Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.304
Filtrar
1.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757300

RESUMEN

Physiological stress such as excessive reactive oxygen species (ROS) production may contribute normal fibroblasts activation into cancer­associated fibroblasts, which serve a crucial role in certain types of cancer such as pancreatic, breast, liver and lung cancer. The present study aimed to examine the cytoprotective effects of luteolin (3',4',5,7­tetrahydroxyflavone) against hydrogen peroxide (H2O2)­generated oxidative stress in lung fibroblasts. To examine the effects of luteolin against H2O2­induced damages, cell viability, sub­G1 cell population, nuclear staining with Hoechst 33342, lipid peroxidation and comet assays were performed. To evaluate the effects of luteolin on the protein expression level of apoptosis, western blot assay was performed. To assess the antioxidant effects of luteolin, detection of ROS using H2DCFDA staining, O2­ and ·OH using electron spin resonance spectrometer and antioxidant enzyme activity was performed. In a cell­free chemical system, luteolin scavenges superoxide anion and hydroxyl radical generated by xanthine/xanthine oxidase and the Fenton reaction (FeSO4/H2O2). Furthermore, Chinese hamster lung fibroblasts (V79­4) treated with H2O2 showed a significant increase in cellular ROS. Intracellular ROS levels and damage to cellular components such as lipids and DNA in H2O2­treated cells were significantly decreased by luteolin pretreatment. Luteolin increased cell viability, which was impaired following H2O2 treatment and prevented H2O2­mediated apoptosis. Luteolin suppressed active caspase­9 and caspase­3 levels while increasing Bcl­2 expression and decreasing Bax protein levels. Additionally, luteolin restored levels of glutathione that was reduced in response to H2O2. Moreover, luteolin enhanced the activity and protein expressions of superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase­1. Overall, these results indicated that luteolin inhibits H2O2­mediated cellular damage by upregulating antioxidant enzymes.


Asunto(s)
Antioxidantes , Apoptosis , Supervivencia Celular , Fibroblastos , Peróxido de Hidrógeno , Luteolina , Estrés Oxidativo , Especies Reactivas de Oxígeno , Luteolina/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Línea Celular , Cricetinae , Peroxidación de Lípido/efectos de los fármacos , Cricetulus
2.
Methods Mol Biol ; 2804: 127-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753145

RESUMEN

Within the vast field of medical biotechnology, the biopharmaceutical industry is particularly fast-growing and highly competitive, so reducing time and costs associated to process optimization becomes instrumental to ensure speed to market and, consequently, profitability. The manufacturing of biopharmaceutical products, namely, monoclonal antibodies (mAbs), relies mostly on mammalian cell culture processes, which are highly dynamic and, consequently, difficult to optimize. In this context, there is currently an unmet need of analytical methods that can be integrated at-line in a bioreactor, for systematic monitoring and quantification of key metabolites and proteins. Microfluidic-based assays have been extensively and successfully applied in the field of molecular diagnostics; however, this technology remains largely unexplored for Process Analytical Technology (PAT), despite holding great potential for the at-line measurement of different analytes in bioreactor processes, combining low reagent/molecule consumption with assay sensitivity and rapid turnaround times.Here, the fabrication and handling of a microfluidic cartridge for protein quantification using bead-based affinity assays is described. The device allows geometrical multiplexed immunodetection of specific protein analytes directly from bioreactor samples within 2.5 h and minimal hands-on time. As a proof-of-concept, quantification of Chinese hamster ovary (CHO) host cell proteins (HCP) as key impurities, IgG as product of interest, and lactate dehydrogenase (LDH) as cell viability marker was demonstrated with limits of detection (LoD) in the low ng/mL range. Negligible matrix interference and no cross-reactivity between the different immunoassays on chip were found. The results highlight the potential of the miniaturized analytical method for PAT at reduced cost and complexity in comparison with sophisticated instruments that are currently the state-of-the-art in this context.


Asunto(s)
Cricetulus , Células CHO , Animales , Anticuerpos Monoclonales/inmunología , Reactores Biológicos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Microfluídica/métodos , Microfluídica/instrumentación , Cricetinae
3.
PLoS Negl Trop Dis ; 18(5): e0011897, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739677

RESUMEN

Leishmania, the dixenous trypanosomatid parasites, are the causative agents of leishmaniasis currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania, and the recently described Mundinia, consisting of six species distributed sporadically all over the world infecting humans and/or animals. These parasites infect various mammalian species and also cause serious human diseases, but their reservoirs are unknown. Thus, adequate laboratory models are needed to enable proper research of Mundinia parasites. In this complex study, we compared experimental infections of five Mundinia species (L. enriettii, L. macropodum, L. chancei, L. orientalis, and four strains of L. martiniquensis) in three rodent species: BALB/c mouse, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus). Culture-derived parasites were inoculated intradermally into the ear pinnae and progress of infection was monitored for 20 weeks, when the tissues and organs of animals were screened for the presence and quantity of Leishmania. Xenodiagnoses with Phlebotomus duboscqi were performed at weeks 5, 10, 15 and 20 post-infection to test the infectiousness of the animals throughout the experiment. BALB/c mice showed no signs of infection and were not infectious to sand flies, while Chinese hamsters and steppe lemmings proved susceptible to all five species of Mundinia tested, showing a wide spectrum of disease signs ranging from asymptomatic to visceral. Mundinia induced significantly higher infection rates in steppe lemmings compared to Chinese hamsters, and consequently steppe lemmings were more infectious to sand flies: In all groups tested, they were infectious from the 5th to the 20th week post infection. In conclusion, we identified two rodent species, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus), as candidates for laboratory models for Mundinia allowing detailed studies of these enigmatic parasites. Furthermore, the long-term survival of all Mundinia species in steppe lemmings and their infectiousness to vectors support the hypothesis that some rodents have the potential to serve as reservoir hosts for Mundinia.


Asunto(s)
Arvicolinae , Modelos Animales de Enfermedad , Leishmania , Leishmaniasis , Ratones Endogámicos BALB C , Animales , Leishmania/clasificación , Leishmaniasis/parasitología , Ratones , Cricetinae , Arvicolinae/parasitología , Cricetulus , Femenino
4.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704888

RESUMEN

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Asunto(s)
Toxina del Cólera , Cricetulus , Toxina del Cólera/metabolismo , Humanos , Animales , Ratones , Células CHO , Células CACO-2 , Péptidos/farmacología , Péptidos/metabolismo , Péptidos/química , Transporte de Proteínas/efectos de los fármacos , Cólera/tratamiento farmacológico , Cólera/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
5.
Sci Rep ; 14(1): 10863, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740831

RESUMEN

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Asunto(s)
Cricetulus , Cininas , Neuropéptidos , Peristaltismo , Animales , Cininas/metabolismo , Células CHO , Neuropéptidos/metabolismo , Neuropéptidos/genética , Músculos/metabolismo , Músculos/fisiología , Garrapatas/metabolismo , Garrapatas/fisiología , Rhipicephalus/metabolismo , Rhipicephalus/fisiología , Rhipicephalus/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética
6.
Nat Commun ; 15(1): 4390, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782989

RESUMEN

Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants. Analysis of fluorescent secretin analogs demonstrates stable engagement of the secretin C-terminal region within the receptor extracellular domain (ECD) for both dimeric and monomeric receptors, while the mid-region exhibits lower mobility while docked at the monomer. Moreover, decoupling of G protein interaction reduces mobility of the peptide mid-region at wild type receptor to levels similar to the mutant, whereas it has no further impact on the monomer. These data support a model of peptide engagement whereby the ability of SecR to dimerize promotes higher conformational dynamics of the peptide-bound receptor ECD and ECLs that likely facilitates more efficient G protein recruitment and activation, consistent with the higher observed functional potency of secretin at wild type SecR relative to the monomeric mutant receptor.


Asunto(s)
Unión Proteica , Multimerización de Proteína , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal , Secretina , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Secretina/metabolismo , Secretina/química , Secretina/genética , Ligandos , Animales , Humanos , Cricetulus , Células CHO , Mutación , Células HEK293
7.
Biomolecules ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785944

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly targets the upper respiratory tract. It gains entry by interacting with the host cell receptor angiotensin-converting enzyme 2 (ACE2) via its heavily glycosylated spike glycoprotein. SARS-CoV-2 can also affect the gastrointestinal tract. Given the significant role of glycosylation in the life cycle of proteins and the multisystem target of SARS-CoV-2, the role of glycosylation in the interaction of S1 with ACE2 in Caco-2 cells was investigated after modulation of their glycosylation patterns using N-butyldeoxynojirimycin (NB-DNJ) and 1-deoxymannojirimycin (dMM), in addition to mutant CHO cells harboring mutations at different stages of glycosylation. The data show a substantial reduction in the interactions between the altered glycosylation forms of S1 and ACE2 in the presence of NB-DNJ, while varied outcomes resulted from dMM treatment. These results highlight the promising effects of NB-DNJ and its potential use as an off-label drug to treat SARS-CoV-2 infections.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Células CACO-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicosilación , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/efectos de los fármacos , Animales , Células CHO , Cricetulus , Transporte de Proteínas , COVID-19/metabolismo , COVID-19/virología , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/análogos & derivados , Unión Proteica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología
8.
Biotechnol J ; 19(5): e2300596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719591

RESUMEN

Although fibroblast growth factor 7 (FGF7) is known to promote wound healing, its mass production poses several challenges and very few studies have assessed the feasibility of producing FGF7 in cell lines such as Chinese hamster ovary (CHO) cells. Therefore, this study sought to produce recombinant FGF7 in large quantities and evaluate its wound healing effect. To this end, the FGF7 gene was transfected into CHO cells and FGF7 production was optimized. The wound healing efficacy of N-glycosylated FGF7 was evaluated in animals on days 7 and 14 post-treatment using collagen patches (CPs), FGF7-only, and CP with FGF7 (CP+FGF7), whereas an untreated group was used as the control. Wound healing was most effective in the CP+FGF7 group. Particularly, on day 7 post-exposure, the CP+FGF7 and FGF7-only groups exhibited the highest expression of hydroxyproline, fibroblast growth factor, vascular endothelial growth factor, and transforming growth factor. Epidermalization in H&E staining showed the same order of healing as hydroxyproline content. Additionally, the CP+FGF7 and FGF7-only group exhibited more notable blood vessel formation on days 7 and 14. In conclusion, the prepared FGF7 was effective in promoting wound healing and CHO cells can be a reliable platform for the mass production of FGF7.


Asunto(s)
Cricetulus , Factor 7 de Crecimiento de Fibroblastos , Proteínas Recombinantes , Cicatrización de Heridas , Animales , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Humanos , Cricetinae , Hidroxiprolina/metabolismo , Transfección , Colágeno/metabolismo
9.
Sci Rep ; 14(1): 10661, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724599

RESUMEN

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Asunto(s)
Anticuerpos Biespecíficos , Cricetulus , Proteína del Gen 3 de Activación de Linfocitos , Receptor de Muerte Celular Programada 1 , Receptores Inmunológicos , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Ratones , Humanos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Células CHO , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Antígenos CD/inmunología , Antígenos CD/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Femenino , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
10.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731855

RESUMEN

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Asunto(s)
Cricetulus , Modelos Animales de Enfermedad , Esfingomielina Fosfodiesterasa , Canales Catiónicos TRPM , beta-Ciclodextrinas , Animales , Esfingomielina Fosfodiesterasa/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Ratones , Humanos , Células CHO , beta-Ciclodextrinas/farmacología , Células HEK293 , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacología , Analgésicos/uso terapéutico , Pregnenolona/farmacología , Supervivencia Celular/efectos de los fármacos
11.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731905

RESUMEN

A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.


Asunto(s)
Cricetulus , Canal de Sodio Activado por Voltaje NAV1.5 , Linaje , Penetrancia , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Humanos , Animales , Células CHO , Femenino , Masculino , Adulto , Persona de Mediana Edad , España , Mutación con Pérdida de Función , Fenotipo , Mutación
12.
Nanoscale ; 16(20): 9827-9835, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38695525

RESUMEN

Green-fluorescent biocompatible carbon dots with a quantum yield of 40% were successfully synthesized through a solvothermal process and then they are comprehensively characterized. The carbon dots showed a negatively charged surface owing to the presence of carboxylic groups. This negative surface charge hinders the effective targeting and imaging of mitochondria. To address this limitation, a new approach is developed in this study. An amphiphile containing phenylalanine, with a positively charged polar head consisting of triphenylphosphine and a hydrophobic aliphatic tail, was designed, synthesized, purified, and characterized. This amphiphile formed spherical micelle-type nanostructures in an aqueous medium in the aggregated state. Although these nanoprobes lack inherent fluorescence, they exhibited the capability to image mitochondria when their spherical micelle-type nanostructures were decorated with negatively charged fluorescent nanocarbon dots in both cancerous (KB cells) and non-cancerous (CHO cells) cell lines. Notably, carbon dots without the amphiphile failed to penetrate the cell membrane as they exhibited significantly low emission inside the cell. This study extensively explored the cell entry mechanism of the hybrid nanoprobes. The photophysical changes and the interaction between the negatively charged carbon dots and the positively charged nanospheres of the amphiphile were also analyzed in this study.


Asunto(s)
Carbono , Mitocondrias , Puntos Cuánticos , Carbono/química , Mitocondrias/metabolismo , Humanos , Puntos Cuánticos/química , Animales , Células CHO , Cricetulus , Micelas , Fenilalanina/química , Fenilalanina/análogos & derivados , Colorantes Fluorescentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos/química , Aminoácidos/química , Compuestos Organofosforados/química , Línea Celular Tumoral
13.
Environ Sci Technol ; 58(20): 8654-8664, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709862

RESUMEN

Potable reuse water is increasingly part of the water supply portfolio for municipalities facing water shortages, and toxicity assays can be useful for evaluating potable reuse water quality. We examined the Chinese hamster ovary cell acute direct genotoxicity of potable reuse waters contributed by disinfection byproducts (DBPs) and anthropogenic contaminants and used the local conventional drinking waters as benchmarks for evaluating potable reuse water quality. Our results showed that treatment trains based on reverse osmosis (RO) were more effective than RO-free treatment trains for reducing the genotoxicity of influent wastewaters. RO-treated reuse waters were less genotoxic than the local tap water derived from surface water, whereas reuse waters not treated by RO were similarly genotoxic as the local drinking waters when frequent replacement of granular activated carbon limited contaminant breakthrough. The genotoxicity contributed by nonvolatile, uncharacterized DBPs and anthropogenic contaminants accounted for ≥73% of the total genotoxicity. The (semi)volatile DBPs of current research interest contributed 2-27% toward the total genotoxicity, with unregulated DBPs being more important genotoxicity drivers than regulated DBPs. Our results underscore the need to look beyond known, (semi)volatile DBPs and the importance of determining whole water toxicity when assessing the quality of disinfected waters.


Asunto(s)
Cricetulus , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Células CHO , Contaminantes Químicos del Agua/toxicidad , Desinfección , Cricetinae , Pruebas de Mutagenicidad , Calidad del Agua , Abastecimiento de Agua
14.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38714013

RESUMEN

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Asunto(s)
Hormonas de Insectos , Ixodes , Neuropéptidos , Oligopéptidos , Ácido Pirrolidona Carboxílico , Receptores Acoplados a Proteínas G , Animales , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hormonas de Insectos/metabolismo , Hormonas de Insectos/genética , Ixodes/metabolismo , Ixodes/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Oligopéptidos/metabolismo , Oligopéptidos/genética , Oligopéptidos/química , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Filogenia , Secuencia de Aminoácidos , Cricetulus , Células CHO , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/genética
15.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38677570

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Asunto(s)
Analgésicos , Ganglios Espinales , Dolor , Zanthoxylum , Animales , Zanthoxylum/química , Humanos , Células HEK293 , Analgésicos/farmacología , Analgésicos/química , Analgésicos/aislamiento & purificación , Analgésicos/uso terapéutico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ratones , Masculino , Dolor/tratamiento farmacológico , Isoquinolinas/farmacología , Isoquinolinas/aislamiento & purificación , Isoquinolinas/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Alcaloides/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Inflamación/tratamiento farmacológico , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/química , Ratones Endogámicos C57BL , Cricetulus
16.
Biochemistry (Mosc) ; 89(3): 543-552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648771

RESUMEN

Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.


Asunto(s)
Síndrome de Brugada , Canal de Potasio ERG1 , Mutación con Ganancia de Función , Adulto , Animales , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Células CHO , Cricetulus , Electrocardiografía , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Mutación Missense
17.
Eur J Pharmacol ; 973: 176587, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642667

RESUMEN

Agonist-induced phosphorylation is a crucial step in the activation/deactivation cycle of G protein-coupled receptors (GPCRs), but direct determination of individual phosphorylation events has remained a major challenge. We have recently developed a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in 96-well plates, thus eliminating the need for western blot analysis. In the present study, we adapted this assay to three novel phosphosite-specific antibodies directed against the neurokinin 1 (NK1) receptor, namely pS338/pT339-NK1, pT344/pS347-NK1, and pT356/pT357-NK1. We found that substance P (SP) stimulated concentration-dependent phosphorylation of all three sites, which could be completely blocked in the presence of the NK1 receptor antagonist aprepitant. The other two endogenous ligands of the tachykinin family, neurokinin A (NKA) and neurokinin B (NKB), were also able to induce NK1 receptor phosphorylation, but to a much lesser extent than substance P. Interestingly, substance P promoted phosphorylation of the two distal sites more efficiently than that of the proximal site. The proximal site was identified as a substrate for phosphorylation by protein kinase C. Analysis of GPCR kinase (GRK)-knockout cells revealed that phosphorylation was mediated by all four GRK isoforms to similar extents at the T344/S347 and the T356/T357 cluster. Knockout of all GRKs resulted in abolition of all phosphorylation signals highlighting the importance of these kinases in agonist-mediated receptor phosphorylation. Thus, the 7TM phosphorylation assay technology allows for rapid and detailed analyses of GPCR phosphorylation.


Asunto(s)
Receptores de Neuroquinina-1 , Sustancia P , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-1/agonistas , Fosforilación/efectos de los fármacos , Humanos , Sustancia P/farmacología , Animales , Inmunoensayo/métodos , Cricetulus , Células CHO , Ratones , Antagonistas del Receptor de Neuroquinina-1/farmacología , Neuroquinina A/farmacología , Neuroquinina A/metabolismo
18.
Food Chem Toxicol ; 188: 114667, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653447

RESUMEN

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.


Asunto(s)
Compuestos de Bencidrilo , Cricetulus , Ácidos Grasos , Insulina , Fenoles , Transducción de Señal , Sulfonas , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Animales , Ratones , Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Ácidos Grasos/metabolismo , Células CHO , Sulfonas/toxicidad , Células 3T3-L1 , Disruptores Endocrinos/toxicidad , Resistencia a la Insulina , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos
19.
Sci Total Environ ; 930: 172834, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688374

RESUMEN

Dissolved black carbon (DBC), the soluble component of black carbon, which mainly comes from the incomplete combustion of fossil fuels or biomass, is widely spread in source water and significantly contributes to the formation of dissolved organic matter (DOM). However, the origin of DBC in different types of source water in China has not been well studied, as well as its subsequent transformation and toxicity contribution during disinfection of source water DOM by chlor(am)ine. In this study, DBC from 17 different source water in East China at different seasons was collected. The δ13C compositions indicated that straw burning was the main origin of DBC in source water. After simulated chlor(am)ination of DBC, 5 categories of aliphatic disinfection byproducts (DBPs) including trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, halonitromethanes and 6 categories of aromatic DBPs including halophenols, halonitrophenols, halohydroxybenzaldehyde, halohydroxybenzoic acid, halobenzoquinones and haloaniline were detected. Compared with chlorination of DBC, higher levels of nitrogenous DBPs and aromatic DBPs were generated during chloramination. Detected DBPs accounted for 42 % of total organic halogen. What's more, Chinese hamster ovary cells cytotoxicity tests showed that the cytotoxicity of DBPs formed by chlor(am)ination of DBC was 4 times higher than that by chlor(am)ination of DOM. Haloacetonitriles contributed to the highest cytotoxicity in the chloramination of DBC, and haloacetic acids contributed to the highest cytotoxicity in chlorination. 67 % of the total cytotoxicity attributed to the undetected DBPs. As a result, DBPs generated from DBC contributed to 11.7 % of the total cytotoxicity in the chlor(am)ination of the source water DOM although DBC only took up 2 % of DOC in the source water. Results obtained from this study systematically revealed the DBPs formation from DBC and their potential cytotoxicity contribution in the chlor(am)ination of source water DOM, which should not be ignored in drinking water treatment.


Asunto(s)
Cricetulus , Desinfectantes , Desinfección , Contaminantes Químicos del Agua , Desinfectantes/análisis , Desinfectantes/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Células CHO , China , Animales , Purificación del Agua/métodos , Carbono/análisis , Halogenación
20.
Anal Bioanal Chem ; 416(14): 3325-3333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38592443

RESUMEN

Extracellular vesicles (EVs) have garnered much interest due to their fundamental role in intracellular communication and their potential utility in clinical diagnostics and as biotherapeutic vectors. Of particular relevance is the subset of EVs referred to as exosomes, ranging in size from 30 to 150 nm, which contain incredible amounts of information about their cell of origin, which can be used to track the progress of disease. As a complementary action, exosomes can be engineered with therapeutic cargo to selectively target diseases. At present, the lack of highly efficient methods of isolation/purification of exosomes from diverse biofluids, plants, and cell cultures is a major bottleneck in the fundamental biochemistry, clinical analysis, and therapeutic applications. Equally impactful, the lack of effective in-line means of detection/characterization of isolate populations, including concentration and sizing, is limiting in the applications. The method presented here couples hydrophobic interaction chromatography (HIC) performed on polyester capillary-channeled polymer (C-CP) fiber columns followed by in-line optical absorbance and multi-angle light scattering (MALS) detection for the isolation and characterization of EVs, in this case present in the supernatant of Chinese hamster ovary (CHO) cell cultures. Excellent correlation was observed between the determined particle concentrations for the two detection methods. C-CP fiber columns provide a low-cost platform (< $5 per column) for the isolation of exosomes in a 15-min workflow, with complementary absorbance and MALS detection providing very high-quality particle concentration and sizing information.


Asunto(s)
Cricetulus , Exosomas , Exosomas/química , Animales , Células CHO , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Dispersión de Radiación , Cricetinae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA