Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
1.
Food Res Int ; 192: 114766, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147487

RESUMEN

Traditional ice is usually employed to preserve food freshness and extend shelf life. However, ice cannot bear repeated freeze - thaw cycles during the transportation and retailing process, resulting in microbial cross-contamination and spoilage of foods. Herein, succinoglycan riclin was oxidated (RO) and crosslinked with gelatin (Ge), the Ge-RO cryogels were prepared via Schiff base reaction and three freeze - thaw cycles. The Ge-RO cryogels showed improved storage modulus (G') and thermal stability compared with pure gelatin hydrogel. The polymer framework of Ge-RO gels exhibited stable properties against ice crystals destructions during nine freeze - thaw treatments. During the storage and repeated freeze - thaw treatments of shrimps, Ge-RO cryogels exhibited a remarkable preservation effect on shrimps, and their freshness was evaluated using an electronic nose technique equipped with ten sensors. The results demonstrated that the shrimp muscle preserved in ice generated off-odors and resulted in high sensor responses. The sensor responses were reduced sharply of shrimps preserved in cryogels. Moreover, 1H NMR-based metabolomics analysis revealed that shrimps in Ge-RO cryogels group reversed the metabolic perturbations compared with the traditional ice group, the metabolic pathways were related to energy metabolism, nucleotide metabolism, and amino acid metabolism, which provide new clues to the freshness of shrimps. Furthermore, RO exhibited superior antimicrobial activity against E. coli and S. aureus microorganisms. Thus, the crosslinked cryogels are potentially applicable to food preservation, offering sustainable and reusable solutions against traditional ice.


Asunto(s)
Criogeles , Conservación de Alimentos , Gelatina , Animales , Gelatina/química , Conservación de Alimentos/métodos , Criogeles/química , Hielo , Penaeidae , Oxidación-Reducción , Mariscos/microbiología , Congelación , Nariz Electrónica , Almacenamiento de Alimentos/métodos , Escherichia coli/efectos de los fármacos
2.
Mikrochim Acta ; 191(8): 499, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088080

RESUMEN

The main goal of our study is to demonstrate the applicability of the PPy-cryogel-modified electrodes for electrochemical detection of DNA. First, a polysaccharide-based cryogel was synthesized. This cryogel was then used as a template for chemical polypyrrole synthesis. This prepared polysaccharide-based conductive cryogel was used for electrochemical biosensing on DNA. Carrageenan (CG) and sodium alginate (SA) polysaccharides, which stand out as biocompatible materials, were used in cryogel synthesis. Electron transfer was accelerated by polypyrrole (PPy) synthesized in cryogel networks. A 2B pencil graphite electrode with a diameter of 2.00 mm was used as a working electrode. The prepared polysaccharide solution was dropped onto a working electrode as a support material to improve the immobilization capacity of biomolecules and frozen to complete the cryogelation step. PPy synthesis was performed on the electrodes whose cryogelation process was completed. In addition, the structures of cryogels synthesized on the electrode surface were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Surface characterization of the modified electrodes was performed by energy-dispersive X-ray spectroscopy (EDX) analysis. Electrochemical determination of fish sperm DNA (fsDNA) was performed using a PPy-cryogel-modified electrode. The use of a porous 3D cryogel intermediate material enhanced the signal by providing a large surface area for the synthesis of PPy and increasing the biomolecule immobilization capacity. The detection limit was 0.98 µg mL-1 in the fsDNA concentration range 2.5-20 µg mL-1. The sensitivity of the DNA biosensor was estimated to 14.8 µA mM-1 cm-2. The stability of the biosensor under certain storage conditions was examined and observed to remain 66.95% up to 45 days.


Asunto(s)
Alginatos , Técnicas Biosensibles , Criogeles , ADN , Técnicas Electroquímicas , ADN/química , Técnicas Electroquímicas/métodos , Animales , Criogeles/química , Alginatos/química , Técnicas Biosensibles/métodos , Electrodos , Peces , Masculino , Carragenina/química , Polisacáridos/química , Polisacáridos/análisis , Pirroles/química , Espermatozoides/química , Límite de Detección , Polímeros
3.
J Agric Food Chem ; 72(28): 15959-15970, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954479

RESUMEN

The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.


Asunto(s)
Química Clic , Criogeles , Salmonella , Staphylococcus aureus , Criogeles/química , Staphylococcus aureus/aislamiento & purificación , Animales , Salmonella/aislamiento & purificación , Porosidad , Leche/microbiología , Leche/química , Ácidos Borónicos/química , Bovinos , Metacrilatos/química
4.
Biomed Mater ; 19(5)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39025110

RESUMEN

The entangled assembly of bacterial cellulose (BC) nanofibers does not provide a three-dimensional (3D) macroporous structure for cellular infiltration thus hindering its use as a scaffold for bone tissue engineering. In addition, it is difficult to achieve uniform dispersion of bioactive agents in entangled BC nanofibers. To address this, the BC nanofibers were integrated with MXene, a two-dimensional nanomaterial known for its electrical signaling and mechanical strength, along with sodium alginate to form cryogel. The cryogel was fabricated using a cross-linking to enhance its mechanical properties, pores for cellular infilteration. MXene incorporation not only increased water absorption (852%-1446%) and retention (692%-973%) ability but also significantly improved the compressive stress (0.85 MPa-1.43 MPa) and modulus (0.22 MPa-1.17 MPa) confirming successful MXene reinforcement in cryogel. Biological evaluation revealed that the optimum concentration of MXene increased the cell proliferation and the osteogenic role of fabricated scaffolds was also confirmed through osteogenic gene expressions. The macropores in reconstructed MXene-BC-based cryogel provided ample space for cellular proliferation. The osteogenic role of the scaffold was examined through various gene expressions. The Quantitative polymerase chain reaction revealed that MXene-loaded scaffolds especially in low concentration, had an obvious osteogenic effect hence concluding that BC can not only be reconstructed into the desired form but osteogenic property can be induced. These findings can open a new way of reconstructing BC into a more optimal structure to overcome its structural limitations and retain its natural bioactivities.


Asunto(s)
Alginatos , Huesos , Proliferación Celular , Celulosa , Fuerza Compresiva , Criogeles , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Alginatos/química , Criogeles/química , Celulosa/química , Andamios del Tejido/química , Porosidad , Nanofibras/química , Ensayo de Materiales , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Estrés Mecánico , Humanos , Animales
5.
Biomed Mater ; 19(5)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39025109

RESUMEN

Tissue engineering aims to improve or restore damaged tissues by using scaffolds, cells and bioactive agents. In tissue engineering, one of the most important concepts is the scaffold because it has a key role in keeping up and promoting the growth of the cells. It is also desirable to be able to load these scaffolds with drugs that induce tissue regeneration/formation. Based on this, in our study, gelatin cryogel scaffolds were developed for potential bone tissue engineering applications and simvastatin loading and release studies were performed. Simvastatin is lipoliphic in nature and this form is called inactive simvastatin (SV). It is modified to be in hydrophilic form and converted to the active form (SVA). For our study's drug loading and release process, simvastatin was used in both inactive and active forms. The blank cryogels and drug-loaded cryogels were prepared at different glutaraldehyde concentrations (1, 2, and 3%). The effect of the crosslinking agent and the amount of drug loaded were discussed with morphological and physicochemical analysis. As the glutaraldehyde concentration increased gradually, the pores size of the cryogels decreased and the swelling ratio decreased. For the release profile of simvastatin in both forms, we can say that it depended on the form (lipophilic and hydrophilic) of the loaded simvastatin.


Asunto(s)
Huesos , Criogeles , Gelatina , Simvastatina , Ingeniería de Tejidos , Andamios del Tejido , Simvastatina/química , Simvastatina/farmacología , Ingeniería de Tejidos/métodos , Gelatina/química , Criogeles/química , Andamios del Tejido/química , Porosidad , Ensayo de Materiales , Regeneración Ósea/efectos de los fármacos , Materiales Biocompatibles/química , Humanos , Reactivos de Enlaces Cruzados/química
6.
Carbohydr Polym ; 342: 122340, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048188

RESUMEN

The present study reports on the valorisation of starch waste biomass to produce dual-active cryogels and hydrogels able to adsorb water and deliver antimicrobial substances for fresh food packaging applications. Starch hydrogels were prepared by oxidation with sodium metaperiodate in water and mild conditions, while cryogels were obtained by freeze-drying process. To explore the role of starch composition on the final properties of materials, two starches differing in amylose/amylopectin ratio, were evaluated. The prepared materials were microstructurally and morphologically characterized by FTIR and NMR spectroscopy (1D, 2D, and DOSY experiments), and SEM microscopy. To provide the materials with active properties, they were loaded with antimicrobial molecules by absorption, or by crosslinking via Schiff-base reaction. All materials demonstrated high water absorption capacity and ability to deliver volatile molecules, including diacetyl and complex mixtures like mint essential oil. The release profiles of the adsorbed molecules were determined through quantitative NMR spectroscopy over time. The antibacterial activity was successfully demonstrated against Gram-positive bacterial strains for unloaded cryogels and hydrogels, and after loading with diacetyl and essential oil. The developed materials can be regarded as part of active pads for food packaging applications capable to control moisture inside the package and inhibit microbial contamination.


Asunto(s)
Antibacterianos , Criogeles , Embalaje de Alimentos , Hidrogeles , Almidón , Embalaje de Alimentos/métodos , Criogeles/química , Hidrogeles/química , Hidrogeles/farmacología , Almidón/química , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Bacterias Grampositivas/efectos de los fármacos , Agua/química
7.
Biomacromolecules ; 25(8): 5081-5097, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38990059

RESUMEN

Biobased porous hydrogels enriched with phytocompounds-rich herbal extracts have aroused great interest in recent years, especially in healthcare. In this study, new macroporous hybrid cryogel constructs comprising thiourea-containing chitosan (CSTU) derivative and a Hypericum perforatum L. extract (HYPE), commonly known as St John's wort, were prepared by a facile one-pot ice-templating strategy. Benefiting from the strong interactions between the functional groups of the CSTU matrix and those of polyphenols in HYPE, the hybrid cryogels possess excellent liquid absorption capacity, mechanical resilience, antioxidant performance, and a broad spectrum of antibacterial activity simultaneously. Thus, owing to their design, the hybrid constructs exhibit an interconnected porous architecture with the ability to absorb over 33 and 136 times their dry weight, respectively, when contacted with a phosphate buffer solution (pH 7.4) and an acidic aqueous solution (pH 2). These cryogel constructs have extremely high compressive strengths ranging from 839 to 1045 kPa and withstand elevated strains of over 70% without developing fractures. Moreover, the water-swollen hybrid cryogels with the highest HYPE content revealed a complete and instant shape recovery after uniaxial compression. The incorporation of HYPE into CSTU cryogels enabled substantial improvement in scavenging reactive oxygen species and an expanded antibacterial spectrum toward multiple pathogens, including Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungi (Candida albicans). Cell viability experiments demonstrated the cytocompatibility of the 3D cryogel constructs, which did not induce changes in the fibroblast morphology. This work showcases a simple and effective strategy to immobilize HYPE extracts on CSTU 3D networks, allowing the development of novel multifunctional platforms with promising potential in hemostasis, wound dressing, and dermal regeneration scaffolds.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Quitosano , Criogeles , Hypericum , Extractos Vegetales , Quitosano/química , Quitosano/farmacología , Hypericum/química , Criogeles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Ratones , Porosidad , Staphylococcus aureus/efectos de los fármacos , Fuerza Compresiva , Antioxidantes/farmacología , Antioxidantes/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo
8.
Carbohydr Polym ; 340: 122217, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857997

RESUMEN

Iodine (I2) as a broad-spectrum antiseptic has been widely used for treating bacterial infections. However, I2 has low water-solubility and sublimes under ambient conditions, which limits its practical antibacterial applications. The highly specific and sensitive reaction between I2 and starch discovered 200 years ago has been extensively applied in analytical chemistry, but the antibacterial activity of the I2-starch complex is rarely investigated. Herein, we develop a novel type of iodine-based antiseptics, iodine-soluble starch (I2-SS) cryogel, which can dissolve in water instantly and almost completely kill bacteria in 10 min at 2 µg/mL of I2. Although KI3 and the commercially available povidone­iodine (I2-PVP) solutions show similar antibacterial efficacy, the high affinity of I2 to SS largely enhances the shelf stability of the I2-SS solution with ∼73 % I2 left after one-week storage at room temperature. In sharp contrast, ∼8.5 % and âˆ¼2.5 % I2 are detected in KI3 and I2-PVP solutions, respectively. Mechanistic study reveals that the potent antibacterial effect of I2-SS originates from its attack on multiple bacterial targets. The outstanding antibacterial activity, capability of accelerating wound healing, and good biocompatibility of I2-SS are verified through further in vivo experiments. This work may promote the development of next-generation iodine-based antiseptics for clinical use.


Asunto(s)
Antibacterianos , Antiinfecciosos Locales , Criogeles , Yodo , Solubilidad , Almidón , Agua , Yodo/química , Yodo/farmacología , Almidón/química , Almidón/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/química , Agua/química , Criogeles/química , Animales , Staphylococcus aureus/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Povidona Yodada/química , Povidona Yodada/farmacología , Escherichia coli/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
9.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917835

RESUMEN

Mucilage is a natural source of polysaccharides that has recently attracted attention for use in biomaterial production. It attracts attention with its easy and fast extraction, biocompatibility, high water retention capacity, and biodegradability. Although there are studies on the characterization of mucilage obtained from different plant sources, the interaction of this polymer with other polymers and its potential to form new biomaterials have not yet been sufficiently investigated. Based on this, in this study, the potential of mucilage extracted from flaxseed for the production of cryogels for tissue engineering applications was demonstrated. Firstly, yield, basic physicochemical properties, morphology, and surface charge-dependent isoelectric point determination studies were carried out for the characterization of the extracted mucilage. The successful preparation of mucilage was evaluated for the construction of cryo-scaffolds and 3D, spongy, and porous structures were obtained in the presence of chitosan and polyvinyl alcohol polymers. A heterogeneous morphology with interconnected macro and micro porosity in the range of approximately 85-115 m pore diameter was exhibited. Due to the high hydrophilic structure of the mucilage, which is attached to the structure with weak hydrogen bonds, the contact angle values of the scaffolds were obtained below 80° and they showed the ability to absorb 1000 times their dry weight in approximately 30 min. As a preliminary optimization study for the evaluation of mucilage in cryogel formation, this work introduced a new construct to be developed as wound dressing scaffold for deep and chronic wounds.


Asunto(s)
Materiales Biocompatibles , Lino , Mucílago de Planta , Semillas , Ingeniería de Tejidos , Andamios del Tejido , Lino/química , Andamios del Tejido/química , Porosidad , Semillas/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Mucílago de Planta/química , Criogeles/química , Quitosano/química , Ensayo de Materiales , Polisacáridos/química , Alcohol Polivinílico/química , Polímeros/química
10.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928208

RESUMEN

Unfractionated heparin (UFH) and its low-molecular-weight fragments (LMWH) are widely used as anticoagulants for surgical procedures and extracorporeal blood purification therapies such as cardiovascular surgery and dialysis. The anticoagulant effect of heparin is essential for the optimal execution of extracorporeal blood circulation. However, at the end of these procedures, to avoid the risk of bleeding, it is necessary to neutralize it. Currently, the only antidote for heparin neutralization is protamine sulphate, a highly basic protein which constitutes a further source of serious side events and is ineffective in neutralizing LMWH. Furthermore, dialysis patients, due to the routine administration of heparin, often experience serious adverse effects, among which HIT (heparin-induced thrombocytopenia) is one of the most severe. For this reason, the finding of new heparin antagonists or alternative methods for heparin removal from blood is of great interest. Here, we describe the synthesis and characterization of a set of biocompatible macroporous cryogels based on poly(2-hydroxyethyl methacrylate) (pHEMA) and L-lysine with strong filtering capability and remarkable neutralization performance with regard to UFH and LMWH. These properties could enable the design and creation of a filtering device to rapidly reverse heparin, protecting patients from the harmful consequences of the anticoagulant.


Asunto(s)
Anticoagulantes , Criogeles , Heparina , Lisina , Heparina/química , Heparina/efectos adversos , Humanos , Criogeles/química , Anticoagulantes/química , Lisina/química , Heparina de Bajo-Peso-Molecular/química , Antagonistas de Heparina/química
11.
Biomacromolecules ; 25(7): 4394-4405, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859583

RESUMEN

Combination immunotherapy is being increasingly explored for cancer treatment, leading to various vector materials for the codelivery of immune agents and drugs. However, current tumor vaccines exhibit poor immunogenicity, severely compromising their therapeutic efficacy. Herein, an injectable hydrogel was developed based on dopamine (DA) and Panax notoginseng polysaccharide (PNPS) loaded with hair microparticles (HMPs) to enhance the immunogenicity of tumor vaccines. Photothermal effects of incorporated HMPs can trigger immunogenic cancer cell death and the release of abundant autologous tumor antigens, which are captured by catechol groups. Concomitant breakdown of PNPS recruits and activates dendritic cells (DCs). The macroporous structure of cryogels allows immune cell infiltration and interaction with antigens adsorbed on PNPS and DA cryogels (PD cryogels), thereby provoking potent cytotoxic T-cell responses. Hence, PD cryogels enabling cell infiltration and accelerated DC maturation may serve as a therapeutic vaccination platform against cancer.


Asunto(s)
Vacunas contra el Cáncer , Criogeles , Células Dendríticas , Panax notoginseng , Polisacáridos , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Criogeles/química , Criogeles/farmacología , Panax notoginseng/química , Animales , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Células Dendríticas/inmunología , Humanos , Femenino , Ratones Endogámicos C57BL , Línea Celular Tumoral
12.
Food Chem ; 457: 140153, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908240

RESUMEN

The objective of this study was to investigate the physicochemical, structural, and in vitro release properties of carboxymethyl cellulose (CMC)-based cryogel beads incorporating resveratrol-loaded microparticles (MP) for colon-targeted delivery system. CMC-based cryogel beads were produced by ionic cross-linking with different concentrations (2%, 3%, and 4%) of AlCl3. Based on FE-SEM images, CMC-based cryogel beads showed a smoother surface and more compact internal structure with increasing AlCl3 concentrations, which was proven to be due to the new cross-linking between the -COO- group of CMC and Al3+ by FT-IR analysis. The encapsulation efficiency of the cryogel beads was significantly increased from 79.48% to 85.74% by elevating the concentrations of AlCl3 from 2% to 4%, respectively. In vitro release study showed that all CMC-based cryogel beads had higher stability for resveratrol than MP in simulated gastric conditions and can efficiently deliver resveratrol to colon without the premature release.


Asunto(s)
Carboximetilcelulosa de Sodio , Colon , Criogeles , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Resveratrol , Resveratrol/química , Resveratrol/administración & dosificación , Carboximetilcelulosa de Sodio/química , Criogeles/química , Colon/metabolismo , Colon/química , Portadores de Fármacos/química , Humanos , Liberación de Fármacos , Tamaño de la Partícula , Microesferas
13.
Biomacromolecules ; 25(6): 3464-3474, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743442

RESUMEN

Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.


Asunto(s)
Criogeles , Criogeles/química , Porosidad , Péptidos/química , Hidrogeles/química , Hidrogeles/síntesis química , Materiales Biocompatibles/química , Polimerizacion , Polímeros/química , Fuerza Compresiva , Matriz Extracelular/química
14.
Bioelectrochemistry ; 158: 108725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714062

RESUMEN

An enzymatic amperometric uric acid (UA) biosensor was successfully developed by modifying a screen-printed carbon electrode (SPCE) with Prussian blue-poly(3,4-ethylene dioxythiophene) polystyrene sulfonate composite (PB-PEDOT:PSS). The modified SPCE was coated with gold nanoparticles-graphene oxide-chitosan composite cryogel (AuNPs-GO-CS cry). Uricase (UOx) was directly immobilized via chemisorption on AuNPs. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical characterization of the modified electrode was performed by cyclic voltammetry and electrochemical impedance spectroscopy. UA was determined using amperometric detection based on the reduction current of PB which was correlated with the amount of H2O2 produced during the enzymatic reaction. Under optimal conditions, the fabricated UA biosensor in a flow injection analysis (FIA) system produced a linear range from 5.0 to 300 µmol L-1 with a detection limit of 1.88 µmol L-1. The proposed sensor was stable for up to 221 cycles of detection and analysis was rapid (2 min), with good reproducibility (RSDs < 2.90 %, n = 6), negligible interferences, and recoveries from 94.0 ± 3.9 to 101.1 ± 2.6 %. The results of UA detection in blood plasma were in agreement with the enzymatic colorimetric method (P > 0.05).


Asunto(s)
Técnicas Biosensibles , Criogeles , Electrodos , Oro , Grafito , Límite de Detección , Nanopartículas del Metal , Ácido Úrico , Técnicas Biosensibles/métodos , Ácido Úrico/sangre , Ácido Úrico/análisis , Oro/química , Grafito/química , Criogeles/química , Nanopartículas del Metal/química , Carbono/química , Polímeros/química , Porosidad , Análisis de Inyección de Flujo , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Quitosano/química , Poliestirenos/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Urato Oxidasa/química , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Ferrocianuros/química
15.
Int J Biol Macromol ; 270(Pt 2): 132174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750842

RESUMEN

Hydrogels containing catechol group have received attention in the biomedical field due to their robust adhesive/cohesive capabilities, biocompatibility, and hemostatic abilities. Catechol-functionalized chitosan holds promise for preparing self-assembly hydrogels. However, issues of inefficient gelation and instability still persist in these hydrogels. In the current study, we synthesized chitosan catechol (CC) of high catechol substitution (∼28 %) and combined CC with tannic acid (TA, which also contains catechol) to form self-healing CC-TA hydrogels. The catechol-enriched CC-TA composite hydrogels showed rapid gelation and mechanical reinforcement (shear modulus ∼110 Pa). In situ coherent small-angle X-ray scattering (SAXS) coupled with rheometry revealed a morphological feature of mesoscale clusters (∼20 nm) within CC-TA hydrogel. The clusters underwent dynamic destruction under large-amplitude oscillatory shear, corresponding with the strain-dependent and self-healing behavior of the CC-TA hydrogel. The composite hydrogel had osmotic-responsive and notable adhesive properties. Meanwhile, CC-TA composite cryogel prepared simply through freeze-thawing procedures exhibited distinctive macroporous structure (∼200 µm), high water swelling ratio (∼7000 %), and favorable compressive modulus (∼8 kPa). The sponge-like cryogel was fabricated into swabs, demonstrating hemostatic capacity. The CC-TA composites, in both hydrogel and cryogel forms, possessed ROS scavenging ability, antimicrobial activity, and cell compatibility with potentials in biological applications.


Asunto(s)
Catecoles , Quitosano , Criogeles , Hemostáticos , Hidrogeles , Taninos , Quitosano/química , Quitosano/farmacología , Catecoles/química , Catecoles/farmacología , Taninos/química , Taninos/farmacología , Criogeles/química , Hidrogeles/química , Hidrogeles/farmacología , Hemostáticos/química , Hemostáticos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Animales , Reología
16.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38772344

RESUMEN

Lentiviral transduction is widely used in research, has shown promise in clinical trials involving gene therapy and has been approved for CAR-T cell immunotherapy. However, most modifications are doneex vivoand rely on systemic administration of large numbers of transduced cells for clinical applications. A novel approach utilizingin situbiomaterial-based gene delivery can reduce off-target side effects while enhancing effectiveness of the manipulation process. In this study, poly(ethylene glycol) diacrylate (PEGDA)-based scaffolds were developed to enablein situlentivirus-mediated transduction. Compared to other widely popular biomaterials, PEGDA stands out due to its robustness and cost-effectiveness. These scaffolds, prepared via cryogelation, are capable of flowing through surgical needles in bothin vitroandin vivoconditions, and promptly regain their original shape. Modification with poly(L-lysine) (PLL) enables lentivirus immobilization while interconnected macroporous structure allows cell infiltration into these matrices, thereby facilitating cell-virus interaction over a large surface area for efficient transduction. Notably, these preformed injectable scaffolds demonstrate hemocompatibility, cell viability and minimally inflammatory response as shown by ourin vitroandin vivostudies involving histology and immunophenotyping of infiltrating cells. This study marks the first instance of using preformed injectable scaffolds for delivery of lentivectors, which offers a non-invasive and localized approach for delivery of factors enablingin situlentiviral transduction suitable for both tissue engineering and immunotherapeutic applications.


Asunto(s)
Criogeles , Técnicas de Transferencia de Gen , Lentivirus , Polietilenglicoles , Polietilenglicoles/química , Criogeles/química , Humanos , Lentivirus/genética , Animales , Supervivencia Celular/efectos de los fármacos , Andamios del Tejido/química , Transducción Genética , Ratones , Materiales Biocompatibles/química , Terapia Genética/métodos , Propiedades de Superficie , Inyecciones , Polilisina/química
17.
J Chromatogr A ; 1727: 464996, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763087

RESUMEN

Supermacroporous composite cryogels with enhanced adjustable functionality have received extensive interest in bioseparation, tissue engineering, and drug delivery. However, the variations in their components significantly impactfinal properties. This study presents a two-step hybrid machine learning approach for predicting the properties of innovative poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose (pHEMA-PVA-BC) based on their compositions. By considering the ratios of HEMA (1.0-22.0 wt%), PVA (0.2-4.0 wt%), poly(ethylene glycol) diacrylate (1.0-4.5 wt%), BC (0.1-1.5 wt%), and water (68.0-96.0 wt%) as investigational variables, overlay sampling uniform design (OSUD) was employed to construct a high-quality dataset for model development. The random forest (RF) model was used to classify the preparation conditions. Then four models of artificial neural network, RF, gradient boosted regression trees (GBRT), and XGBoost were developed to predict the basic properties of the composite cryogels. The results showed that the RF model achieved an accurate three-class classification of preparation conditions. Among the four models, the GBRT model exhibited the best predictive performance of the basic properties, with the mean absolute percentage error of 16.04 %, 0.85 %, and 2.44 % for permeability, effective porosity, and height of theoretical plate (1.0 cm/min), respectively. Characterization results of the representative pHEMA-PVA-BC composite cryogel showed an effective porosity of 81.01 %, a permeability of 1.20 × 10-12 m2, and a range of height of theoretical plate between 0.40-0.49 cm at flow velocities of 0.5-3.0 cm/min. These indicate that the pHEMA-PVA-BC cryogel was an excellent material with supermacropores, low flow resistance and high mass transfer efficiency. Furthermore, the model output demonstrates that the alteration of the proportions of PVA (0.2-3.5 wt%) and BC (0.1-1.5 wt%) components in composite cryogels resulted in significant changes in the material basic properties. This work represents an attempt to efficiently design and prepare target composite cryogels using machine learning and providing valuable insights for the efficient development of polymers.


Asunto(s)
Celulosa , Criogeles , Aprendizaje Automático , Polihidroxietil Metacrilato , Alcohol Polivinílico , Criogeles/química , Alcohol Polivinílico/química , Polihidroxietil Metacrilato/química , Celulosa/química , Porosidad , Redes Neurales de la Computación
18.
ACS Biomater Sci Eng ; 10(5): 3017-3028, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38655791

RESUMEN

Macroporous cryogels are attractive scaffolds for biomedical applications, such as biomolecular immobilization, diagnostic sensing, and tissue engineering. In this study, thiol-reactive redox-responsive cryogels with a porous structure are prepared using photopolymerization of a pyridyl disulfide poly(ethylene glycol) methacrylate (PDS-PEG-MA) monomer. Reactive cryogels are produced using PDS-PEG-MA and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) monomers, along with a PEG-based cross-linker and photoinitiator. Functionalization of cryogels using a fluorescent dye via the disulfide-thiol exchange reactions is demonstrated, followed by release under reducing conditions. For ligand-mediated protein immobilization, first, thiol-containing biotin or mannose is conjugated onto the cryogels. Subsequently, fluorescent dye-labeled proteins streptavidin and concanavalin A (ConA) are immobilized via ligand-mediated conjugation. Furthermore, we demonstrate that the mannose-decorated cryogel could capture ConA selectively from a mixture of lectins. The efficiency of protein immobilization could be easily tuned by changing the ratio of the thiol-sensitive moiety in the scaffold. Finally, an integrin-binding cell adhesive peptide is attached to cryogels to achieve successful attachment, and the on-demand detachment of integrin-receptor-rich fibroblast cells is demonstrated. Redox-responsive cryogels can serve as potential scaffolds for a variety of biomedical applications because of their facile synthesis and modification.


Asunto(s)
Criogeles , Oxidación-Reducción , Polietilenglicoles , Criogeles/química , Polietilenglicoles/química , Animales , Concanavalina A/química , Concanavalina A/metabolismo , Metacrilatos/química , Ratones , Manosa/química , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Compuestos de Sulfhidrilo/química , Estreptavidina/química , Estreptavidina/metabolismo , Proteínas/química , Proteínas/metabolismo , Biotina/química , Biotina/metabolismo , Biotina/análogos & derivados , Porosidad
19.
ACS Appl Mater Interfaces ; 16(15): 18386-18399, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591243

RESUMEN

Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.


Asunto(s)
Criogeles , Impresión Tridimensional , Humanos , Criogeles/química , Anisotropía , Adipocitos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
20.
Nitric Oxide ; 146: 48-57, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579898

RESUMEN

The highly porous morphology of chitosan cryogels, with submicrometric-sized pore cell walls, provides a large surface area which leads to fast water absorption and elevated swelling degrees. These characteristics are crucial for the applications of nitric oxide (NO) releasing biomaterials, in which the release of NO is triggered by the hydration of the material. In the present study, we report the development of chitosan cryogels (CS) with a porous structure of interconnected cells, with wall thicknesses in the range of 340-881 nm, capable of releasing NO triggered by the rapid hydration process. This property was obtained using an innovative strategy based on the functionalization of CS with two previously synthesized S-nitrosothiols: S-nitrosothioglycolic acid (TGA(SNO)) and S-nitrosomercaptosuccinic acid (MSA(SNO)). For this purpose, CS was previously methacrylated with glycidyl methacrylate and subsequently submitted to photocrosslinking and freeze-drying processes. The photocrosslinked hydrogels thus obtained were then functionalized with TGA(SNO) and MSA(SNO) in reactions mediated by carbodiimide. After functionalization, the hydrogels were frozen and freeze-dried to obtain porous S-nitrosated chitosan cryogels with high swelling capacities. Through chemiluminescence measurements, we demonstrated that CS-TGA(SNO) and CS-MSA(SNO) cryogels spontaneously release NO upon water absorption at rates of 3.34 × 10-2 nmol mg-1 min-1 and 1.27 × 10-1 nmol mg-1 min-1, respectively, opening new perspectives for the use of CS as a platform for localized NO delivery in biomedical applications.


Asunto(s)
Quitosano , Criogeles , Óxido Nítrico , Quitosano/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Criogeles/química , Porosidad , Procesos Fotoquímicos , Reactivos de Enlaces Cruzados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA