Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.272
Filtrar
1.
Eur J Histochem ; 68(2)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38766720

RESUMEN

Previous studies on the granular layer of the cerebellar cortex have revealed a wide distribution of different subpopulations of less-known large neuron types, called "non-traditional large neurons", which are distributed in three different zones of the granular layer. These neuron types are mainly involved in the formation of intrinsiccircuits inside the cerebellar cortex. A subpopulation of these neuron types is represented by the synarmotic neuron, which could play a projective role within the cerebellar circuitry. The synarmotic neuron cell body map within the internal zone of the granular layer or in the subjacent white substance. Furthermore, the axon crosses the granular layer and runs in the subcortical white substance, to reenter in an adjacent granular layer, associating two cortico-cerebellar regions of the same folium or of different folia, or could project to the intrinsic cerebellar nuclei. Therefore, along with the Purkinje neuron, the traditional projective neuron type of the cerebellar cortex, the synarmotic neuron is candidate to represent the second projective neuron type of the cerebellar cortex. Studies of chemical neuroanatomy evidenced a predominant inhibitory GABAergic nature of the synarmotic neuron, suggesting that it may mediate an inhibitory GABAergic output of cerebellar cortex within cortico-cortical interconnections or in projections towards intrinsic cerebellar nuclei. On this basis, the present minireview mainly focuses on the morphofunctional and neurochemical data of the synarmotic neuron, and explores its potential involvement in some forms of cerebellar ataxias.


Asunto(s)
Corteza Cerebelosa , Neuronas , Corteza Cerebelosa/citología , Animales , Humanos , Neuronas/citología , Neuronas/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/citología
2.
Bioessays ; 46(6): e2400008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697917

RESUMEN

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Animales , Plasticidad Neuronal/genética , Humanos , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiología
3.
Neuron ; 112(14): 2333-2348.e6, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38692278

RESUMEN

Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.


Asunto(s)
Interneuronas , Inhibición Neural , Células de Purkinje , Animales , Células de Purkinje/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Ratones , Cerebelo/citología , Cerebelo/fisiología , Ratones Transgénicos , Potenciales de Acción/fisiología , Ratones Endogámicos C57BL , Corteza Cerebelosa/fisiología , Corteza Cerebelosa/citología
4.
Nature ; 613(7944): 543-549, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36418404

RESUMEN

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Asunto(s)
Corteza Cerebelosa , Red Nerviosa , Vías Nerviosas , Neuronas , Animales , Ratones , Corteza Cerebelosa/citología , Corteza Cerebelosa/fisiología , Corteza Cerebelosa/ultraestructura , Redes Neurales de la Computación , Neuronas/citología , Neuronas/fisiología , Neuronas/ultraestructura , Red Nerviosa/citología , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Microscopía Electrónica de Transmisión
5.
Nature ; 598(7879): 214-219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616064

RESUMEN

The cerebellar cortex is a well-studied brain structure with diverse roles in motor learning, coordination, cognition and autonomic regulation. However,  a complete inventory of cerebellar cell types is currently lacking. Here, using recent advances in high-throughput transcriptional profiling1-3, we molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For several types of cerebellar interneuron, the molecular variation within each type was more continuous, rather than discrete. In particular, for the unipolar brush cells-an interneuron population previously subdivided into discrete populations-the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Notably, we found that molecular layer interneurons were composed of two molecularly and functionally distinct types. Both types show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability and electrical coupling. Together, these findings provide a comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological and physiological ontologies for defining brain cell types.


Asunto(s)
Corteza Cerebelosa/citología , Perfilación de la Expresión Génica , Transcriptoma , Adulto , Animales , Atlas como Asunto , Electrofisiología , Femenino , Humanos , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/clasificación , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo
6.
Nat Commun ; 12(1): 5491, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620856

RESUMEN

Many neuron types consist of populations with continuously varying molecular properties. Here, we show a continuum of postsynaptic molecular properties in three types of neurons and assess the functional correlates in cerebellar unipolar brush cells (UBCs). While UBCs are generally thought to form discrete functional subtypes, with mossy fiber (MF) activation increasing firing in ON-UBCs and suppressing firing in OFF-UBCs, recent work also points to a heterogeneity of response profiles. Indeed, we find a continuum of response profiles that reflect the graded and inversely correlated expression of excitatory mGluR1 and inhibitory mGluR2/3 pathways. MFs coactivate mGluR2/3 and mGluR1 in many UBCs, leading to sequential inhibition-excitation because mGluR2/3-currents are faster. Additionally, we show that DAG-kinase controls mGluR1 response duration, and that graded DAG kinase levels correlate with systematic variation of response duration over two orders of magnitude. These results demonstrate that continuous variations in metabotropic signaling can generate a stable cell-autonomous basis for temporal integration and learning over multiple time scales.


Asunto(s)
Corteza Cerebelosa/metabolismo , Fibras Nerviosas/fisiología , Neuronas/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Potenciales de Acción/efectos de los fármacos , Aminoácidos/farmacología , Animales , Corteza Cerebelosa/citología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores , Femenino , Masculino , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp/métodos , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Tiempo , Xantenos/farmacología
7.
PLoS Comput Biol ; 17(6): e1009163, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34181653

RESUMEN

Synchronous oscillations in neural populations are considered being controlled by inhibitory neurons. In the granular layer of the cerebellum, two major types of cells are excitatory granular cells (GCs) and inhibitory Golgi cells (GoCs). GC spatiotemporal dynamics, as the output of the granular layer, is highly regulated by GoCs. However, there are various types of inhibition implemented by GoCs. With inputs from mossy fibers, GCs and GoCs are reciprocally connected to exhibit different network motifs of synaptic connections. From the view of GCs, feedforward inhibition is expressed as the direct input from GoCs excited by mossy fibers, whereas feedback inhibition is from GoCs via GCs themselves. In addition, there are abundant gap junctions between GoCs showing another form of inhibition. It remains unclear how these diverse copies of inhibition regulate neural population oscillation changes. Leveraging a computational model of the granular layer network, we addressed this question to examine the emergence and modulation of network oscillation using different types of inhibition. We show that at the network level, feedback inhibition is crucial to generate neural oscillation. When short-term plasticity was equipped on GoC-GC synapses, oscillations were largely diminished. Robust oscillations can only appear with additional gap junctions. Moreover, there was a substantial level of cross-frequency coupling in oscillation dynamics. Such a coupling was adjusted and strengthened by GoCs through feedback inhibition. Taken together, our results suggest that the cooperation of distinct types of GoC inhibition plays an essential role in regulating synchronous oscillations of the GC population. With GCs as the sole output of the granular network, their oscillation dynamics could potentially enhance the computational capability of downstream neurons.


Asunto(s)
Corteza Cerebelosa/citología , Corteza Cerebelosa/fisiología , Modelos Neurológicos , Animales , Biología Computacional , Sinapsis Eléctricas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica , Humanos , Potenciales Postsinápticos Inhibidores/fisiología , Fibras Nerviosas/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Análisis de la Célula Individual/estadística & datos numéricos , Sinapsis/fisiología
8.
Mol Brain ; 14(1): 63, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789707

RESUMEN

Cerebellar granule cells (GCs) relay mossy fiber (MF) inputs to Purkinje cell dendrites via their axons, the parallel fibers (PFs), which are individually located at a given sublayer of the molecular layer (ML). Although a certain degree of heterogeneity among GCs has been recently reported, variability of GC responses to MF inputs has never been associated with their most notable structural variability, location of their projecting PFs in the ML. Here, we utilize an adeno-associated virus (AAV)-mediated labeling technique that enables us to categorize GCs according to the location of their PFs, and compare the Ca2+ responses to MF stimulations between three groups of GCs, consisting of either GCs having PFs at the deep (D-GCs), middle (M-GCs), or superficial (S-GCs) sublayer. Our structural analysis revealed that there was no correlation between position of GC soma in the GC layer and location of its PF in the ML, confirming that our AAV-mediated labeling was important to test the projection-dependent variability of the Ca2+ responses in GCs. We then found that the Ca2+ responses of D-GCs differed from those of M-GCs. Pharmacological experiments implied that the different Ca2+ responses were mainly attributable to varied distributions of GABAA receptors (GABAARs) at the synaptic and extrasynaptic regions of GC dendrites. In addition to GABAAR distributions, amounts of extrasynaptic NMDA receptors appear to be also varied, because Ca2+ responses were different between D-GCs and M-GCs when glutamate spillover was enhanced. Whereas the Ca2+ responses of S-GCs were mostly equivalent to those of D-GCs and M-GCs, the blockade of GABA uptake resulted in larger Ca2+ responses in S-GCs compared with D-GCs and M-GCs, implying existence of mechanisms leading to more excitability in S-GCs with increased GABA release. Thus, this study reveals MF stimulation-mediated non-uniform Ca2+ responses in the cerebellar GCs associated with the location of their PFs in the ML, and raises a possibility that combination of inherent functional variability of GCs and their specific axonal projection contributes to the information processing through the GCs.


Asunto(s)
Señalización del Calcio/fisiología , Corteza Cerebelosa/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Corteza Cerebelosa/ultraestructura , Dependovirus/genética , Genes Reporteros , Vectores Genéticos , Ratones , Fibras Nerviosas/fisiología , Células de Purkinje/fisiología , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología
9.
Sci Rep ; 11(1): 5331, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674620

RESUMEN

Brains demonstrate varying spatial scales of nested hierarchical clustering. Identifying the brain's neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artificial intelligence, as these define the cognitive blocks capable of building intelligent computation. Experiments support various forms and sizes of neural clustering, from handfuls of dendrites to thousands of neurons, and hint at their behavior. Here, we use computational simulations with a brain-derived fMRI network to show that not only do brain networks remain structurally self-similar across scales but also neuron-like signal integration functionality ("integrate and fire") is preserved at particular clustering scales. As such, we propose a coarse-graining of neuronal networks to ensemble-nodes, with multiple spikes making up its ensemble-spike and time re-scaling factor defining its ensemble-time step. This fractal-like spatiotemporal property, observed in both structure and function, permits strategic choice in bridging across experimental scales for computational modeling while also suggesting regulatory constraints on developmental and evolutionary "growth spurts" in brain size, as per punctuated equilibrium theories in evolutionary biology.


Asunto(s)
Corteza Cerebelosa/citología , Simulación por Computador , Modelos Neurológicos , Red Nerviosa/citología , Neuronas/citología , Humanos
10.
Elife ; 102021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33616036

RESUMEN

Synapses of glutamatergic mossy fibers (MFs) onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC's large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the MF terminal, and its level was dependent on activity of glutamate transporters EAAT1-2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.


Asunto(s)
Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Ácido Glutámico/metabolismo , Transmisión Sináptica/fisiología , Animales , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones Endogámicos C57BL , Fibras Nerviosas/fisiología , Neuronas Aferentes , Técnicas de Placa-Clamp , Receptores de Glutamato/fisiología
11.
Neural Netw ; 136: 72-86, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33450654

RESUMEN

Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.


Asunto(s)
Cerebelo/citología , Cerebelo/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Dinámicas no Lineales , Animales , Corteza Cerebelosa/citología , Corteza Cerebelosa/fisiología , Células de Golgi Cerebelosas/fisiología , Uniones Comunicantes/fisiología , Humanos
12.
Neuroreport ; 31(18): 1302-1307, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33165195

RESUMEN

Ar-turmerone, which is a major bioactive component found in the essential oil derived from Curcuma longa, has been reported to inhibit proliferation and induce apoptosis in cancer cell lines. Recently, ar-turmerone has been reported to increase the proliferation of neuronal stem cells, in contrast to its actions in cancer cells. These observations raise the possibility that ar-turmerone serves specific functions in neuronal cell lineages. However, the effects of ar-turmerone on postmitotic neurons remain elusive. In the present study, we investigated the neuroprotective functions of ar-turmerone in primary cerebellar granule neuronal cultures. We found that ar-turmerone increased the survival of neurons following activity deprivation. Consistently, the induction of cleaved caspase-3, a hallmark of apoptosis, was prevented by ar-turmerone, although neither the level of reactive oxygen species nor the mitochondrial membrane potential was affected. This study reports a neuroprotective function for ar-turmerone, providing new insights into the potential therapeutic applications of ar-turmerone for neurological disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Corteza Cerebelosa/citología , Cetonas/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Sesquiterpenos/farmacología , Animales , Caspasa 3/efectos de los fármacos , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Neuronas/metabolismo , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo
13.
Nat Commun ; 11(1): 5151, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051462

RESUMEN

Myelination of projection neurons by oligodendrocytes is key to optimize action potential conduction over long distances. However, a large fraction of myelin enwraps the axons of parvalbumin-positive fast-spiking interneurons (FSI), exclusively involved in local cortical circuits. Whether FSI myelination contributes to the fine-tuning of intracortical networks is unknown. Here we demonstrate that FSI myelination is required for the establishment and maintenance of the powerful FSI-mediated feedforward inhibition of cortical sensory circuits. The disruption of GABAergic synaptic signaling of oligodendrocyte precursor cells prior to myelination onset resulted in severe FSI myelination defects characterized by longer internodes and nodes, aberrant myelination of branch points and proximal axon malformation. Consequently, high-frequency FSI discharges as well as FSI-dependent postsynaptic latencies and strengths of excitatory neurons were reduced. These dysfunctions generated a strong excitation-inhibition imbalance that correlated with whisker-dependent texture discrimination impairments. FSI myelination is therefore critical for the function of mature cortical inhibitory circuits.


Asunto(s)
Corteza Cerebelosa/citología , Interneuronas/fisiología , Vaina de Mielina/metabolismo , Inhibición Neural , Parvalbúminas/metabolismo , Animales , Axones/metabolismo , Corteza Cerebelosa/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Oligodendroglía/fisiología , Parvalbúminas/genética
14.
Sci Rep ; 10(1): 15654, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973240

RESUMEN

In the eyeblink conditioning paradigm, cerebellar Purkinje cells learn to respond to the conditional stimulus with an adaptively timed pause in its spontaneous firing. Evidence suggests that the pause is elicited by glutamate released from parallel fibers and acting on metabotropic receptors (mGluR7) which initiates a delayed-onset suppression of firing. We suggested that G protein activation of hyperpolarizing Kir3 channels (or 'GIRK', G protein-coupled inwardly-rectifying K+ channels) could be part of such a mechanism. Application of the Kir3 antagonist Tertiapin-LQ locally in the superficial layers of the cerebellar cortex in decerebrate ferrets suppressed normal performance of Purkinje cell pause responses to the conditional stimulus. Importantly, there was no detectable effect on spontaneous firing. These findings suggest that intact functioning of Kir3 channels in the cerebellar cortex is required for normal conditioned Purkinje cell responses.


Asunto(s)
Corteza Cerebelosa/citología , Condicionamiento Clásico/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Células de Purkinje/efectos de los fármacos , Animales , Venenos de Abeja/farmacología , Hurones , Masculino , Células de Purkinje/metabolismo
15.
PLoS One ; 15(9): e0232863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32915781

RESUMEN

Pneumococcal meningitis (PM) causes damage to the hippocampus, a brain structure critically involved in learning and memory. Hippocampal injury-which compromises neurofunctional outcome-occurs as apoptosis of progenitor cells and immature neurons of the hippocampal dentate granule cell layer thereby impairing the regenerative capacity of the hippocampal stem cell niche. Repetitive transcranial magnetic stimulation (rTMS) harbours the potential to modulate the proliferative activity of this neuronal stem cell niche. In this study, specific rTMS protocols-namely continuous and intermittent theta burst stimulation (cTBS and iTBS)-were applied on infant rats microbiologically cured from PM by five days of antibiotic treatment. Following two days of exposure to TBS, differential gene expression was analysed by whole transcriptome analysis using RNAseq. cTBS provoked a prominent effect in inducing differential gene expression in the cortex and the hippocampus, whereas iTBS only affect gene expression in the cortex. TBS induced polarisation of microglia and astrocytes towards an inflammatory phenotype, while reducing neurogenesis, neuroplasticity and regeneration. cTBS was further found to induce the release of pro-inflammatory cytokines in vitro. We conclude that cTBS intensified neuroinflammation after PM, which translated into increased release of pro-inflammatory mediators thereby inhibiting neuroregeneration.


Asunto(s)
Astrocitos/citología , Corteza Cerebelosa/citología , Hipocampo/citología , Meningitis Neumocócica/terapia , Microglía/citología , Neurogénesis , Estimulación Magnética Transcraneal/efectos adversos , Animales , Astrocitos/patología , Corteza Cerebelosa/patología , Citocinas/metabolismo , Hipocampo/patología , Masculino , Microglía/patología , Ratas , Ratas Wistar , Nicho de Células Madre
16.
Elife ; 92020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32990593

RESUMEN

In the cerebellar cortex, molecular layer interneurons use chemical and electrical synapses to form subnetworks that fine-tune the spiking output of the cerebellum. Although electrical synapses can entrain activity within neuronal assemblies, their role in feed-forward circuits is less well explored. By combining whole-cell patch-clamp and 2-photon laser scanning microscopy of basket cells (BCs), we found that classical excitatory postsynaptic currents (EPSCs) are followed by GABAA receptor-independent outward currents, reflecting the hyperpolarization component of spikelets (a synapse-evoked action potential passively propagating from electrically coupled neighbors). FF recruitment of the spikelet-mediated inhibition curtails the integration time window of concomitant excitatory postsynaptic potentials (EPSPs) and dampens their temporal integration. In contrast with GABAergic-mediated feed-forward inhibition, the depolarizing component of spikelets transiently increases the peak amplitude of EPSPs, and thus postsynaptic spiking probability. Therefore, spikelet transmission can propagate within the BC network to generate synchronous inhibition of Purkinje cells, which can entrain cerebellar output for driving temporally precise behaviors.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebelosa/citología , Sinapsis Eléctricas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Animales , Electrofisiología , Retroalimentación Fisiológica/fisiología , Femenino , Interneuronas/citología , Interneuronas/fisiología , Masculino , Ratones , Receptores de GABA-A/metabolismo
17.
Brain Behav Evol ; 95(2): 69-77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32784306

RESUMEN

The cerebellum has a highly conserved internal circuitry, but varies greatly in size and morphology within and across species. Despite this variation, the underlying volumetric changes among the layers of the cerebellar cortex or their association with Purkinje cell numbers and sizes is poorly understood. Here, we examine intraspecific scaling relationships and variation in the quantitative neuroanatomy of the cerebellum in Japanese quail (Coturnix japonica) selected for high or low reproductive investment. As predicted by the circuitry of the cerebellum, the volumes of the constituent layers of the cerebellar cortex were strongly and positively correlated with one another and with total cerebellar volume. The number of Purkinje cells also significantly and positively co-varied with total cerebellar volume and the molecular layer, but not the granule cell layer or white matter volumes. Purkinje cell size and cerebellar foliation did not significantly covary with any cerebellar measures, but differed significantly between the selection lines. Males and females from the high-investment lines had smaller Purkinje cells than males and females from the low-investment lines and males from the high-investment lines had less folded cerebella than quail from the low-investment lines. These results suggest that within species, the layers of the cerebellum increase in a coordinated fashion, but Purkinje cell size and cerebellar foliation do not increase proportionally with overall cerebellum size. In contrast, selection for differential reproductive investment affects Purkinje cell size and cerebellar foliation, but not other quantitative measures of cerebellar anatomy.


Asunto(s)
Cerebelo/anatomía & histología , Reproducción , Animales , Corteza Cerebelosa/citología , Cerebelo/citología , Coturnix , Femenino , Masculino , Células de Purkinje/citología , Reproducción/fisiología , Especificidad de la Especie
18.
Cells ; 9(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630355

RESUMEN

The ubiquitin E3 ligase RNF220 and its co-factor ZC4H2 are required for multiple neural developmental processes through different targets, including spinal cord patterning and the development of the cerebellum and the locus coeruleus. Here, we explored the effects of loss of ZC4H2 and RNF220 on the proliferation and differentiation of neural stem cells (NSCs) derived from mouse embryonic cortex. We showed that loss of either ZC4H2 or RNF220 inhibits the proliferation and promotes the differentiation abilities of NSCs in vitro. RNA-Seq profiling revealed 132 and 433 differentially expressed genes in the ZCH2-/- and RNF220-/- NSCs, compared to wild type (WT) NSCs, respectively. Specifically, Cend1, a key regulator of cell cycle exit and differentiation of neuronal precursors, was found to be upregulated in both ZCH2-/- and RNF220-/- NSCs at the mRNA and protein levels. The targets of Cend1, such as CyclinD1, Notch1 and Hes1, were downregulated both in ZCH2-/- and RNF220-/- NSCs, whereas p53 and p21 were elevated. ZCH2-/- and RNF220-/- NSCs showed G0/G1 phase arrest compared to WT NSCs in cell cycle analysis. These results suggested that ZC4H2 and RNF220 are likely involved in the regulation of neural stem cell proliferation and differentiation through Cend1.


Asunto(s)
Proliferación Celular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Proteínas Nucleares/genética , RNA-Seq , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
19.
Sci Rep ; 10(1): 9019, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488204

RESUMEN

Calcium-calmodulin dependent protein kinase II (CaMKII) regulates many forms of synaptic plasticity, but little is known about its functional role during plasticity induction in the cerebellum. Experiments have indicated that the ß isoform of CaMKII controls the bidirectional inversion of plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses in cerebellar cortex. Because the cellular events that underlie these experimental findings are still poorly understood, we developed a simple computational model to investigate how ß CaMKII regulates the direction of plasticity in cerebellar PCs. We present the first model of AMPA receptor phosphorylation that simulates the induction of long-term depression (LTD) and potentiation (LTP) at the PF-PC synapse. Our simulation results suggest that the balance of CaMKII-mediated phosphorylation and protein phosphatase 2B (PP2B)-mediated dephosphorylation of AMPA receptors can determine whether LTD or LTP occurs in cerebellar PCs. The model replicates experimental observations that indicate that ß CaMKII controls the direction of plasticity at PF-PC synapses, and demonstrates that the binding of filamentous actin to CaMKII can enable the ß isoform of the kinase to regulate bidirectional plasticity at these synapses.


Asunto(s)
Actinas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corteza Cerebelosa/citología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Animales , Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Corteza Cerebelosa/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Ratones Noqueados , Modelos Biológicos , Fosforilación , Células de Purkinje/citología , Receptores AMPA/metabolismo
20.
Elife ; 92020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32022688

RESUMEN

Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs.


The timing of movements such as posture, balance and speech are coordinated by a region of the brain called the cerebellum. Although this part of the brain is small, it contains a huge number of tiny nerve cells known as granule cells. These cells make up more than half the nerve cells in the human brain. But why there are so many is not well understood.The cerebellum receives signals from sensory organs, such as the ears and eyes, which are passed on as electrical pulses from nerve to nerve until they reach the granule cells. These electrical pulses can have very different repetition rates, ranging from one pulse to a thousand pulses per second. Previous studies have suggested that granule cells are a uniform population that can detect specific patterns within these electrical pulses. However, this would require granule cells to identify patterns in signals that have a range of different repetition rates, which is difficult for individual nerve cells to do.To investigate if granule cells are indeed a uniform population, Straub, Witter, Eshra, Hoidis et al. measured the electrical properties of granule cells from the cerebellum of mice. This revealed that granule cells have different electrical properties depending on how deep they are within the cerebellum. These differences enabled the granule cells to detect sensory signals that had specific repetition rates: signals that contained lots of repeats per second were relayed by granule cells in the lower layers of the cerebellum, while signals that contained fewer repeats were relayed by granule cells in the outer layers.This ability to separate signals based on their rate of repetition is similar to how digital audio files are compressed into an MP3. Computer simulations suggested that having granule cells that can detect specific rates of repetition improves the storage capacity of the brain.These findings further our understanding of how the cerebellum works and the cellular mechanisms that underlie how humans learn and memorize the timing of movement. This mechanism of separating signals to improve storage capacity may apply to other regions of the brain, such as the hippocampus, where differences between nerve cells have also recently been reported.


Asunto(s)
Corteza Cerebelosa , Neuronas , Animales , Fenómenos Biofísicos/fisiología , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiología , Análisis de Fourier , Ratones , Modelos Neurológicos , Fibras Nerviosas/metabolismo , Fibras Nerviosas/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Células de Purkinje/citología , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Potenciales Sinápticos/fisiología , Sustancia Blanca/citología , Sustancia Blanca/metabolismo , Sustancia Blanca/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA