively investigate how BdpA folding is associated with the formation of its secondary structure. The energy landscape visualization method (ELViM) was used to characterize the pathways that connect the folded and unfolded states of BdpA as well as the sets of structures displaying specific ellipticity patterns. We show that the native state conformational diversity is due mainly to the conformational variability of helix I. Helices I, II, and III occur in a weakly correlated manner, with Spearman's rank correlation coefficients of 0.1539 (I and II), 0.1259 (I and III), and 0.2561 (II and III). These results, therefore, suggest the highest cooperativity between helices II and III. Our results allow the clustering of partially folded structures of folding of the B domain of protein A on the basis of its secondary structure, paving the way to an understanding of environmental factors in the relative stability of the basins of the folding ensemble, which are illustrated by the structural dependency of the protein hydration structures, as computed with minimum-distance distribution functions.


Asunto(s)
Simulación de Dinámica Molecular , Dominios Proteicos , Pliegue de Proteína , Proteína Estafilocócica A , Agua , Agua/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Conformación Proteica en Hélice alfa , Modelos Moleculares , Termodinámica
19.
Nat Commun ; 15(1): 3531, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670961

RESUMEN

E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.


Asunto(s)
Multimerización de Proteína , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Humanos , Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitinación , Modelos Moleculares , Cristalografía por Rayos X , Proteínas Oncogénicas Virales/metabolismo , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Unión Proteica , Conformación Proteica en Hélice alfa
20.
Food Chem ; 447: 138914, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38460320

RESUMEN

The modification in structural, rheological, and techno-functional characteristics of soy and pea protein isolates (SPI and PPI) due to dielectric barrier discharge cold plasma (DBD-CP) were assessed. The increased carbonyl groups in both samples with cold plasma (CP) treatment led to a reduction in free sulfhydryl groups. Moreover, protein solubility of treated proteins exhibited significant improvements, reaching up to 59.07 % and 41.4 % for SPI and PPI, respectively, at 30 kV for 8 min. Rheological analyses indicated that storage modulus (G') was greater than loss modulus (G″) for CP-treated protein gels. Furthermore, in vitro protein digestibility of SPI exhibited a remarkable improvement (4.78 %) at 30 kV for 6 min compared to PPI (3.23 %). Spectroscopic analyses, including circular dichroism and Fourier Transform-Raman, indicated partial breakdown and loss of α-helix structure in both samples, leading to the aggregation of proteins. Thus, DBD-CP induces reactive oxygen species-mediated oxidation, modifying the secondary and tertiary structures of samples.


Asunto(s)
Proteínas de Guisantes , Gases em Plasma , Proteínas de Soja/química , Solubilidad , Conformación Proteica en Hélice alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA