Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.111
Filtrar
8.
Sex Health ; 212024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743840

RESUMEN

Background To investigate the differences in pelvic floor muscle (PFM) electromyography (EMG) parameters between women with or without sexual dysfunction (FSD) and their correlations. Methods Women who voluntarily participated in a questionnaire-based survey on sexual function and underwent PFM EMG in Weifang People's Hospital during the period from March 2021 to December 2021 were retrospectively enrolled. The female sexual (dys)function was measured using the Female Sexual Function Index. Glazer PFM EMG was performed using a Melander instrument (MLD A2 Deluxe). The differences in PFM EMG parameters between women with or without FSD were compared, and the relationships between PFM EMG parameters and FSD were analysed using multiple linear regression models. Results A total of 305 women were enrolled, with 163 in the FSD group and 142 in the non-FSD group. Comparisons of PFM EMG parameters between these two groups revealed that the FSD group had significantly higher peak EMG amplitude during the phasic (flick) contractions and shorter recovery latency during the tonic contractions than the non-FSD group (both P P Conclusions The results of the pelvic floor EMG in this study suggest that the pelvic floor muscles of women with FSD may be more susceptible to fatigue, and may have poorer coordination of their pelvic floor muscles.


Asunto(s)
Electromiografía , Diafragma Pélvico , Disfunciones Sexuales Fisiológicas , Humanos , Femenino , Diafragma Pélvico/fisiopatología , Adulto , Disfunciones Sexuales Fisiológicas/fisiopatología , Estudios Retrospectivos , Persona de Mediana Edad , Contracción Muscular/fisiología , Encuestas y Cuestionarios
9.
Physiol Rep ; 12(9): e16039, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740563

RESUMEN

Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.


Asunto(s)
Estimulación de la Médula Espinal , Muslo , Humanos , Masculino , Estimulación de la Médula Espinal/métodos , Adulto , Muslo/fisiología , Muslo/inervación , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Contracción Muscular/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Adulto Joven , Reflejo H/fisiología , Nervio Femoral/fisiología , Inhibición Neural/fisiología , Músculo Cuádriceps/fisiología , Músculo Cuádriceps/inervación , Músculos Isquiosurales/fisiología , Electromiografía
10.
Elife ; 122024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695862

RESUMEN

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones Noqueados , Contracción Muscular , Proteínas del Tejido Nervioso , Sarcómeros , Septinas , Animales , Septinas/metabolismo , Septinas/genética , Sarcómeros/metabolismo , Ratones , Contracción Muscular/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología
12.
J Contemp Dent Pract ; 25(3): 207-212, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690691

RESUMEN

AIM: This longitudinal study aimed to evaluate the electromyographic activity of the masseter and temporal muscles in adult women who underwent buccal fat removal. MATERIALS AND METHODS: The sample consisted of 20 healthy adult women with no temporomandibular dysfunction and normal occlusion, who were assessed before, 30, and 60 days after the surgery. The electromyographic signal of the masseter and temporal muscles was captured through mandibular tasks including rest, protrusion, right and left laterality, and maximum voluntary contraction with and without parafilm. The results obtained were tabulated and the Shapiro-Wilk normality test was performed, which indicated a normal distribution. Statistical analysis was performed using the repeated measures test (p < 0.05). RESULTS: Significant differences were observed between time periods in maximum voluntary contraction for the left masseter muscle (p = 0.006) and in maximum voluntary contraction with parafilm for the right temporal (p = 0.03) and left temporal (p = 0.03) muscles. CONCLUSION: Bichectomy surgery did not modify the electromyographic activity of the masseter and temporal muscles during the rest task but may have influenced variations in the electromyographic signal during different mandibular tasks after 60 days of surgery, suggesting compensatory adaptations and functional recovery. CLINICAL SIGNIFICANCE: Understanding the impact of buccal fat removal surgery on the stomatognathic system function provides insights into postoperative functional recovery and potential compensatory adaptations, guiding clinical management and rehabilitation strategies for patients undergoing such procedures. How to cite this article: Cardoso AHDLS, Palinkas M, Bettiol NB, et al. Bichectomy Surgery and EMG Masticatory Muscles Function in Adult Women: A Longitudinal Study. J Contemp Dent Pract 2024;25(3):207-212.


Asunto(s)
Electromiografía , Músculo Masetero , Músculo Temporal , Humanos , Femenino , Estudios Longitudinales , Adulto , Músculo Temporal/fisiología , Músculo Masetero/fisiología , Contracción Muscular/fisiología , Músculos Masticadores/fisiología , Adulto Joven
13.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38676246

RESUMEN

Stuttering, affecting approximately 1% of the global population, is a complex speech disorder significantly impacting individuals' quality of life. Prior studies using electromyography (EMG) to examine orofacial muscle activity in stuttering have presented mixed results, highlighting the variability in neuromuscular responses during stuttering episodes. Fifty-five participants with stuttering and 30 individuals without stuttering, aged between 18 and 40, participated in the study. EMG signals from five facial and cervical muscles were recorded during speech tasks and analyzed for mean amplitude and frequency activity in the 5-15 Hz range to identify significant differences. Upon analysis of the 5-15 Hz frequency range, a higher average amplitude was observed in the zygomaticus major muscle for participants while stuttering (p < 0.05). Additionally, when assessing the overall EMG signal amplitude, a higher average amplitude was observed in samples obtained from disfluencies in participants who did not stutter, particularly in the depressor anguli oris muscle (p < 0.05). Significant differences in muscle activity were observed between the two groups, particularly in the depressor anguli oris and zygomaticus major muscles. These results suggest that the underlying neuromuscular mechanisms of stuttering might involve subtle aspects of timing and coordination in muscle activation. Therefore, these findings may contribute to the field of biosensors by providing valuable perspectives on neuromuscular mechanisms and the relevance of electromyography in stuttering research. Further research in this area has the potential to advance the development of biosensor technology for language-related applications and therapeutic interventions in stuttering.


Asunto(s)
Electromiografía , Músculos Faciales , Habla , Tartamudeo , Humanos , Electromiografía/métodos , Masculino , Adulto , Femenino , Tartamudeo/fisiopatología , Habla/fisiología , Músculos Faciales/fisiología , Músculos Faciales/fisiopatología , Fenómenos Biomecánicos/fisiología , Adulto Joven , Adolescente , Contracción Muscular/fisiología
14.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654149

RESUMEN

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Asunto(s)
Adenosina Trifosfato , Esófago , Canales KATP , Músculo Liso , Receptores Purinérgicos P2Y , Animales , Ratas , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Masculino , Receptores Purinérgicos P2Y/metabolismo , Esófago/efectos de los fármacos , Esófago/fisiología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Canales KATP/metabolismo , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología , Ratas Wistar , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Ratas Sprague-Dawley
15.
J Vis Exp ; (205)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587372

RESUMEN

The lymphatic vasculature, now often referred to as "the third circulation," is located in many vital organ systems. A principal mechanical function of the lymphatic vasculature is to return fluid from extracellular spaces back to the central venous ducts. Lymph transport is mediated by spontaneous rhythmic contractions of lymph vessels (LVs). LV contractions are largely regulated by the cyclic rise and fall of cytosolic, free calcium ([Ca2+]i). This paper presents a method to concurrently calculate changes in absolute concentrations of [Ca2+]i and vessel contractility/rhythmicity in real time in isolated, pressurized LVs. Using isolated rat mesenteric LVs, we studied changes in [Ca2+]i and contractility/rhythmicity in response to drug addition. Isolated LVs were loaded with the ratiometric Ca2+-sensing indicator Fura-2AM, and video microscopy coupled with edge-detection software was used to capture [Ca2+]i and diameter measurements continuously in real time. The Fura-2AM signal from each LV was calibrated to the minimum and maximum signal for each vessel and used to calculate absolute [Ca2+]i. Diameter measurements were used to calculate contractile parameters (amplitude, end diastolic diameter, end systolic diameter, calculated flow) and rhythmicity (frequency, contraction time, relaxation time) and correlated with absolute [Ca2+]i measurements.


Asunto(s)
Calcio , Vasos Linfáticos , Ratas , Animales , Vasos Linfáticos/fisiología , Linfa , Contracción Muscular/fisiología
16.
Exp Gerontol ; 190: 112430, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608793

RESUMEN

PURPOSE: We investigated the effect of an unsupervised, body mass- home-based resistance training program in older adults performed at either a fast or slow contractile speed on changes to muscle-power, -volume, -architecture, and fatigue resistance of the knee extensors. METHODS: Thirty-two male older adults (age 65-88 years) were separated into 1) fast-speed exercise (Fast-group), 2) slow-speed exercise (Slow-group), and 3) no exercise (Control-group) groups. Participants in the exercise groups performed 30-45 repetitions of knee-extension and sit-to-stand exercises 3 times a week for 8 weeks with different exercise speed between the groups. Before and after the intervention period, the following variables were measured: Isotonic power, isometric strength, twitch contractile properties, muscle-activity, -architecture, and -quality, neuromuscular fatigue resistance of the knee extensors, and thigh muscle volume. RESULTS: Peak power was increased in both the Fast-group (+24 %, P < 0.01, d = 0.65) and Slow-group (+12 %, P < 0.05, d = 0.33) but not in the Control-group. Training increased pennation angle of the vastus lateralis in both the Fast-group (+8 %, P < 0.01, d = 0.42) and Slow-group (+8 %, P < 0.01, d = 0.42), while only the Fast-group showed increase in pennation angle of the rectus femoris (+12 %, P < 0.01, d = 0.64) and thigh muscle volume (+16 %, P < 0.01, d = 0.52). There was no time × group interaction effect for the other neuromuscular measures. CONCLUSIONS: Unsupervised, body mass- and home-based resistance training performed at either fast or slow speeds can improve muscle power in older adults, while fast-speed exercise may be preferable over slow-speed owing to the relatively greater improvement of muscle-power, -volume, -architecture, and better time efficiency.


Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Anciano , Masculino , Fuerza Muscular/fisiología , Anciano de 80 o más Años , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Rodilla/fisiología , Contracción Muscular/fisiología
17.
Methods Mol Biol ; 2757: 315-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668975

RESUMEN

Unlike in the Cnidaria, where muscle cells are coupled together into an epithelium, ctenophore muscles are single, elongated, intramesogleal structures resembling vertebrate smooth muscle. Under voltage-clamp, these fibers can be separated into different classes with different sets of membrane ion channels. The ion channel makeup is related to the muscle's anatomical position and specific function. For example, Beroe ovata radial fibers, which are responsible for maintaining the rigidity of the body wall, generate sequences of brief action potentials whereas longitudinal fibers, which are concerned with mouth opening and body flexions, often produce single longer duration action potentials.Beroe muscle contractions depend on the influx of Ca2+. During an action potential the inward current is carried by Ca2+, and the increase in intracellular Ca2+ concentration generated can be monitored in FLUO-3-loaded cells. Confocal microscopy in line scan mode shows that the Ca2+ spreads from the outer membrane into the core of the fiber and is cleared from there relatively slowly. The rise in intracellular Ca2+ is linked to an increase in a Ca2+-activated K+ conductance (KCa), which can also be elicited by iontophoretic Ca2+ injection. Near the cell membrane, Ca2+ clearance monitored using FLUO3, matches the decline in the KCa conductance. For light loads, Ca2+ is cleared rapidly, but this fast system is insufficient when Ca2+ influx is maintained. Action potential frequency may be regulated by the slowly developing KCa conductance.


Asunto(s)
Calcio , Ctenóforos , Músculo Liso , Animales , Músculo Liso/fisiología , Músculo Liso/metabolismo , Calcio/metabolismo , Ctenóforos/fisiología , Técnicas de Placa-Clamp/métodos , Potenciales de Acción/fisiología , Contracción Muscular/fisiología , Fenómenos Electrofisiológicos , Electrofisiología/métodos , Microscopía Confocal
18.
BMC Geriatr ; 24(1): 308, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565979

RESUMEN

BACKGROUND: The postural control and abdominal muscles' automatic activity were found to be impaired in subjects with low back pain (LBP) during static activities. However, the studies are predominantly conducted on younger adults and a limited number of studies have evaluated abdominal muscles' automatic activity during dynamic standing activities in subjects with LBP. The present study investigated the automatic activity of abdominal muscles during stable and unstable standing postural tasks in older adults with and without LBP. METHODS: Twenty subjects with and 20 subjects without LBP were included. The thickness of the transversus abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles was measured during rest (in supine), static, and dynamic standing postural tasks. To estimate automatic muscle activity, each muscle's thickness during a standing task was normalized to its thickness during the rest. Standing postural tasks were performed using the Biodex Balance System. RESULTS: The mixed-model analysis of variance revealed that task dynamicity significantly affected thickness change only in the TrA muscle (P = 0.02), but the main effect for the group and the interaction were not significantly different (P > 0.05). There were no significant main effects of the group, task dynamicity, or their interaction for the IO and EO muscles (P > 0.05). During dynamic standing, only the TrA muscle in the control group showed greater thickness changes than during the static standing task (P < 0.05). CONCLUSIONS: Standing on a dynamic level increased the automatic activity of the TrA muscle in participants without LBP compared to standing on a static level. Further research is required to investigate the effects of TrA muscle training during standing on dynamic surfaces for the treatment of older adults with LBP.


Asunto(s)
Dolor de la Región Lumbar , Humanos , Anciano , Dolor de la Región Lumbar/diagnóstico , Estudios Transversales , Contracción Muscular/fisiología , Músculos Abdominales/diagnóstico por imagen , Músculos Abdominales/fisiología , Posición de Pie , Ultrasonografía
19.
PLoS One ; 19(4): e0302474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669272

RESUMEN

Evaluation of muscle strength imbalance can be an important element in optimizing the training process of soccer players. The purpose of the study was to examine isokinetic peak torque (PT) and total work (TW) exerted by both knee extensors (quadriceps or Q) and flexors (hamstrings or H), intra-limb imbalance and the magnitude and direction of inter-limb asymmetry in top elite senior (n = 109) and junior (n = 74) soccer players. An isokinetic dynamometry was used to measure maximum peak torque of quadriceps (PT-Q) and hamstrings (PT-H) at an angular velocity of 60° ·s-1, as well as the total work for extensors (TW-Q) and flexors (TW-H) at an angular velocity of 240° ·s-1 in the dominant (DL) and non-dominant leg (NDL) during concentric muscle contraction. Intra-limb imbalance and inter-limb asymmetries were calculated using a standard equation. Statistical analysis using t-test and Mann-Whitney U-test revealed: (a) no differences (p > 0.05) between groups for PT-Q and PT-H, (b) greater strength levels (p < 0.05) for TW-Q and TW-H of senior players than juniors, and (c) no differences (p > 0.05) between groups for intra-limb imbalance and inter-limb asymmetry. Additionally, Pearson's chi-kwadrat (χ2) analysis showed no differences (p > 0.05) between groups for intra-limb imbalance and inter-limb asymmetry in relation to the 'normative' values accepted in the literature that indicate an increase in the risk of knee injury. This study shows that isokinetic assessment can be an important tool to identify imbalances/asymmetries and to develop strategies to reduce the risk of muscle injury.


Asunto(s)
Fuerza Muscular , Fútbol , Torque , Fútbol/fisiología , Humanos , Fuerza Muscular/fisiología , Masculino , Adulto Joven , Adolescente , Adulto , Contracción Muscular/fisiología , Atletas , Músculo Cuádriceps/fisiología , Músculo Esquelético/fisiología , Músculos Isquiosurales/fisiología , Dinamómetro de Fuerza Muscular
20.
Exp Gerontol ; 190: 112423, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608790

RESUMEN

Aging is associated with impaired strength and power during isometric and shortening contractions, however, during lengthening (i.e., eccentric) contractions, strength is maintained. During daily movements, muscles undergo stretch-shortening cycles (SSCs). It is unclear whether the age-related maintenance of eccentric strength offsets age-related impairments in power generation during SSCs owing to the utilization of elastic energy or other cross-bridge based mechanisms. Here we investigated how aging influences SSC performance at the single muscle fibre level and whether performing active lengthening prior to shortening protects against age-related impairments in power generation. Single muscle fibres from the psoas major of young (∼8 months; n = 31 fibres) and old (∼32 months; n = 41 fibres) male F344BN rats were dissected and chemically permeabilized. Fibres were mounted between a force transducer and length controller and maximally activated (pCa 4.5). For SSCs, fibres were lengthened from average sarcomere lengths of 2.5 to 3.0 µm and immediately shortened back to 2.5 µm at both fast and slow (0.15 and 0.60 Lo/s) lengthening and shortening speeds. The magnitude of the SSC effect was calculated by comparing work and power during shortening to an active shortening contraction not preceded by active lengthening. Absolute isometric force was ∼37 % lower in old compared to young rat single muscle fibres, however, when normalized to cross-sectional area (CSA), there was no longer a significant difference in isometric force between age groups, meanwhile there was an ∼50 % reduction in absolute power in old as compared with young. We demonstrated that SSCs significantly increased power production (75-110 %) in both young and old fibres when shortening occurred at a fast speed and provided protection against power-loss with aging. Therefore, in older adults during everyday movements, power is likely 'protected' in part due to the stretch-shortening cycle as compared with isolated shortening contractions.


Asunto(s)
Envejecimiento , Fibras Musculares Esqueléticas , Ratas Endogámicas F344 , Animales , Masculino , Envejecimiento/fisiología , Fibras Musculares Esqueléticas/fisiología , Ratas , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Contracción Isométrica/fisiología , Sarcómeros/fisiología , Ratas Endogámicas BN , Músculos Psoas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA