Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98.529
Filtrar
1.
J R Soc Interface ; 21(214): 20230658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774960

RESUMEN

Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.


Asunto(s)
Modelos Biológicos , Músculo Esquelético , Miosinas , Animales , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología , Actinas/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Sarcómeros/fisiología , Fenómenos Biomecánicos
8.
J Biomech ; 168: 112137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38710152

RESUMEN

Patellofemoral pain (PFP) is one of the most common sports injuries of the knee joint and has a high persistence and recurrence rate. Medio-lateral patellar position in the knee extension position during contraction is associated with PFP. However, soft tissue tension that most influences the medio-lateral patellar position in the knee extension position during contraction in vivo is unclear. We aimed to clarify the relationship between medio-lateral patellar position and soft tissue tension around the knee joint. Twelve patients with PFP and 20 healthy participants were included. Medio-lateral patellar position and tension of the rectus femoris, vastus lateralis (VL), vastus medialis, iliotibial band (ITB), lateral patellofemoral ligament, and medial patellofemoral ligament were measured during contraction and rest. The tensions of the VL and ITB during contraction and the medio-lateral patellar position at rest were significantly associated with medio-lateral patellar position during contraction (ß = 0.449, 0.354, and 0.393, respectively). In addition, the tension of ITB was significantly associated with the medio-lateral patellar position at rest (ß = 0.646). These relationships were not affected by the presence of PFP. These findings suggest that the patellar position during contraction became more lateral as the tension in the VL and ITB increased, regardless of the presence of PFP. These results may facilitate the prevention and treatment of PFP.


Asunto(s)
Articulación de la Rodilla , Humanos , Masculino , Femenino , Adulto , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/fisiología , Rótula/fisiología , Rótula/fisiopatología , Fenómenos Biomecánicos , Síndrome de Dolor Patelofemoral/fisiopatología , Contracción Muscular/fisiología , Adulto Joven
9.
J Biomech ; 168: 112134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723428

RESUMEN

Connective tissues can be recognized as an important structural support element in muscles. Recent studies have also highlighted its importance in active force generation and transmission between muscles, particularly through the epimysium. In the present study, we aimed to investigate the impact of the endomysium, the connective tissue surrounding muscle fibers, on both passive and active force production. Pairs of skeletal muscle fibers were extracted from the extensor digitorum longus muscles of rats and, after chemical skinning, their passive and active force-length relationships were measured under two conditions: (i) with the endomysium between muscle fibers intact, and (ii) after its dissection. We found that the dissection of the endomysium caused force to significantly decrease in both active (by 22.2 % when normalized to the maximum isometric force; p < 0.001) and passive conditions (by 25.9 % when normalized to the maximum isometric force; p = 0.034). These findings indicate that the absence of endomysium compromises muscle fiber's not only passive but also active force production. This effect may be attributed to increased heterogeneity in sarcomere lengths, enhanced lattice spacing between myofilaments, or a diminished role of trans-sarcolemmal proteins due to dissecting the endomysium. Future investigations into the underlying mechanisms and their implications for various extracellular matrix-related diseases are warranted.


Asunto(s)
Fibras Musculares Esqueléticas , Animales , Ratas , Fibras Musculares Esqueléticas/fisiología , Ratas Wistar , Tejido Conectivo/fisiología , Sarcómeros/fisiología , Masculino , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Contracción Isométrica/fisiología , Contracción Muscular/fisiología
10.
Physiol Rep ; 12(9): e16039, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740563

RESUMEN

Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.


Asunto(s)
Estimulación de la Médula Espinal , Muslo , Humanos , Masculino , Estimulación de la Médula Espinal/métodos , Adulto , Muslo/fisiología , Muslo/inervación , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Contracción Muscular/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Adulto Joven , Reflejo H/fisiología , Nervio Femoral/fisiología , Inhibición Neural/fisiología , Músculo Cuádriceps/fisiología , Músculo Cuádriceps/inervación , Músculos Isquiosurales/fisiología , Electromiografía
12.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690930

RESUMEN

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.


Asunto(s)
Diferenciación Celular , Factor I del Crecimiento Similar a la Insulina , Contracción Muscular , Fibras Musculares Esqueléticas , Fenotipo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Cultivadas , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología
14.
Commun Biol ; 7(1): 604, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769369

RESUMEN

Glycerophosphocholine (GPC) is an important precursor for intracellular choline supply in phosphatidylcholine (PC) metabolism. GDE5/Gpcpd1 hydrolyzes GPC into choline and glycerol 3-phosphate; this study aimed to elucidate its physiological function in vivo. Heterozygous whole-body GDE5-deficient mice reveal a significant GPC accumulation across tissues, while homozygous whole-body knockout results in embryonic lethality. Skeletal muscle-specific GDE5 deletion (Gde5 skKO) exhibits reduced passive force and improved fatigue resistance in electrically stimulated gastrocnemius muscles in vivo. GDE5 deficiency also results in higher glycolytic metabolites and glycogen levels, and glycerophospholipids alteration, including reduced levels of phospholipids that bind polyunsaturated fatty acids (PUFAs), such as DHA. Interestingly, this PC fatty acid compositional change is similar to that observed in skeletal muscles of denervated and Duchenne muscular dystrophy mouse models. These are accompanied by decrease of GDE5 expression, suggesting a regulatory role of GDE5 activity for glycerophospholipid profiles. Furthermore, a DHA-rich diet enhances contractile force and lowers fatigue resistance, suggesting a functional relationship between PC fatty acid composition and muscle function. Finally, skinned fiber experiments show that GDE5 loss increases the probability of the ryanodine receptor opening and lowers the maximum Ca2+-activated force. Collectively, GDE5 activity plays roles in PC and glucose/glycogen metabolism in skeletal muscle.


Asunto(s)
Ratones Noqueados , Contracción Muscular , Músculo Esquelético , Fosfatidilcolinas , Animales , Músculo Esquelético/metabolismo , Ratones , Fosfatidilcolinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Hidrolasas Diéster Fosfóricas
15.
Sci Robot ; 9(90): eado9987, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776376

RESUMEN

Improving the performance of closed-loop optogenetic nerve stimulation can reproduce desired muscle activation patterns.


Asunto(s)
Músculo Esquelético , Optogenética , Humanos , Músculo Esquelético/fisiología , Parálisis , Animales , Estimulación Eléctrica , Luz , Contracción Muscular/fisiología , Robótica/instrumentación , Diseño de Equipo
16.
Sci Robot ; 9(90): eadi8995, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776378

RESUMEN

Closed-loop neuroprostheses show promise in restoring motion in individuals with neurological conditions. However, conventional activation strategies based on functional electrical stimulation (FES) fail to accurately modulate muscle force and exhibit rapid fatigue because of their unphysiological recruitment mechanism. Here, we present a closed-loop control framework that leverages physiological force modulation under functional optogenetic stimulation (FOS) to enable high-fidelity muscle control for extended periods of time (>60 minutes) in vivo. We first uncovered the force modulation characteristic of FOS, showing more physiological recruitment and significantly higher modulation ranges (>320%) compared with FES. Second, we developed a neuromuscular model that accurately describes the highly nonlinear dynamics of optogenetically stimulated muscle. Third, on the basis of the optogenetic model, we demonstrated real-time control of muscle force with improved performance and fatigue resistance compared with FES. This work lays the foundation for fatigue-resistant neuroprostheses and optogenetically controlled biohybrid robots with high-fidelity force modulation.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Optogenética , Optogenética/métodos , Optogenética/instrumentación , Animales , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Humanos , Estimulación Eléctrica/instrumentación , Contracción Muscular/fisiología , Robótica/instrumentación , Masculino , Diseño de Equipo , Prótesis Neurales , Dinámicas no Lineales
17.
J Smooth Muscle Res ; 60: 10-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38777767

RESUMEN

Functional bowel disorders (FBD) have a major potential to degrade the standards of public life. Juniperus oxycedrus L. (J. oxycedrus) (Cupressaceae) has been described as a plant used in traditional medicine as an antidiarrheal medication. The present study is the first to obtain information on the antispasmodic and antidiarrheic effects of J. oxycedrus aqueous extract through in vitro and in vivo studies. An aqueous extract of J. oxycedrus (AEJO) was extracted by decoctioning air-dried aerial sections of the plant. Antispasmodic activity was tested in an isolated jejunum segment of rats exposed to cumulative doses of drogue extract. The antidiarrheic activity was tested using diarrhea caused by castor oil, a transit study of the small intestine, and castor oil-induced enteropooling assays in mice. In the jejunum of rats, the AEJO (0.1, 0.3 and 1 mg/ml) diminished the maximum tone induced by low K+ (25 mM), while it exhibited a weak inhibitory effect on high K+ (75 mM) with an IC50=0.49 ± 0.01 mg/ml and IC50=2.65 ± 0.16 mg/ml, respectively. In the contractions induced by CCh (10-6 M), AEJO diminished the maximum tone, similar to that induced by low K+ (25 mM). with an IC50=0.45 ± 0.02 mg/ml. The inhibitory effect of AEJO on low K+ induced contractions was significantly diminished in the presence of glibenclamide (GB) (0.3 µM) and 4-aminopyrimidine (4-AP) (100 µM), with IC50 values of 1.84 ± 0.09 mg/ml. and 1.63 ± 0.16 mg/ml, respectively). The demonstrated inhibitory effect was similar to that produced by a non-competitive antagonist acting on cholinergic receptors and calcium channels. In castor oil-induced diarrhea in mice, AEJO (100, 200, and 400 mg/kg) caused an extension of the latency time, a reduced defecation frequency, and a decrease in the amount of wet feces compared to the untreated group (distilled water). Moreover, it showed a significant anti-motility effect and reduced the amount of fluid accumulated in the intestinal lumen at all tested doses. These findings support the conventional use of Juniperus oxycedrus L. as a remedy for gastrointestinal diseases.


Asunto(s)
Antidiarreicos , Aceite de Ricino , Diarrea , Yeyuno , Juniperus , Parasimpatolíticos , Extractos Vegetales , Animales , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Antidiarreicos/farmacología , Parasimpatolíticos/farmacología , Extractos Vegetales/farmacología , Juniperus/química , Ratones , Ratas , Diarrea/tratamiento farmacológico , Diarrea/inducido químicamente , Masculino , Tránsito Gastrointestinal/efectos de los fármacos , Ratas Wistar , Motilidad Gastrointestinal/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Contracción Muscular/efectos de los fármacos
18.
Sci Rep ; 14(1): 11720, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778154

RESUMEN

We studied the inhibitory actions of docosahexaenoic acid (DHA) on the contractions induced by carbachol (CCh), angiotensin II (Ang II), and bradykinin (BK) in guinea pig (GP) gastric fundus smooth muscle (GFSM), particularly focusing on the possible inhibition of store-operated Ca2+ channels (SOCCs). DHA significantly suppressed the contractions induced by CCh, Ang II, and BK; the inhibition of BK-induced contractions was the strongest. Although all contractions were greatly dependent on external Ca2+, more than 80% of BK-induced contractions remained even in the presence of verapamil, a voltage-dependent Ca2+ channel inhibitor. BK-induced contractions in the presence of verapamil were not suppressed by LOE-908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) but were suppressed by SKF-96365 (an SOCC and ROCC inhibitor). BK-induced contractions in the presence of verapamil plus LOE-908 were strongly inhibited by DHA. Furthermore, DHA inhibited GFSM contractions induced by cyclopiazonic acid (CPA) in the presence of verapamil plus LOE-908 and inhibited the intracellular Ca2+ increase due to Ca2+ addition in CPA-treated 293T cells. These findings indicate that Ca2+ influx through SOCCs plays a crucial role in BK-induced contraction in GP GFSM and that this inhibition by DHA is a new mechanism by which this fatty acid inhibits GFSM contractions.


Asunto(s)
Angiotensina II , Bradiquinina , Carbacol , Ácidos Docosahexaenoicos , Fundus Gástrico , Contracción Muscular , Músculo Liso , Animales , Cobayas , Ácidos Docosahexaenoicos/farmacología , Bradiquinina/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Carbacol/farmacología , Contracción Muscular/efectos de los fármacos , Angiotensina II/farmacología , Fundus Gástrico/efectos de los fármacos , Fundus Gástrico/fisiología , Fundus Gástrico/metabolismo , Verapamilo/farmacología , Calcio/metabolismo , Masculino , Humanos , Canales de Calcio/metabolismo , Células HEK293 , Bloqueadores de los Canales de Calcio/farmacología , Imidazoles/farmacología
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732106

RESUMEN

Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1ß, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ejercicio Físico , Fibras Musculares Esqueléticas , Entrenamiento de Fuerza , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Masculino , Ejercicio Físico/fisiología , Persona de Mediana Edad , Femenino , Fibras Musculares Esqueléticas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/sangre , Citocinas/metabolismo , Citocinas/sangre , Interleucina-8/metabolismo , Interleucina-8/sangre , Interleucina-10/metabolismo , Interleucina-10/sangre , Anciano , Interleucina-15/metabolismo , Interleucina-15/sangre , Terapia por Ejercicio/métodos , Contracción Muscular , Músculo Esquelético/metabolismo , Mioquinas
20.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732143

RESUMEN

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Asunto(s)
Modelos Animales de Enfermedad , Tratamiento con Ondas de Choque Extracorpóreas , Contracción Muscular , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Femenino , Ratas , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Vejiga Urinaria/fisiopatología , Vejiga Urinaria/metabolismo , Vejiga Urinaria Hiperactiva/terapia , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/fisiopatología , Vejiga Urinaria Hiperactiva/etiología , Ovariectomía , Ratas Sprague-Dawley , Ovario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA