Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Nat Commun ; 15(1): 5070, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871729

RESUMEN

In acute ischemic stroke, even when successful recanalization is obtained, downstream microcirculation may still be obstructed by microvascular thrombosis, which is associated with compromised brain reperfusion and cognitive decline. Identifying these microthrombi through non-invasive methods remains challenging. We developed the PHySIOMIC (Polydopamine Hybridized Self-assembled Iron Oxide Mussel Inspired Clusters), a MRI-based contrast agent that unmasks these microthrombi. In a mouse model of thromboembolic ischemic stroke, our findings demonstrate that the PHySIOMIC generate a distinct hypointense signal on T2*-weighted MRI in the presence of microthrombi, that correlates with the lesion areas observed 24 hours post-stroke. Our microfluidic studies reveal the role of fibrinogen in the protein corona for the thrombosis targeting properties. Finally, we observe the biodegradation and biocompatibility of these particles. This work demonstrates that the PHySIOMIC particles offer an innovative and valuable tool for non-invasive in vivo diagnosis and monitoring of microthrombi, using MRI during ischemic stroke.


Asunto(s)
Medios de Contraste , Modelos Animales de Enfermedad , Compuestos Férricos , Indoles , Imagen por Resonancia Magnética , Polímeros , Trombosis , Animales , Polímeros/química , Imagen por Resonancia Magnética/métodos , Indoles/química , Ratones , Medios de Contraste/química , Compuestos Férricos/química , Trombosis/diagnóstico por imagen , Masculino , Accidente Cerebrovascular/diagnóstico por imagen , Humanos , Fibrinógeno/metabolismo , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Ratones Endogámicos C57BL , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología
2.
Nat Commun ; 15(1): 4267, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769317

RESUMEN

The membrane-fusion-based internalization without lysosomal entrapment is advantageous for intracellular delivery over endocytosis. However, protein corona formed on the membrane-fusogenic liposome surface converts its membrane-fusion performance to lysosome-dependent endocytosis, causing poorer delivery efficiency in biological conditions. Herein, we develop an antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Leveraging specific lipid composition at an optimized ratio, such antifouling membrane-fusogenic liposome facilitates fusion capacity even in protein-rich conditions, attributed to the copious zwitterionic phosphorylcholine groups for protein-adsorption resistance. Consequently, the antifouling membrane-fusogenic liposome demonstrates robust membrane-fusion-mediated delivery in the medium with up to 38% fetal bovine serum, outclassing two traditional membrane-fusogenic liposomes effective at 4% and 6% concentrations. When injected into mice, antifouling membrane-fusogenic liposomes can keep their membrane-fusion-transportation behaviors, thereby achieving efficient luciferase transfection and enhancing gene-editing-mediated viral inhibition. This study provides a promising tool for effective intracellular delivery under complex physiological environments, enlightening future nanomedicine design.


Asunto(s)
Liposomas , Fusión de Membrana , Liposomas/metabolismo , Animales , Ratones , Humanos , Endocitosis , Transfección , Edición Génica/métodos , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Incrustaciones Biológicas/prevención & control , Femenino , Lípidos/química
3.
Talanta ; 275: 126172, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692050

RESUMEN

Nanoparticles (NPs) could be uptake orally and exposed to digestive tract through various sources such as particulate pollutant, nanomedicine and food additive. Inflammatory bowel disease (IBD), as a global disease, induced disruption of the intestinal mucosal barrier and thus altered in vivo distribution of NPs as a possible consequence. However, related information was relatively scarce. Herein, in vivo distribution of typical silica (SiO2) and titania (TiO2) NPs was investigated in healthy and IBD models at cell and animal levels via a surface-enhanced Raman scattering (SERS) tag labeling technique. The labeled NPs were composed of gold SERS tag core and SiO2 (or TiO2) shell, demonstrating sensitive and characteristic SERS signals ideal to trace the NPs in vivo. Cell SERS mapping revealed that protein corona from IBD intestinal fluid decreased uptake of NPs by lipopolysaccharide-induced RAW264.7 cells compared with normal intestinal fluid protein corona. SERS signal detection combined with inductively coupled plasma mass spectrometry (ICP-MS) analysis of mouse tissues (heart, liver, spleen, lung and kidney) indicated that both NPs tended to accumulate in lung specifically after oral administration for IBD mouse (6 out of 20 mice for SiO2 and 4 out of 16 mice for TiO2 were detected in lung). Comparatively, no NP signals were detected in all tissues from healthy mice. These findings suggested that there might be a greater risk associated with the oral uptake of NPs in IBD patients due to altered in vivo distribution of NPs.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Dióxido de Silicio , Espectrometría Raman , Titanio , Animales , Espectrometría Raman/métodos , Ratones , Titanio/química , Dióxido de Silicio/química , Células RAW 264.7 , Enfermedades Inflamatorias del Intestino/metabolismo , Administración Oral , Nanopartículas/química , Distribución Tisular , Nanopartículas del Metal/química , Oro/química , Masculino , Corona de Proteínas/química , Corona de Proteínas/análisis , Corona de Proteínas/metabolismo
4.
ACS Appl Mater Interfaces ; 16(20): 25977-25993, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38741563

RESUMEN

Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.


Asunto(s)
Tamaño de la Partícula , Poliestirenos , Saliva , Proteínas y Péptidos Salivales , Propiedades de Superficie , Humanos , Saliva/química , Saliva/metabolismo , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo , Poliestirenos/química , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Nanopartículas/química , Microplásticos/química
5.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1448-1468, 2024 May 25.
Artículo en Chino | MEDLINE | ID: mdl-38783808

RESUMEN

Nanoparticles, as a novel material, have a wide range of applications in the food and biomedical fields. Nanoparticles spontaneously adsorb proteins in the biological environment, and tens or even hundreds of proteins can form protein corona on the surface of nanoparticles. The formation of protein corona on the surface of nanoparticles is one of the key factors affecting the stability, biocompatibility, targeting, and drug release properties of nanoparticles. The formation mechanism of protein corona is affected by a variety of factors, including the surface chemical properties, sizes, and shapes of nanoparticles and the types, concentrations, and pH of proteins. Studies have shown that the protein structure is associated with protein distribution on the nanoparticle surface, while the protein conformation affects the binding mode and stability of the protein on the nanoparticle surface. Since the mechanism of the formation of protein corona on the surface of nanoparticles is complex, the roles of multiple factors need to be considered comprehensively. Understanding the mechanisms and influencing factors of the formation of protein corona will help us to understand the process of protein corona formation and control the formation of protein corona for specific needs. In this paper, we summarize the recent studies on the mechanisms and influencing factors of the formation of protein corona on the surface of nanoparticles, with a view to providing a theoretical basis for in-depth research on protein corona.


Asunto(s)
Nanopartículas , Corona de Proteínas , Propiedades de Superficie , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Nanopartículas/química , Adsorción , Conformación Proteica , Humanos
6.
Langmuir ; 40(15): 7781-7790, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38572817

RESUMEN

The distinct features of nanoparticles have provided a vast opportunity of developing new diagnosis and therapy strategies for miscellaneous diseases. Although a few nanomedicines are available in the market or in the translation stage, many important issues are still unsolved. When entering the body, nanomaterials will be quickly coated by proteins from their surroundings, forming a corona on their surface, the so-called protein corona. Studies have shown that the protein corona has many important biological implications, particularly at the in vivo level. For example, they can promote the immune system to rapidly clear these outer materials and prevent nanoparticles from playing their designed role in therapy. In this Perspective, the available techniques for characterizing protein-nanoparticle interactions are critically summarized. Effects of nanoparticle properties and environmental factors on protein corona formation, which can further regulate the in vivo fate of nanoparticles, are highlighted and discussed. Moreover, recent progress on the biomedical application of protein corona-engineered nanoparticles is introduced, and future directions for this important yet challenging research area are also briefly discussed.


Asunto(s)
Nanopartículas , Corona de Proteínas , Corona de Proteínas/metabolismo , Nanopartículas/metabolismo , Proteínas/metabolismo , Nanomedicina , Unión Proteica
7.
Int J Pharm ; 657: 124129, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621615

RESUMEN

Cationic liposomes specifically target monocytes in blood, rendering them promising drug-delivery tools for cancer immunotherapy, vaccines, and therapies for monocytic leukaemia. The mechanism behind this monocyte targeting ability is, however, not understood, but may involve plasma proteins adsorbed on the liposomal surfaces. To shed light on this, we investigated the biomolecular corona of three different types of PEGylated cationic liposomes, finding all of them to adsorb hyaluronan-associated proteins and proteoglycans upon incubation in human blood plasma. This prompted us to study the role of the TLR4 co-receptors CD44 and CD14, both involved in signalling and uptake pathways of proteoglycans and glycosaminoglycans. We found that separate inhibition of each of these receptors hampered the monocyte uptake of the liposomes in whole human blood. Based on clues from the biomolecular corona, we have thus identified two receptors involved in the targeting and uptake of cationic liposomes in monocytes, in turn suggesting that certain proteoglycans and glycosaminoglycans may serve as monocyte-targeting opsonins. This mechanistic knowledge may pave the way for rational design of future monocyte-targeting drug-delivery platforms.


Asunto(s)
Cationes , Liposomas , Monocitos , Polietilenglicoles , Humanos , Monocitos/metabolismo , Polietilenglicoles/química , Receptores de Hialuranos/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Corona de Proteínas/metabolismo , Receptor Toll-Like 4/metabolismo , Proteoglicanos , Sistemas de Liberación de Medicamentos
8.
Nanoscale ; 16(19): 9348-9360, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38651870

RESUMEN

Understanding nanoparticle-cell interaction is essential for advancing research in nanomedicine and nanotoxicology. Apart from the transcytotic pathway mediated by cellular recognition and energetics, nanoparticles (including nanomedicines) may harness the paracellular route for their transport by inducing endothelial leakiness at cadherin junctions. This phenomenon, termed as NanoEL, is correlated with the physicochemical properties of the nanoparticles in close association with cellular signalling, membrane mechanics, as well as cytoskeletal remodelling. However, nanoparticles in biological systems are transformed by the ubiquitous protein corona and yet the potential effect of the protein corona on NanoEL remains unclear. Using confocal fluorescence microscopy, biolayer interferometry, transwell, toxicity, and molecular inhibition assays, complemented by molecular docking, here we reveal the minimal to significant effects of the anionic human serum albumin and fibrinogen, the charge neutral immunoglobulin G as well as the cationic lysozyme on negating gold nanoparticle-induced endothelial leakiness in vitro and in vivo. This study suggests that nanoparticle-cadherin interaction and hence the extent of NanoEL may be partially controlled by pre-exposing the nanoparticles to plasma proteins of specific charge and topology to facilitate their biomedical applications.


Asunto(s)
Cadherinas , Fibrinógeno , Oro , Nanopartículas del Metal , Corona de Proteínas , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Humanos , Cadherinas/metabolismo , Cadherinas/química , Oro/química , Nanopartículas del Metal/química , Fibrinógeno/química , Fibrinógeno/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Simulación del Acoplamiento Molecular , Ratones
9.
Biomed Pharmacother ; 175: 116627, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653112

RESUMEN

Nanoparticles (NPs) serve as versatile delivery systems for anticancer, antibacterial, and antioxidant agents. The manipulation of protein-NP interactions within biological systems is crucial to the application of NPs in drug delivery and cancer nanotherapeutics. The protein corona (PC) that forms on the surface of NPs is the interface between biomacromolecules and NPs and significantly influences their pharmacokinetics and pharmacodynamics. Upon encountering proteins, NPs undergo surface alterations that facilitate their clearance from circulation by the mononuclear phagocytic system (MPS). PC behavior depends largely on the biological microenvironment and the physicochemical properties of the NPs. This review describes various strategies employed to engineer PC compositions on NP surfaces. The effects of NP characteristics such as size, shape, surface modification and protein precoating on PC performance were explored. In addition, this study addresses these challenges and guides the future directions of this evolving field.


Asunto(s)
Nanopartículas , Corona de Proteínas , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos , Ingeniería de Proteínas/métodos , Propiedades de Superficie
10.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473711

RESUMEN

Serum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids. Being acceptors of electrons and ligands, ShC NPs are capable of exhibiting both their own biological activity and significantly affecting conformational and phase transformations in protein systems.


Asunto(s)
Grafito , Nanopartículas , Corona de Proteínas , Animales , Bovinos , Albúmina Sérica/metabolismo , Corona de Proteínas/metabolismo , Nanopartículas/metabolismo , Albúmina Sérica Bovina , Carbono , Ácidos Grasos
11.
Int J Pharm ; 654: 123987, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38467206

RESUMEN

It is well known that protein corona affects the "biological identity" of nanoparticles (NPs), which has been seen as both a challenge and an opportunity. Approaches have moved from avoiding protein adsorption to trying to direct it, taking advantage of the formation of a protein corona to favorably modify the pharmacokinetic parameters of NPs. Although promising, the results obtained with engineered NPs still need to be completely understood. While much effort has been put into understanding how the surface of nanomaterials affects protein absorption, less is known about how proteins can affect corona formation due to their specific physicochemical properties. This review addresses this knowledge gap, examining key protein factors influencing corona formation, highlighting current challenges in studying protein-protein interactions, and discussing future perspectives in the field.


Asunto(s)
Nanopartículas , Nanoestructuras , Corona de Proteínas , Corona de Proteínas/metabolismo , Proteínas/química , Nanopartículas/química , Unión Proteica
12.
Curr Opin Biotechnol ; 87: 103101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461749

RESUMEN

Upon administration, nanomedicines adsorb a corona of endogenous biomolecules on their surface, which can affect nanomedicine interactions with cells, targeting, and efficacy. While strategies to reduce protein binding are available, the high selectivity of the adsorbed corona is enabling novel applications, such as for biomarker discovery and rare protein identification. Additionally, the adsorbed molecules can promote interactions with specific cell receptors, thus conferring the nanomedicine new endogenous targeting capabilities. This has been reported for Onpattro, a lipid nanoparticle targeting the hepatocytes via apolipoproteins in its corona. Recently, selective organ-targeting (SORT) nanoparticles have been proposed, which exploit corona-mediated interactions to deliver nanoparticles outside the liver. Strategies for corona seeding and corona engineering are emerging to increase the selectivity of similar endogenous targeting mechanisms.


Asunto(s)
Nanomedicina , Corona de Proteínas , Nanomedicina/métodos , Humanos , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Nanopartículas/química , Animales
13.
Nat Commun ; 15(1): 1159, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326312

RESUMEN

The dynamic protein corona formed on nanocarriers has been revealed to strongly affect their in vivo behaviors. Precisely manipulating the formation of protein corona on nanocarriers may provide an alternative impetus for specific drug delivery. Herein, we explore the role of glycosylated polyhydroxy polymer-modified nanovesicles (CP-LVs) with different amino/hydroxyl ratios in protein corona formation and evolution. CP-LVs with an amino/hydroxyl ratio of approximately 0.4 (CP1-LVs) are found to efficiently suppress immunoglobulin adsorption in blood and livers, resulting in prolonged circulation. Moreover, CP1-LVs adsorb abundant tumor distinctive proteins, such as CD44 and osteopontin in tumor interstitial fluids, mediating selective tumor cell internalization. The proteins corona transformation specific to the environment appears to be affected by the electrostatic interaction between CP-LVs and proteins with diverse isoelectric points. Benefiting from surface modification-mediated protein corona regulation, paclitaxel-loaded CP1-LVs demonstrate superior antitumor efficacy to PEGylated liposomes. Our work offers a perspective on rational surface-design of nanocarriers to modulate the protein corona formation for efficient drug delivery.


Asunto(s)
Nanopartículas , Corona de Proteínas , Polímeros , Corona de Proteínas/metabolismo , Nanopartículas/metabolismo , Sistemas de Liberación de Medicamentos , Osteopontina
14.
ACS Nano ; 18(10): 7455-7472, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38417159

RESUMEN

The epithelial mucosa is a key biological barrier faced by gastrointestinal, intraoral, intranasal, ocular, and vaginal drug delivery. Ligand-modified nanoparticles demonstrate excellent ability on this process, but their efficacy is diminished by the formation of protein coronas (PCs) when they interact with biological matrices. PCs are broadly implicated in affecting the fate of NPs in vivo and in vitro, yet few studies have investigated PCs formed during interactions of NPs with the epithelial mucosa, especially mucus. In this study, we constructed transferrin modified NPs (Tf-NPs) as a model and explored the mechanisms and effects that epithelial mucosa had on PCs formation and the subsequent impact on the transcellular transport of Tf-NPs. In mucus-secreting cells, Tf-NPs adsorbed more proteins from the mucus layers, which masked, displaced, and dampened the active targeting effects of Tf-NPs, thereby weakening endocytosis and transcellular transport efficiencies. In mucus-free cells, Tf-NPs adsorbed more proteins during intracellular trafficking, which enhanced transcytosis related functions. Inspired by soft coronas and artificial biomimetic membranes, we used mucin as an "active PC" to precoat Tf-NPs (M@Tf-NPs), which limited the negative impacts of "passive PCs" formed during interface with the epithelial mucosa and improved favorable routes of endocytosis. M@Tf-NPs adsorbed more proteins associated with endoplasmic reticulum-Golgi functions, prompting enhanced intracellular transport and exocytosis. In summary, mucus shielded against the absorption of Tf-NPs, but also could be employed as a spear to break through the epithelial mucosa barrier. These findings offer a theoretical foundation and design platform to enhance the efficiency of oral-administered nanomedicines.


Asunto(s)
Nanopartículas , Corona de Proteínas , Femenino , Humanos , Enterocitos/metabolismo , Corona de Proteínas/metabolismo , Transcitosis , Moco/metabolismo , Transferrinas/metabolismo , Transferrinas/farmacología , Transferrina/metabolismo
15.
J Agric Food Chem ; 72(9): 4958-4976, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381611

RESUMEN

Previously, we found that whey proteins form biomolecular coronas around titanium dioxide (TiO2) nanoparticles. Here, the gastrointestinal fate of whey protein-coated TiO2 nanoparticles and their interactions with gut microbiota were investigated. The antioxidant activity of protein-coated nanoparticles was enhanced after simulated digestion. The structure of the whey proteins was changed after they adsorbed to the surfaces of the TiO2 nanoparticles, which reduced their hydrolysis under simulated gastrointestinal conditions. The presence of protein coronas also regulated the impact of the TiO2 nanoparticles on colonic fermentation, including promoting the production of short-chain fatty acids. Bare TiO2 nanoparticles significantly increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria, but the presence of protein coronas alleviated this effect. In particular, the proportion of beneficial bacteria, such as Bacteroides and Bifidobacterium, was enhanced for the coated nanoparticles. Our results suggest that the formation of a whey protein corona around TiO2 nanoparticles may have beneficial effects on their behavior within the colon. This study provides valuable new insights into the potential impact of protein coronas on the gastrointestinal fate of inorganic nanoparticles.


Asunto(s)
Nanopartículas , Corona de Proteínas , Proteína de Suero de Leche/metabolismo , Suero Lácteo/metabolismo , Corona de Proteínas/metabolismo , Tracto Gastrointestinal/metabolismo , Nanopartículas/química , Bacterias/metabolismo , Titanio/química
16.
Nat Nanotechnol ; 19(6): 846-855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366223

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stem cells are promising nanotherapeutics in liver diseases due to their regenerative and immunomodulatory properties. Nevertheless, a concern has been raised regarding the rapid clearance of exogenous EVs by phagocytic cells. Here we explore the impact of protein corona on EVs derived from two culturing conditions in which specific proteins acquired from media were simultaneously adsorbed on the EV surface. Additionally, by incubating EVs with serum, simulating protein corona formation upon systemic delivery, further resolved protein corona-EV complex patterns were investigated. Our findings reveal the potential influences of corona composition on EVs under in vitro conditions and their in vivo kinetics. Our data suggest that bound albumin creates an EV signature that can retarget EVs from hepatic macrophages. This results in markedly improved cellular uptake by hepatocytes, liver sinusoidal endothelial cells and hepatic stellate cells. This phenomenon can be applied as a camouflage strategy by precoating EVs with albumin to fabricate the albumin-enriched protein corona-EV complex, enhancing non-phagocytic uptake in the liver. This work addresses a critical challenge facing intravenously administered EVs for liver therapy by tailoring the protein corona-EV complex for liver cell targeting and immune evasion.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Corona de Proteínas , Vesículas Extracelulares/metabolismo , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Humanos , Ratones , Hepatocitos/metabolismo , Hepatocitos/citología , Hígado/metabolismo , Macrófagos/metabolismo , Macrófagos/citología
17.
Part Fibre Toxicol ; 21(1): 4, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311718

RESUMEN

BACKGROUND: Micro- and nanoplastics (MNPs) represent one of the most widespread environmental pollutants of the twenty-first century to which all humans are orally exposed. Upon ingestion, MNPs pass harsh biochemical conditions within the gastrointestinal tract, causing a unique protein corona on the MNP surface. Little is known about the digestion-associated protein corona and its impact on the cellular uptake of MNPs. Here, we systematically studied the influence of gastrointestinal digestion on the cellular uptake of neutral and charged polystyrene MNPs using THP-1-derived macrophages. RESULTS: The protein corona composition was quantified using LC‒MS-MS-based proteomics, and the cellular uptake of MNPs was determined using flow cytometry and confocal microscopy. Gastrointestinal digestion resulted in a distinct protein corona on MNPs that was retained in serum-containing cell culture medium. Digestion increased the uptake of uncharged MNPs below 500 nm by 4.0-6.1-fold but did not affect the uptake of larger sized or charged MNPs. Forty proteins showed a good correlation between protein abundance and MNP uptake, including coagulation factors, apolipoproteins and vitronectin. CONCLUSION: This study provides quantitative data on the presence of gastrointestinal proteins on MNPs and relates this to cellular uptake, underpinning the need to include the protein corona in hazard assessment of MNPs.


Asunto(s)
Microplásticos , Corona de Proteínas , Humanos , Microplásticos/toxicidad , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Poliestirenos/toxicidad , Plásticos , Digestión
18.
Adv Colloid Interface Sci ; 325: 103094, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359673

RESUMEN

Nanoparticles as cancer therapeutic carrier fail in clinical translation due to complex biological environments in vivo consisting of electrolytes and proteins which render nanoparticle aggregation and unable to reach action site. This review identifies the desirable characteristics of nanoparticles and their constituent materials that prevent aggregation from site of administration (oral, lung, injection) to target site. Oral nanoparticles should ideally be 75-100 nm whereas the size of pulmonary nanoparticles minimally affects their aggregation. Nanoparticles generally should carry excess negative surface charges particularly in fasting state and exert steric hindrance through surface decoration with citrate, anionic surfactants and large polymeric chains (polyethylene glycol and polyvinylpyrrolidone) to prevent aggregation. Anionic as well as cationic nanoparticles are both predisposed to protein corona formation as a function of biological protein isoelectric points. Their nanoparticulate surface composition as such should confer hydrophilicity or steric hindrance to evade protein corona formation or its formation should translate into steric hindrance or surface negative charges to prevent further aggregation. Unexpectedly, smaller and cationic nanoparticles are less prone to aggregation at cancer cell interface favoring endocytosis whereas aggregation is essential to enable nanoparticles retention and subsequent cancer cell uptake in tumor microenvironment. Present studies are largely conducted in vitro with simplified simulated biological media. Future aggregation assessment of nanoparticles in biological fluids that mimic that of patients is imperative to address conflicting materials and designs required as a function of body sites in order to realize the future clinical benefits.


Asunto(s)
Nanopartículas , Neoplasias , Corona de Proteínas , Humanos , Corona de Proteínas/metabolismo , Nanopartículas/metabolismo , Polímeros , Polietilenglicoles , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Microambiente Tumoral
19.
Int J Biol Macromol ; 256(Pt 2): 128513, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040159

RESUMEN

Nano drug delivery systems offer several benefits, including enhancing drug solubility, regulating drug release, prolonging drug circulation time, and minimized toxicity and side effects. However, upon entering the bloodstream, nanoparticles (NPs) encounter a complex biological environment and get absorbed by various biological components, primarily proteins, leading to the formation of a 'Protein Corona'. The formation of the protein corona is affected by the characteristics of NPs, the physiological environment, and experimental design, which in turn affects of the immunotoxicity, specific recognition, cell uptake, and drug release of NPs. To improve the abundance of a specific protein on NPs, researchers have explored pre-coating, modifying, or wrapping NPs with the cell membrane to reduce protein adsorption. This paper, we have reviewed studies of the protein corona in recent years, summarized the formation and detection methods of the protein corona, the effect of the protein corona composition on the fate of NPs, and the design of new drug delivery systems based on the optimization of protein corona to provide a reference for further study of the protein corona and a theoretical basis for the clinical transformation of NPs.


Asunto(s)
Nanopartículas , Corona de Proteínas , Corona de Proteínas/metabolismo , Proteínas , Sistemas de Liberación de Medicamentos/métodos , Membrana Celular/metabolismo
20.
Curr Opin Biotechnol ; 85: 103046, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103519

RESUMEN

A major challenge in advancing nanoparticle (NP)-based delivery systems stems from the intricate interactions between NPs and biological systems. These interactions are largely determined by the formation of the NP-protein corona (PC), in which proteins spontaneously adsorb to the surface of NPs. The PC endows the NPs with a new biological identity, capable of altering the interactions of NPs with targeting organs and subsequent biological fate. This review discusses the mechanisms behind PC-mediated effects on tissue distribution of NPs, aiming to provide insights into the role of PC and its potential applications in NP-based drug delivery.


Asunto(s)
Nanopartículas , Corona de Proteínas , Corona de Proteínas/metabolismo , Proteínas/metabolismo , Sistemas de Liberación de Medicamentos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA