Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 943
Filtrar
1.
Nanotechnology ; 35(49)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39284320

RESUMEN

Neuronanomedicine is an emerging field bridging the gap between neuromedicine and novel nanotherapeutics. Despite promise, clinical translation of neuronanomedicine remains elusive, possibly due to a dearth of information regarding the effect of the protein corona on these neuronanomedicines. The protein corona, a layer of proteins adsorbed to nanoparticles following exposure to biological fluids, ultimately determines the fate of nanoparticles in biological systems, dictating nanoparticle-cell interactions. To date, few studies have investigated the effect of the protein corona on interactions with brain-derived cells, an important consideration for the development of neuronanomedicines. Here, two polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG), were used to obtain serum-derived protein coronas. Protein corona characterization and liquid chromatography mass spectrometry analysis revealed distinct differences in biophysical properties and protein composition. PLGA protein coronas contained high abundance of globins (60%) and apolipoproteins (21%), while PLGA-PEG protein coronas contained fewer globins (42%) and high abundance of protease inhibitors (28%). Corona coated PLGA nanoparticles were readily internalized into microglia and neuronal cells, but not into astrocytes. Internalization of nanoparticles was associated with pro-inflammatory cytokine release and decreased neuronal cell viability, however, viability was rescued in cells treated with corona coated nanoparticles. These results showcase the importance of the protein corona in mediating nanoparticle-cell interactions.


Asunto(s)
Encéfalo , Nanopartículas , Polietilenglicoles , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Corona de Proteínas , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Nanopartículas/química , Polietilenglicoles/química , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Encéfalo/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Ácido Láctico/química , Ácido Láctico/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Ácido Poliglicólico/química
2.
ACS Appl Mater Interfaces ; 16(37): 49913-49925, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39240782

RESUMEN

Renal-specific nanoparticulate drug delivery systems have shown great potential in reducing systemic side effects and improving the safety and efficacy of treatments for renal diseases. Here, stearic acid-grafted chitosan oligosaccharide (COS-SA) was synthesized as a renal-targeted carrier due to the high affinity of the 2-glucosamine moiety on COS to the megalin receptor expressed on renal proximal tubular epithelial cells. Specifically, COS-SA/CLT micelles were prepared by encapsulating celastrol (CLT) with COS-SA, and different proportions of human serum albumin (HSA) were then adsorbed onto its surface to explore the interaction between the protein corona and cationic polymeric micelles. Our results showed that a multilayered protein corona, consisting of an inner "hard" corona and an outer "soft" corona, was formed on the surface of COS-SA/CLT@HSA8, which was beneficial in preventing its recognition and phagocytosis by macrophages. The formation of HSA protein corona on COS-SA/CLT micelles also increased its accumulation in the renal tubules. Furthermore, the electropositivity of COS-SA/CLT micelles affected the conformation of adsorbed proteins to various degrees. During the adsorption process, the protein corona on the surface of COS-SA/CLT@HSA1 was partially denatured. Overall, COS-SA/CLT and COS-SA/CLT@HSA micelles demonstrated sufficient safety with renal targeting potential, providing a viable strategy for the management of ischemia/reperfusion-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Quitosano , Micelas , Oligosacáridos , Corona de Proteínas , Daño por Reperfusión , Albúmina Sérica Humana , Quitosano/química , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Animales , Oligosacáridos/química , Oligosacáridos/farmacología , Humanos , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Albúmina Sérica Humana/química , Ratones , Sistemas de Liberación de Medicamentos , Masculino , Portadores de Fármacos/química
3.
Environ Sci Technol ; 58(32): 14158-14168, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088650

RESUMEN

The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.


Asunto(s)
Macrófagos , Polietileno , Corona de Proteínas , Macrófagos/metabolismo , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Animales , Ratones , Nanopartículas/química , Humanos
4.
Nanoscale ; 16(35): 16671-16683, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39171675

RESUMEN

Pollution from micro- and nanoplastics (MNPs) has long been a topic of concern due to its potential impact on human health. MNPs can circulate through human blood and, thus far, have been found in the lungs, spleen, stomach, liver, kidneys and even in the brain, placenta, and breast milk. While data are already available on the adverse biological effects of pristine MNPs (e.g. oxidative stress, inflammation, cytotoxicity, and even cancer induction), no report thus far clarified whether the same effects are modulated by the formation of a protein corona around MNPs. To this end, here we use pristine and human-plasma pre-coated polystyrene (PS) nanoparticles (NPs) and investigate them in cultured breast cancer cells both in terms of internalization and cell biochemical response to the exposure. It is found that pristine NPs tend to stick to the cell membrane and inhibit HER-2-driven signaling pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are associated with cancer cell survival and growth. By contrast, the formation of a protein corona around the same NPs can promote their uptake by endocytic vesicles and final sequestration within lysosomes. Of note is that such intracellular fate of PS-NPs is associated with mitigation of the biochemical alterations of the phosphorylated AKT (pAKT)/AKT and phosphorylated ERK (pERK)/ERK levels. These findings provide the distribution of NPs in human breast cancer cells, may broaden our understanding of the interactions between NPs and breast cancer cells and underscore the crucial role of the protein corona in modulating the impact of MNPs on human health.


Asunto(s)
Neoplasias de la Mama , Poliestirenos , Corona de Proteínas , Humanos , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Poliestirenos/química , Microplásticos/química , Línea Celular Tumoral , Nanopartículas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células MCF-7 , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Int J Biol Macromol ; 278(Pt 2): 134812, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163954

RESUMEN

The molecular mechanism of the formation of protein corona by the interaction of gold nanorods (AuNRs) with fibrinogen and transferrin was studied by spectroscopic methods and molecular docking. Studies have shown that AuNRs can be used as quencher to quench the fluorescence of fibrinogen/transferrin. The quenching mechanism mainly comes from static quenching. Fibrinogen has two different binding sites on the longitudinal and the transverse plane of AuNRs respectively, while transferrin has only one binding site on the surface of AuNRs. The adsorption process conforms to Freundlich adsorption isotherm and the pseudo-second-order reaction. The chemisorption is the rate-limiting step. Fibrinogen/transferrin may be a component of the "hard corona" because they bind AuNRs with high binding affinity. The formation of protein corona leads to a decrease in the hydrophobicity of the microenvironment around transferrin tryptophan (Trp) residues and an increase in the hydrophobicity of the microenvironment around fibrinogen/transferrin tyrosine (Tyr) residues, affecting the tertiary and secondary structure of fibrinogen/transferrin. Molecular docking can clearly see the specific amino acid residues of fibrinogen and transferrin adsorbed on AuNRs, and verify the experimental results.


Asunto(s)
Fibrinógeno , Oro , Simulación del Acoplamiento Molecular , Nanotubos , Unión Proteica , Corona de Proteínas , Transferrina , Oro/química , Transferrina/química , Transferrina/metabolismo , Nanotubos/química , Fibrinógeno/química , Fibrinógeno/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Adsorción , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Humanos
6.
Anal Chem ; 96(36): 14363-14371, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39192740

RESUMEN

Highly abundant proteins present in biological fluids and tissues significantly interfere with low-abundance protein identification by mass spectrometry (MS), limiting proteomic depth and hindering protein biomarker discovery. Herein, to enhance the coverage of tissue proteomics, we developed a nanoparticle-protein corona (NP-PC)-based method for the aging mouse proteome atlas. Based on this method, we investigated the complexity of life process of 5 major organs, including the heart, liver, spleen, lungs, and kidneys, from 4 groups of mice at different ages. Compared with the conventional strategy, NP-PC-based proteomics significantly increased the number of identified protein groups in the heart (from 3007 to 3927; increase of 30.6%), liver (from 2982 to 4610; increase of 54.6%), spleen (from 5047 to 7351; increase of 45.7%), lungs (from 4984 to 6903; increase of 38.5%), and kidneys (from 3550 to 5739; increase of 61.7%), and we identified a total of 10 104 protein groups. The overall data indicated that 3-week-old mice showed more differences compared with the other three age groups. The proteins of amino acid-related metabolism were increased in aged mice compared with those in the 3-week-old mice. Protein-related infections were increased in the spleen of the aged mice. Interestingly, the spliceosome-related pathway significantly changed from youth to elders in the liver, spleen, and lungs, indicating the vital role of the spliceosome during the aging process. Our established aging mouse organ proteome atlas provides comprehensive insights into understanding the aging process, and it may help in prevention and treatment of age-related diseases.


Asunto(s)
Envejecimiento , Nanopartículas , Corona de Proteínas , Proteoma , Proteómica , Animales , Ratones , Envejecimiento/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Nanopartículas/química , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Ratones Endogámicos C57BL , Riñón/metabolismo , Riñón/química , Masculino , Hígado/metabolismo , Hígado/química
7.
ACS Nano ; 18(33): 22572-22585, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39110092

RESUMEN

Two-dimension graphene oxide (GO) nanosheets with high and low serum protein binding profiles (high/low hard-bound protein corona/HChigh/low) are used in this study as model materials and screening tools to investigate the underlying roles of the protein corona on nanomaterial toxicities in vivo. We proposed that the in vivo biocompatibility/nanotoxicity of GO is protein corona-dependent and host immunity-dependent. The hypothesis was tested by injecting HChigh/low GO nanosheets in immunocompetent ICR/CD1 and immunodeficient NOD-scid II2rγnull mice and performed histopathological and hematological evaluation studies on days 1 and 14 post-injection. HClow GO induced more severe acute lung injury compared to HChigh GO in both immunocompetent and immunodeficient mice, with the effect being particularly pronounced in immunocompetent animals. Additionally, HClow GO caused more significant liver injury in both types of mice, with immunodeficient mice being more susceptible to its hepatotoxic effects. Moreover, administration of HClow GO resulted in increased hematological toxicity and elevated levels of serum pro-inflammatory cytokines in immunocompromised and immunocompetent mice, respectively. Correlation studies were conducted to explore the impact of distinct protein corona compositions on resulting toxicities in both immunocompetent and immunodeficient mice. This facilitated the identification of consistent patterns, aligning with those observed in vitro, thus indicating a robust in vitro-in vivo correlation. This research will advance our comprehension of how hard corona proteins interact with immune cells, leading to toxicity, and will facilitate the development of improved immune-modulating nanomaterials for therapeutic purposes.


Asunto(s)
Grafito , Ratones Endogámicos ICR , Nanoestructuras , Corona de Proteínas , Animales , Grafito/química , Grafito/toxicidad , Ratones , Corona de Proteínas/química , Corona de Proteínas/inmunología , Nanoestructuras/química , Nanoestructuras/toxicidad , Ratones SCID , Ratones Endogámicos NOD
8.
Proc Natl Acad Sci U S A ; 121(36): e2409955121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190351

RESUMEN

Facing complex and variable emerging antibiotic pollutants, the traditional development of functional materials is a "trial-and-error" process based on physicochemical principles, where laborious steps and long timescales make it difficult to accelerate technical breakthroughs. Notably, natural biomolecular coronas derived from highly tolerant organisms under significant contamination scenarios can be used in conjunction with nanotechnology to tackling emerging contaminants of concern. Here, super worms (Tubifex tubifex) with high pollutant tolerance were integrated with nano-zero valent iron (nZVI) to effectively reduce the content of 17 antibiotics in wastewater within 7 d. Inspired by the synergistic remediation, nZVI-augmented worms were constructed as biological nanocomposites. Neither nZVI (0.3 to 3 g/L) nor worms (104 to 105 per liter) alone efficiently degraded florfenicol (FF, as a representative antibiotic), while their composite removed 87% of FF (3 µmol/L). Under antibiotic exposure, biomolecules secreted by worms formed a corona on and modified the nZVI particle surface, enabling the nano-bio interface greater functionality, including responsiveness, enrichment, and reduction. Mechanistically, FF exposure activated glucose-alanine cycle pathways that synthesize organic acids and amines as major metabolites, which were assembled into vesicles and secreted, thereby interacting with nZVI in a biologically response design strategy. Lactic acid and urea formed hydrogen bonds with FF, enriched analyte presence at the heterogeneous interface. Succinic and lactic acids corroded the nZVI passivation layer and promoted electron transfer through surface conjugation. This unique strategy highlights biomolecular coronas as a complex resource to augment nano-enabled technologies and will provide shortcuts for rational manipulation of nanomaterial surfaces with coordinated multifunctionalities.


Asunto(s)
Antibacterianos , Hierro , Antibacterianos/química , Antibacterianos/farmacología , Animales , Hierro/química , Hierro/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Oligoquetos/metabolismo , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Nanocompuestos/química
9.
Nano Lett ; 24(32): 9874-9881, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096192

RESUMEN

We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.


Asunto(s)
Nanomedicina , Corona de Proteínas , Proteómica , Corona de Proteínas/química , Corona de Proteínas/análisis , Humanos , Proteómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Flujo de Trabajo
10.
Sci Total Environ ; 951: 175433, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134275

RESUMEN

The interaction and combination of nanoplastics with microorganisms, enzymes, plant proteins, and other substances have garnered considerable attention in current research. This study specifically examined the interaction and biological effects of NPs and proteins. The findings indicated that the presence of externally wrapped proteins alters the original morphology and surface roughness of nanoplastics, leading to the formation of unevenly distributed coronas on the surface. This confirms that nanoplastics can interact with proteins to form protein coronas. The study characterized the adsorption behavior of bacterial proteins on unmodified, amino-modified, and carboxyl-modified nanoplastics using Langmuir and Freundlich isotherm models, showing that the adsorption process of the three nanoplastics on bacterial proteins was mainly controlled by chemisorption. Fluorescence spectroscopy revealed a higher binding affinity of unmodified nanoplastics. Nearly 40 % of the proteins in the protein corona of unmodified NPs are involved in metabolite production and electron transport processes. Nearly 50 % of the proteins in the protein corona of amino-modified NPs are involved in cellular metabolic processes, followed by enzymes that carry out redox reactions. The protein corona of carboxyl-modified NPs has the highest number of proteins involved in metabolic pathways, followed by proteins involved in energy-electron transfer. The formation of protein coronas on NPs with different surface modifications can reduce the toxicity of nanoplastics to bacteria to a certain extent compared to pure nanoplastics, especially amino-modified NPs, which show a significant increase in bacterial survival. The formation of protein coronas on NPs leads to varying degrees of decrease in bacterial ROS and MDA generation, with amino-modified NPs showing the most reduction; SOD and CAT exhibit varying degrees of increase and decrease. These findings not only advance our understanding of the biological impacts of NPs but also provide a basis for future in-depth investigations into the pathways of NP contamination in real environments.


Asunto(s)
Proteínas Bacterianas , Corona de Proteínas , Corona de Proteínas/química , Proteínas Bacterianas/metabolismo , Nanopartículas/toxicidad , Nanopartículas/química , Adsorción , Plásticos
11.
Cell Mol Life Sci ; 81(1): 376, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212707

RESUMEN

In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.


Asunto(s)
Autofagia , Células Endoteliales de la Vena Umbilical Humana , Inmunoglobulinas Intravenosas , Receptores de IgG , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Autofagia/efectos de los fármacos , Receptores de IgG/metabolismo , Tamaño de la Partícula , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Apoptosis/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Supervivencia Celular/efectos de los fármacos , Corona de Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
12.
J Control Release ; 374: 1-14, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079657

RESUMEN

Upon intravascular applications, i.e., cancer treatment, nanoparticles (NPs) are required to deliver through blood circulation, sustain serum protein interactions, before they penetrate the blood vessels and reach targeted sites for payload drug release. For a delivery process as such, it is elusive and difficult to comprehend the morphological change of NP surface and evaluate associated effects on its targeted delivery. Herein, we used silica NPs with different surface modifications to demonstrate the morphological impact of NPs during the application of the NP-blood protein interaction, vascular endothelial cell penetration, subsequent targeted delivery and photodynamic therapy efficacy, and pursue high drug-load NPs with surface designs. Compared to solid and mesoporous NPs, we found the spiky tubular NPs reserved the NPs' antifouling properties (or shedding of "protein corona"), promoted better endothelial penetration and less destruction in vitro and in vivo. Such effects could be attributed to their spiky surface structures, which can limit the NP-protein interaction area and promote the NP-protein steric hindrance. Further in molecular simulations, we determined that the spiky tubular morphological modification on NPs enhanced the interaction free energy and lowered the amino acids number and the subsequent frequency in contacting with VE-cadherin of vascular endothelia. As a result, the spiky tubular NPs demonstrated its advantages in mitigating damages to VE-cadherin stability and endothelial cell integrity. Exploiting such spiky tubular surface modification, we can improve the NP delivery efficiency and prohibit the leakiness of vascular endothelia, helping address challenges faced by tumor migration in nanomedicine applications for cancer therapy.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Nanopartículas , Corona de Proteínas , Dióxido de Silicio , Nanopartículas/química , Humanos , Corona de Proteínas/química , Animales , Dióxido de Silicio/química , Cadherinas/metabolismo , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Antígenos CD/metabolismo
13.
J Proteome Res ; 23(8): 3649-3658, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39007500

RESUMEN

Noninvasive detection of protein biomarkers in plasma is crucial for clinical purposes. Liquid chromatography-mass spectrometry (LC-MS) is the gold standard technique for plasma proteome analysis, but despite recent advances, it remains limited by throughput, cost, and coverage. Here, we introduce a new hybrid method that integrates direct infusion shotgun proteome analysis (DISPA) with nanoparticle (NP) protein corona enrichment for high-throughput and efficient plasma proteomic profiling. We realized over 280 protein identifications in 1.4 min collection time, which enables a potential throughput of approximately 1000 samples daily. The identified proteins are involved in valuable pathways, and 44 of the proteins are FDA-approved biomarkers. The robustness and quantitative accuracy of this method were evaluated across multiple NPs and concentrations with a mean coefficient of variation of 17%. Moreover, different protein corona profiles were observed among various NPs based on their distinct surface modifications, and all NP protein profiles exhibited deeper coverage and better quantification than neat plasma. Our streamlined workflow merges coverage and throughput with precise quantification, leveraging both DISPA and NP protein corona enrichment. This underscores the significant potential of DISPA when paired with NP sample preparation techniques for plasma proteome studies.


Asunto(s)
Proteínas Sanguíneas , Nanopartículas , Corona de Proteínas , Proteoma , Proteómica , Humanos , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/química , Nanopartículas/química , Corona de Proteínas/química , Corona de Proteínas/análisis , Proteoma/análisis , Proteómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Biomarcadores/sangre
14.
J Control Release ; 373: 481-492, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032575

RESUMEN

Lipid nanoparticles (LNPs) have successfully entered the clinic for the delivery of mRNA- and siRNA-based therapeutics, most recently as vaccines for COVID-19. Nevertheless, there is a lack of understanding regarding their in vivo behavior, in particular cell targeting. Part of this LNP tropism is based on the adherence of endogenous protein to the particle surface. This protein forms a so-called corona that can change, amongst other things, the circulation time, biodistribution and cellular uptake of these particles. The formation of this protein corona, in turn, is dependent on the nanoparticle properties (e.g., size, charge, surface chemistry and hydrophobicity) as well as the biological environment from which it is derived. With the potential of gene therapy to target virtually any disease, administration sites other than intravenous route are considered, resulting in tissue specific protein coronas. For neurological diseases, intracranial administration of LNPs results in a cerebral spinal fluid derived protein corona, possibly changing the properties of the lipid nanoparticle compared to intravenous administration. Here, the differences between plasma and CSF derived protein coronas on a clinically relevant LNP formulation were studied in vitro. Protein analysis showed that LNPs incubated in human CSF (C-LNPs) developed a protein corona composition that differed from that of LNPs incubated in plasma (P-LNPs). Lipoproteins as a whole, but in particular apolipoprotein E, represented a higher percentage of the total protein corona on C-LNPs than on P-LNPs. This resulted in improved cellular uptake of C-LNPs compared to P-LNPs, regardless of cell origin. Importantly, the higher LNP uptake did not directly translate into more efficient cargo delivery, underlining that further assessment of such mechanisms is necessary. These findings show that biofluid specific protein coronas alter LNP functionality, suggesting that the site of administration could affect LNP efficacy in vivo and needs to be considered during the development of the formulation.


Asunto(s)
Lípidos , Nanopartículas , Corona de Proteínas , Nanopartículas/química , Humanos , Corona de Proteínas/metabolismo , Lípidos/química , Líquido Cefalorraquídeo/metabolismo , Liposomas
15.
J Am Chem Soc ; 146(29): 19874-19885, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007743

RESUMEN

Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.


Asunto(s)
Aptámeros de Nucleótidos , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas , Aptámeros de Nucleótidos/química , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/sangre , Proteoma/análisis , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Biomarcadores de Tumor/sangre , Nanopartículas de Magnetita/química , Corona de Proteínas/química
16.
ACS Appl Mater Interfaces ; 16(28): 35985-36001, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958411

RESUMEN

Upconversion nanoparticles (UCNPs) are materials that provide unique advantages for biomedical applications. There are constantly emerging customized UCNPs with varying compositions, coatings, and upconversion mechanisms. Cellular uptake is a key parameter for the biological application of UCNPs. Uptake experiments have yielded highly varying results, and correlating trends between cellular uptake with different types of UCNP coatings remains challenging. In this report, the impact of surface polymer coatings on the formation of protein coronas and subsequent cellular uptake of UCNPs by macrophages and cancer cells was investigated. Luminescence confocal microscopy and elemental analysis techniques were used to evaluate the different coatings for internalization within cells. Pathway inhibitors were used to unravel the specific internalization mechanisms of polymer-coated UCNPs. Coatings were chosen as the most promising for colloidal stability, conjugation chemistry, and biomedical applications. PIMA-PEG (poly(isobutylene-alt-maleic) anhydride with polyethylene glycol)-coated UCNPs were found to have low cytotoxicity, low uptake by macrophages (when compared with PEI, poly(ethylenimine)), and sufficient uptake by tumor cells for surface-loaded drug delivery applications. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) studies revealed that PIMA-coated NPs were preferentially internalized by the clathrin- and caveolar-independent pathways, with a preference for clathrin-mediated uptake at longer time points. PMAO-PEG (poly(maleic anhydride-alt-1-octadecene) with polyethylene glycol)-coated UCNPs were internalized by energy-dependent pathways, while PAA- (poly(acrylic acid)) and PEI-coated NPs were internalized by multifactorial mechanisms of internalization. The results indicate that copolymers of PIMA-PEG coatings on UCNPs were well suited for the next-generation of biomedical applications.


Asunto(s)
Nanopartículas , Corona de Proteínas , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Humanos , Nanopartículas/química , Ratones , Animales , Células RAW 264.7 , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Polietilenglicoles/química , Polímeros/química , Propiedades de Superficie , Anhídridos Maleicos/química , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología
17.
Artículo en Inglés | MEDLINE | ID: mdl-39004508

RESUMEN

Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Asunto(s)
Nanomedicina , Corona de Proteínas , Corona de Proteínas/química , Humanos , Animales , Sistemas de Liberación de Medicamentos
18.
Nano Lett ; 24(30): 9202-9211, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037031

RESUMEN

The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.


Asunto(s)
Proteínas Sanguíneas , Nanopartículas , Adsorción , Nanopartículas/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/análisis , Humanos , Corona de Proteínas/química , Fluorescencia , Cinética
19.
Biomaterials ; 311: 122704, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39018697

RESUMEN

The formation of protein corona (PC) is important for promoting the in vivo delivery of nanoparticles (NPs). However, PC formed in the physiological environment of oral delivery is poorly understood. Here, we engineered seven types of trimethyl chitosan-cysteine (TC) NPs, with distinct molecular weights, quaternization degrees, and thiolation degrees, to deeply investigate the influence of various PC formed in the physiological environment of oral delivery on in vivo gene delivery of polymeric NPs, further constructing the relationship between the surface characteristics of NPs and the efficacy of oral gene delivery. Our findings reveal that TC7 NPs, with high molecular weight, moderate quaternization, and high sulfhydryl content, modulate PC formation in the gastrointestinal tract, thereby reducing particle size and promoting oral delivery of gene loaded TC7 NPs. Orally delivered TC7 NPs target macrophages by in situ adsorption of apolipoprotein (Apo) B48 in intestinal tissue, leading to the improved in vivo antihepatoma efficacy via the natural tumor homing ability of macrophages. Our results suggest that efficient oral delivery of genes can be achieved through an in situ customized ApoB48-enriched PC, offering a promising modality in treating macrophage-related diseases.


Asunto(s)
Quitosano , Técnicas de Transferencia de Gen , Nanopartículas , Corona de Proteínas , Quitosano/química , Animales , Nanopartículas/química , Administración Oral , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Ratones , Células RAW 264.7 , Humanos , Ratones Endogámicos BALB C , Macrófagos/metabolismo , Tamaño de la Partícula
20.
Food Chem ; 459: 140416, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024877

RESUMEN

Matrix effects limit the application of surface-enhanced Raman scattering (SERS) technology in the field of food safety. This study elucidated it from the perspective of protein corona by employing a model system for melamine SERS detection in milk. Compared with the melamine standard solution, higher detection limits (1 mg/L and 10 mg/L) are observed in milk matrix. The melamine signal exhibits an 80% reduction in whey protein solution, suggesting that protein has a significant impact on SERS signals. The changes in particle size, zeta potential and UV-vis spectra indicate the AuNPs interact with whey protein. Forming protein corona inhibits the melamine-induced AuNPs aggregation, reducing the number of 'hot spot' and the adsorption of melamine on AuNPs (from 0.28 mg/L to 0.07 mg/L), which may be responsible for signal loss. The found matrix effect from protein corona provides new insights for developing strategies about reducing matrix effect in SERS application.


Asunto(s)
Contaminación de Alimentos , Oro , Leche , Corona de Proteínas , Espectrometría Raman , Triazinas , Triazinas/química , Triazinas/análisis , Espectrometría Raman/métodos , Animales , Leche/química , Contaminación de Alimentos/análisis , Corona de Proteínas/química , Corona de Proteínas/análisis , Oro/química , Nanopartículas del Metal/química , Bovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA