Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.968
Filtrar
1.
Science ; 382(6672): eabq8173, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37972184

RESUMEN

Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.


Asunto(s)
Técnicas Biosensibles , Islotes Pancreáticos , Neuronas , Neuropéptidos , Receptores Acoplados a Proteínas G , Humanos , Fluorescencia , Células HEK293 , Neuropéptidos/análisis , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Neuronas/química , Corteza Cerebral/química , Animales , Ratas , Islotes Pancreáticos/química
2.
Lancet Neurol ; 22(1): 55-65, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517172

RESUMEN

BACKGROUND: Important insights into the early pathogenesis of Alzheimer's disease can be provided by studies of autosomal dominant Alzheimer's disease and Down syndrome. However, it is unclear whether the timing and spatial distribution of amyloid accumulation differs between people with autosomal dominant Alzheimer's disease and those with Down syndrome. We aimed to directly compare amyloid changes between these two groups of people. METHODS: In this cross-sectional study, we included participants (aged ≥25 years) with Down syndrome and sibling controls who had MRI and amyloid PET scans in the first data release (January, 2020) of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. We also included carriers of autosomal dominant Alzheimer's disease genetic mutations and non-carrier familial controls who were within a similar age range to ABC-DS participants (25-73 years) and had MRI and amyloid PET scans at the time of a data freeze (December, 2020) of the Dominantly Inherited Alzheimer Network (DIAN) study. Controls from the two studies were combined into a single group. All DIAN study participants had genetic testing to determine PSEN1, PSEN2, or APP mutation status. APOE genotype was determined from blood samples. CSF samples were collected in a subset of ABC-DS and DIAN participants and the ratio of amyloid ß42 (Aß42) to Aß40 (Aß42/40) was measured to evaluate its Spearman's correlation with amyloid PET. Global PET amyloid burden was compared with regards to cognitive status, APOE ɛ4 status, sex, age, and estimated years to symptom onset. We further analysed amyloid PET deposition by autosomal dominant mutation type. We also assessed regional patterns of amyloid accumulation by estimated number of years to symptom onset. Within a subset of participants the relationship between amyloid PET and CSF Aß42/40 was evaluated. FINDINGS: 192 individuals with Down syndrome and 33 sibling controls from the ABC-DS study and 265 carriers of autosomal dominant Alzheimer's disease mutations and 169 non-carrier familial controls from the DIAN study were included in our analyses. PET amyloid centiloid and CSF Aß42/40 were negatively correlated in carriers of autosomal dominant Alzheimer's disease mutations (n=216; r=-0·565; p<0·0001) and in people with Down syndrome (n=32; r=-0·801; p<0·0001). There was no difference in global PET amyloid burden between asymptomatic people with Down syndrome (mean 18·80 centiloids [SD 28·33]) versus asymptomatic mutation carriers (24·61 centiloids [30·27]; p=0·11) and between symptomatic people with Down syndrome (77·25 centiloids [41·76]) versus symptomatic mutation carriers (69·15 centiloids [51·10]; p=0·34). APOE ɛ4 status and sex had no effect on global amyloid PET deposition. Amyloid deposition was elevated significantly earlier in mutation carriers than in participants with Down syndrome (estimated years to symptom onset -23·0 vs -17·5; p=0·0002). PSEN1 mutations primarily drove this difference. Early amyloid accumulation occurred in striatal and cortical regions for both mutation carriers (n=265) and people with Down syndrome (n=128). Although mutation carriers had widespread amyloid accumulation in all cortical regions, the medial occipital regions were spared in people with Down syndrome. INTERPRETATION: Despite minor differences, amyloid PET changes were similar between people with autosomal dominant Alzheimer's disease versus Down syndrome and strongly supported early amyloid dysregulation in individuals with Down syndrome. Individuals with Down syndrome aged at least 35 years might benefit from early intervention and warrant future inclusion in clinical trials, particularly given the relatively high incidence of Down syndrome. FUNDING: The National Institute on Aging, Riney and Brennan Funds, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the German Center for Neurodegenerative Diseases, and the Japan Agency for Medical Research and Development.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Corteza Cerebral , Síndrome de Down , Adulto , Anciano , Humanos , Persona de Mediana Edad , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/análisis , Apolipoproteínas E/genética , Biomarcadores/análisis , Estudios Transversales , Síndrome de Down/sangre , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/genética , Tomografía de Emisión de Positrones , Corteza Cerebral/química , Corteza Cerebral/diagnóstico por imagen
3.
Nat Commun ; 13(1): 467, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075139

RESUMEN

Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions during offline states. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from a number of cortical and subcortical brain regions in behaving mice, we uncover the presence of an intracerebral respiratory corollary discharge, that modulates neural activity across these circuits. During offline states, the respiratory modulation underlies the coupling of hippocampal sharp-wave ripples and cortical DOWN/UP state transitions, which mediates systems memory consolidation. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit that supports the segregation and integration of information flow across neuronal networks during offline states.


Asunto(s)
Corteza Cerebral/fisiología , Hipocampo/fisiología , Respiración , Sueño , Animales , Corteza Cerebral/química , Electrofisiología , Hipocampo/química , Consolidación de la Memoria , Ratones , Ratones Endogámicos C57BL
4.
Ir J Psychol Med ; 39(1): 54-63, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-31354118

RESUMEN

BACKGROUND: The brain endocannabinoid system is believed to play significant roles in anti-nociception, fear response, anxiety, and stress. This study investigated the effects of rat inguinal surgery on the levels of endocannabinoids in the cerebral cortex. AIM: The aim of this study was to investigate the effects of acute post-surgical pain on the levels of endocannabinoids in the cerebral cortex. METHODS: Quantitation of endocannabinoids in the rat cerebral cortex was performed by liquid chromatography-tandem mass spectrometry. RESULTS: There was no significant difference in the cerebral cortical levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) between the sham and surgery experimental groups. However, there were lateralized differences in the levels of these endocannabinoids between the right and left cerebral cortices irrespective of the two groups. The concentrations of AEA and 2-AG were significantly higher in the right cerebral cortex compared to the contralateral cerebral cortex. CONCLUSION: Acute post-surgical pain did not induce significant alterations in the cerebral cortical levels of endocannabinoids in this study, but the phenomenon of lateralization of the cerebral cortical AEA and 2-AG levels was observed; this latter finding may be related to the role played by endocannabinoids in fear conditioning.


Asunto(s)
Endocannabinoides , Espectrometría de Masas en Tándem , Animales , Corteza Cerebral/química , Cromatografía Liquida/métodos , Endocannabinoides/análisis , Humanos , Dolor Postoperatorio , Ratas , Espectrometría de Masas en Tándem/métodos
5.
J Neurosci ; 42(5): 749-761, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34887319

RESUMEN

Neuronal remodeling after brain injury is essential for functional recovery. After unilateral cortical lesion, axons from the intact cortex ectopically project to the denervated midbrain, but the molecular mechanisms remain largely unknown. To address this issue, we examined gene expression profiles in denervated and intact mouse midbrains after hemispherectomy at early developmental stages using mice of either sex, when ectopic contralateral projection occurs robustly. The analysis showed that various axon growth-related genes were upregulated in the denervated midbrain, and most of these genes are reportedly expressed by glial cells. To identify the underlying molecules, the receptors for candidate upregulated molecules were knocked out in layer 5 projection neurons in the intact cortex, using the CRISPR/Cas9-mediated method, and axonal projection from the knocked-out cortical neurons was examined after hemispherectomy. We found that the ectopic projection was significantly reduced when integrin subunit ß three or neurotrophic receptor tyrosine kinase 2 (also known as TrkB) was knocked out. Overall, the present study suggests that denervated midbrain-derived glial factors contribute to lesion-induced remodeling of the cortico-mesencephalic projection via these receptors.SIGNIFICANCE STATEMENT After brain injury, compensatory neural circuits are established that contribute to functional recovery. However, little is known about the intrinsic mechanism that underlies the injury-induced remodeling. We found that after unilateral cortical ablation expression of axon-growth promoting factors is elevated in the denervated midbrain and is involved in the formation of ectopic axonal projection from the intact cortex. Evidence further demonstrated that these factors are expressed by astrocytes and microglia, which are activated in the denervated midbrain. Thus, our present study provides a new insight into the mechanism of lesion-induced axonal remodeling and further therapeutic strategies after brain injury.


Asunto(s)
Lesiones Encefálicas/metabolismo , Corteza Cerebral/metabolismo , Hemisferectomía/tendencias , Mesencéfalo/metabolismo , Plasticidad Neuronal/fisiología , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Corteza Cerebral/química , Corteza Cerebral/citología , Desnervación/tendencias , Técnicas de Inactivación de Genes/métodos , Mesencéfalo/química , Mesencéfalo/citología , Ratones , Ratones Endogámicos ICR , Regeneración Nerviosa/fisiología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Técnicas de Cultivo de Órganos , Receptor trkB/análisis , Receptor trkB/genética , Receptor trkB/metabolismo
6.
STAR Protoc ; 2(4): 100973, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34849490

RESUMEN

Characterizing cortex-wide neural activity is essential for understanding large-scale interactions among distributed cortical regions. Here, we describe a protocol using wide-field calcium imaging to monitor the cortex-wide activity in awake, head-fixed mice. This approach provides sufficient signal-to-noise ratio and spatiotemporal resolution to capture large-scale neural activity in behaving mice on a moment-by-moment basis. The use of genetically encoded calcium indicators allows longitudinal imaging over months and can achieve cell-type specificity. We also describe a pipeline to process the imaging data. For complete details on the use and execution of this protocol, please refer to Makino et al. (2017) and Liu et al. (2021).


Asunto(s)
Calcio/metabolismo , Corteza Cerebral , Microscopía/métodos , Imagen Molecular/métodos , Vigilia/fisiología , Animales , Corteza Cerebral/química , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Ratones
7.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948053

RESUMEN

The aim of our investigation was to make a comparative assessment of the biological effects of silver nanoparticles encapsulated in a natural and synthetic polymer matrix. We carried out a comparative assessment of the biological effect of silver nanocomposites on natural (arabinogalactan) and synthetic (poly-1-vinyl-1,2,4-triazole) matrices. We used 144 three-month-old white outbred male rats, which were divided into six groups. Substances were administered orally for 9 days at a dose 500 µg/kg. Twelve rats from each group were withdrawn from the experiment immediately after nine days of exposure (early period), and the remaining 12 rats were withdrawn from the experiment 6 months after the end of the nine-day exposure (long-term period). We investigated the parietal-temporal area of the cerebral cortex using histological (morphological assessments of nervous tissue), electron microscopic (calculation of mitochondrial areas and assessment of the quality of the cell nucleus), and immunohistochemical methods (study of the expression of proteins regulating apoptosis bcl-2 and caspase 3). We found that the effect of the nanocomposite on the arabinogalactan matrix causes a disturbance in the nervous tissue structure, an increase in the area of mitochondria, a disturbance of the structure of nerve cells, and activation of the process of apoptosis.


Asunto(s)
Corteza Cerebral/química , Galactanos/química , Plata/administración & dosificación , Triazoles/química , Administración Oral , Animales , Caspasa 3/metabolismo , Masculino , Nanopartículas del Metal , Tamaño de la Partícula , Polímeros/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Distribución Aleatoria , Ratas , Plata/química , Plata/farmacología
8.
Bull Exp Biol Med ; 171(5): 611-614, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34617174

RESUMEN

We studied the effect of various detergents (Tween-20, Triton X-100, and sodium deoxycholate) on activity and magnesium-dependent properties of Na+,K+-ATPase of the crude membrane fraction of rat cerebral cortex. All studied detergents significantly increased activity of the studied enzyme in a concentration-dependent manner. Sodium deoxycholate provided significantly higher values Na+,K+-ATPase activity (by ≈50%) than Triton X-100 and Tween-20. In the presence of Triton X-100, a changed pattern of the dependence of enzyme activity on the concentration of magnesium ions in the incubation solution was noted. Separate measurement of activities of Na+,K+-ATPase isoforms made it possible to assume that changes in magnesium-dependent properties are due to the predominant effect of Triton X-100 on ouabain-sensitive α2- and α3-isoforms.


Asunto(s)
Corteza Cerebral/enzimología , Detergentes/farmacología , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , Animales , Fraccionamiento Celular , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Corteza Cerebral/química , Corteza Cerebral/metabolismo , Isoenzimas/efectos de los fármacos , Isoenzimas/metabolismo , Cinética , Magnesio/metabolismo , Magnesio/farmacología , Masculino , Octoxinol/farmacología , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Extractos de Tejidos/química , Extractos de Tejidos/metabolismo
9.
STAR Protoc ; 2(3): 100779, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34505087

RESUMEN

Intrinsic optical signal imaging (ISI) is a hemodynamic response-based technique to map the functional architecture of the cortex. ISI is often used as an auxiliary method to localize cortical areas for targeted electrophysiology, pharmacology, or imaging experiments. Here, we provide a protocol for ISI through a cranial window with an access port to identify the area of the primary visual cortex (V1) in a head-fixed mouse, followed by targeted viral vector injection, which enables subsequent two-photon imaging of V1 layer 6 corticothalamic neurons. For complete details on the use and execution of this protocol, please refer to our paper Augustinaite and Kuhn (2020b).


Asunto(s)
Corteza Cerebral , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas , Transducción de Señal/fisiología , Animales , Corteza Cerebral/química , Corteza Cerebral/diagnóstico por imagen , Ratones , Neuronas/química , Neuronas/citología , Procesamiento de Señales Asistido por Computador , Cráneo/cirugía
10.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445340

RESUMEN

This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal's resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.


Asunto(s)
Adaptación Fisiológica/fisiología , Hipoxia/fisiopatología , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Animales , Animales no Consanguíneos , Respiración de la Célula/fisiología , Corteza Cerebral/química , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , Transporte de Electrón/fisiología , Hipoxia/metabolismo , Hipoxia/patología , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/fisiología , Conformación Proteica , Ratas
11.
J Comp Neurol ; 529(14): 3429-3452, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34180538

RESUMEN

We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), throughout the telencephalic white matter of an adult female chimpanzee. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to the inner border of cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed an estimate of approximately 137.2 million WMICs within the infracortical white matter of the chimpanzee brain studied. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, approximately 14.4 million in number), calretinin (CR, approximately 16.7 million), very few WMICs containing parvalbumin (PV), and no calbindin-immunopositive neurons. The nNOS, CR, and PV immunopositive WMICs, possibly all inhibitory neurons, represent approximately 22.6% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism, epilepsy, and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/química , Pan troglodytes/fisiología , Sustancia Blanca/fisiología , Animales , Química Encefálica , Calbindina 2/metabolismo , Calbindinas/metabolismo , Recuento de Células , Corteza Cerebral/química , Corteza Cerebral/citología , Femenino , Inmunohistoquímica , Modelos Animales , Óxido Nítrico Sintasa de Tipo I/metabolismo , Parvalbúminas/metabolismo , Sustancia Blanca/química , Sustancia Blanca/citología
12.
Sci Rep ; 11(1): 12419, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127752

RESUMEN

Amyloid plaques are a hallmark of Alzheimer's disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Corteza Cerebral/diagnóstico por imagen , Cloruros/administración & dosificación , Compuestos de Manganeso/administración & dosificación , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Placa Amiloide/diagnóstico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Animales , Corteza Cerebral/química , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Inyecciones Subcutáneas , Hierro/análisis , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide/patología , Ratas , Ratas Transgénicas
13.
Food Chem Toxicol ; 154: 112288, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34089799

RESUMEN

The developing human brain is uniquely vulnerable to methylmercury (MeHg) resulting in lasting effects especially in developing cortical structures. Here we assess by single-cell RNA sequencing (scRNAseq) persistent effects of developmental MeHg exposure in a differentiating cortical human-induced pluripotent stem cell (hiPSC) model which we exposed to in vivo relevant and non-cytotoxic MeHg (0.1 and 1.0 µM) concentrations. The cultures were exposed continuously for 6 days either once only during days 4-10, a stage representative of neural epithelial- and radial glia cells, or twice on days 4-10 and days 14-20, a somewhat later stage which includes intermediate precursors and early postmitotic neurons. After the completion of MeHg exposure the cultures were differentiated further until day 38 and then assessed for persistent MeHg-induced effects by scRNAseq. We report subtle, but significant changes in the population size of different cortical cell types/stages and cell cycle. We also observe MeHg-dependent differential gene expression and altered biological processes as determined by Gene Ontology analysis. Our data demonstrate that MeHg results in changes in gene expression in human developing cortical neurons that manifest well after cessation of exposure and that these changes are cell type-, developmental stage-, and exposure paradigm-specific.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Corteza Cerebral/química , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Cereb Cortex ; 31(6): 3064-3081, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33570093

RESUMEN

Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Inhibición Psicológica , MAP Quinasa Quinasa 1/metabolismo , Parvalbúminas/metabolismo , Animales , Corteza Cerebral/química , Electroencefalografía/métodos , Desarrollo Embrionario/fisiología , Neuronas GABAérgicas/química , Locomoción/fisiología , MAP Quinasa Quinasa 1/análisis , Ratones , Técnicas de Cultivo de Órganos , Parvalbúminas/análisis , Transducción de Señal/fisiología
16.
Biomed Chromatogr ; 35(6): e5084, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33559223

RESUMEN

Emerging evidence suggests that amino acid (AA) neurotransmitters play important roles in the pathophysiological processes of cerebral ischemia. In this work, an HPLC with fluorescence detection (HPLC-FLR) method was developed for the simultaneous determination of 18 AAs in the cortex and plasma after cerebral ischemia in mice. The ischemia model was prepared by bilateral common carotid artery occlusion, and then the cortex and plasma of the sham, ischemia, and naringenin groups were collected. Based on the protein precipitation method, a simple and effective sample preparation method was developed. The treated sample contained minimal proteins and lipids. The analysis of the sample was performed by the proposed HPLC-FLR method in combination with o-phthalaldehyde. The results showed a statistically significant increase in excitatory AAs (aspartic acid and glutamic acid), inhibitory AAs (glycine and 4-aminobutyric acid), phenylalanine, citrulline, isoleucine, and leucine levels, and a decrease of glutathione and phenylalanine levels when compared with the sham group in the cortex. Besides, the administration of naringenin had significant effects on excitatory AAs, inhibitory AA (glycine), glutamine, tyrosine, phenylalanine, and leucine levels when compared with the sham group in the cortex. These findings could be utilized in studying and clarifying the mechanisms of ischemia.


Asunto(s)
Aminoácidos/sangre , Isquemia Encefálica/metabolismo , Corteza Cerebral/química , Animales , Biomarcadores/sangre , Cromatografía Líquida de Alta Presión , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/sangre
17.
FASEB J ; 35(3): e21399, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33559227

RESUMEN

The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.


Asunto(s)
alfa-Globulinas/química , Corteza Cerebral/química , Proteína HMGB1/química , Hipoxia-Isquemia Encefálica/metabolismo , alfa-Globulinas/análisis , Animales , Animales Recién Nacidos , Femenino , Técnica del Anticuerpo Fluorescente , Proteína HMGB1/análisis , Inmunohistoquímica , Ratas , Ratas Wistar , Resonancia por Plasmón de Superficie
19.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33431654

RESUMEN

Amyloid-ß (Aß) fibrils exhibit self-propagating, molecular-level polymorphisms that may contribute to variations in clinical and pathological characteristics of Alzheimer's disease (AD). We report the molecular structure of a specific fibril polymorph, formed by 40-residue Aß peptides (Aß40), that is derived from cortical tissue of an AD patient by seeded fibril growth. The structure is determined from cryogenic electron microscopy (cryoEM) images, supplemented by mass-per-length (MPL) measurements and solid-state NMR (ssNMR) data. Previous ssNMR studies with multiple AD patients had identified this polymorph as the most prevalent brain-derived Aß40 fibril polymorph from typical AD patients. The structure, which has 2.8-Å resolution according to standard criteria, differs qualitatively from all previously described Aß fibril structures, both in its molecular conformations and its organization of cross-ß subunits. Unique features include twofold screw symmetry about the fibril growth axis, despite an MPL value that indicates three Aß40 molecules per 4.8-Å ß-sheet spacing, a four-layered architecture, and fully extended conformations for molecules in the central two cross-ß layers. The cryoEM density, ssNMR data, and MPL data are consistent with ß-hairpin conformations for molecules in the outer cross-ß layers. Knowledge of this brain-derived fibril structure may contribute to the development of structure-specific amyloid imaging agents and aggregation inhibitors with greater diagnostic and therapeutic utility.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/ultraestructura , Amiloide/ultraestructura , Corteza Cerebral/química , Fragmentos de Péptidos/ultraestructura , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Sitios de Unión , Corteza Cerebral/patología , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Termodinámica
20.
Neurochem Res ; 46(3): 595-610, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398638

RESUMEN

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Disacáridos/metabolismo , Etanol/farmacología , Glicosaminoglicanos/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/química , Astrocitos/efectos de los fármacos , Brevicano/metabolismo , Corteza Cerebral/química , Corteza Cerebral/efectos de los fármacos , Sulfatos de Condroitina/análisis , Sulfatos de Condroitina/metabolismo , Disacáridos/análisis , Femenino , Glicosaminoglicanos/análisis , Heparitina Sulfato/análisis , Heparitina Sulfato/metabolismo , Ácido Hialurónico/análisis , Ácido Hialurónico/metabolismo , Neurocano/metabolismo , Embarazo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA