Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.279
Filtrar
1.
Science ; 384(6697): 781-785, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38753795

RESUMEN

Colloidal self-assembly allows rational design of structures on the micrometer and submicrometer scale. One architecture that can generate complete three-dimensional photonic bandgaps is the diamond cubic lattice, which has remained difficult to realize at length scales comparable with the wavelength of visible or ultraviolet light. In this work, we demonstrate three-dimensional photonic crystals self-assembled from DNA origami that act as precisely programmable patchy colloids. Our DNA-based nanoscale tetrapods crystallize into a rod-connected diamond cubic lattice with a periodicity of 170 nanometers. This structure serves as a scaffold for atomic-layer deposition of high-refractive index materials such as titanium dioxide, yielding a tunable photonic bandgap in the near-ultraviolet.


Asunto(s)
ADN , Fotones , Titanio , ADN/química , Titanio/química , Cristalización , Diamante/química , Nanoestructuras/química , Coloides/química , Conformación de Ácido Nucleico
2.
Chem Pharm Bull (Tokyo) ; 72(5): 471-474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38749738

RESUMEN

The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.


Asunto(s)
Ranitidina , Ranitidina/química , Cristalización , Estructura Molecular , Electrones
3.
AAPS PharmSciTech ; 25(5): 114, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750299

RESUMEN

There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions. Distinct behaviors emerge in the cases of Peroxydone™ complex and UHP. The partially crystalline (PC-VEN) form proves more stable with Peroxydone™, while the amorphous form (A-VEN) shows enhanced stability with UHP. N-oxide VEN, a significant degradation product, varies between these cases, reflecting the impact of different oxidative stress conditions. Peroxydone™ complex demonstrates higher reproducibility and stability, making it a promising option for screening impurities in solid-state oxidative stress scenarios. This research not only contributes to the understanding of VEN's stability in solid-state but also aids formulators in anticipating excipient incompatibilities owing to presence of reactive impurities (peroxides) and oxidation in the final dosage form.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Cristalización , Estabilidad de Medicamentos , Excipientes , Oxidación-Reducción , Sulfonamidas , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Cristalización/métodos , Sulfonamidas/química , Excipientes/química , Estrés Oxidativo , Química Farmacéutica/métodos , Temperatura
4.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714634

RESUMEN

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Asunto(s)
Cristalización , Griseofulvina , Polímeros , Temperatura de Transición , Griseofulvina/química , Cristalización/métodos , Polímeros/química , Estabilidad de Medicamentos , Enlace de Hidrógeno , Polivinilos/química , Polietilenglicoles/química , Povidona/química , Vidrio/química
5.
Cryo Letters ; 45(3): 185-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709190

RESUMEN

BACKGROUND: Characterization of intracellular ice formation (IIF) in oocytes during the freezing and thawing processes will contribute to optimizing their cryopreservation. However, the observation of the ice formation process in oocytes is limited by the spatiotemporal resolution of the cryomicroscope systems. OBJECTIVE: To observe the intracellular icing of oocytes during cooling and rewarming, and to study the mechanism of formation and growth of intracellular ice in oocytes. MATERIALS AND METHODS: Mouse oocytes were frozen at different cooling rates to induce intracellular ice formation using a cryomicroscopy system consisting of a microscope equipped with a cryogenic cold stage, an automatic cooling system, a temperature control system, and a high-speed camera. The growth patterns of intracellular ice in oocytes were analyzed from the images recorded. Finally, the growth rate of intracellular ice formation in oocytes was calculated using an automatic intracellular ice tracking method. RESULTS: The IIF temperature decreased gradually with the increase in cooling rate. Initiation sites of IIF could be classified into three categories: marginal type, internal type and coexisting type. There was a strong predominance for ice crystal initiation site in the oocytes, with up to 80% of the initiation sites located in the marginal region. The intracellular ice growth modes of darkening and twitching cells were characterized by "spreading" and "clustering", respectively. In addition, twitching cells started to recrystallize during rewarming, while darkening cells did not. The instantaneous maximal growth rate of ice crystals in twitching cells was about 10 times higher than that in darkening cells. CONCLUSION: By visualising the growth of ice crystals in mouse oocytes during cooling and rewarming, we obtained valuable information on the kinetics of ice formation and melting in these cells. This information can help us understand how ice formation and melting affect the viability and quality of oocytes after cryopreservation. Doi.org/10.54680/fr24310110412.


Asunto(s)
Criopreservación , Hielo , Oocitos , Animales , Ratones , Oocitos/citología , Oocitos/fisiología , Criopreservación/métodos , Femenino , Congelación , Cristalización , Microscopía/métodos
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731865

RESUMEN

This study explored the feasibility of fluoride removal from simulated semiconductor industry wastewater and its recovery as calcium fluoride using fluidized bed crystallization. The continuous reactor showed the best performance (>90% fluoride removal and >95% crystallization efficiency) at a calcium-to-fluoride ratio of 0.6 within the first 40 days of continuous operation. The resulting particle size increased by more than double during this time, along with a 36% increase in the seed bed height, indicating the deposition of CaF2 onto the silica seed. The SEM-EDX analysis showed the size and shape of the crystals formed, along with the presence of a high amount of Ca-F ions. The purity of the CaF2 crystals was determined to be 91.1% though ICP-OES analysis. Following the continuous experiment, different process improvement strategies were explored. The addition of an excess amount of calcium resulted in the removal of an additional 6% of the fluoride; however, compared to this single-stage process, a two-stage approach was found to be a better strategy to achieve a low effluent concentration of fluoride. The fluoride removal reached 94% with this two-stage approach under the optimum conditions of 4 + 1 h HRT combinations and a [Ca2+]/[F-] ratio of 0.55 and 0.7 for the two reactors, respectively. CFD simulation showed the impact of the inlet diameter, bottom-angle shape, and width-to-height ratio of the reactor on the mixing inside the reactor and the possibility of further improvement in the reactor performance by optimizing the FBR configuration.


Asunto(s)
Fluoruro de Calcio , Fluoruros , Aguas Residuales , Fluoruro de Calcio/química , Fluoruros/química , Fluoruros/aislamiento & purificación , Aguas Residuales/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cristalización
8.
PLoS One ; 19(5): e0302142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722957

RESUMEN

We explore theoretically Goos-Hänchen (GH) shift around the defect mode in superconducting defective photonic crystals (PCs) in cryogenic environment. The defective PCs are constructed by alternating semiconductors and superconductors. A defect mode arises in the photonic bandgap and sensitively depends on environment temperature and hydrostatic pressure. Reflection and transmission coefficient phases make an abruptly jump at the defect mode and giant GH shifts have been achieved around this mode. The maximum GH shift can get as high as 103λ (incident wavelength), which could be modulated by the values of temperature and hydrostatic pressure. This study may be utilized for pressure- or temperature-sensors in cryogenic environment.


Asunto(s)
Fotones , Cristalización , Superconductividad , Semiconductores , Presión Hidrostática , Temperatura
9.
Chem Pharm Bull (Tokyo) ; 72(5): 480-486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763752

RESUMEN

X-ray absorption near-edge structure (XANES) spectroscopy is a new method for the characterization of active pharmaceutical ingredients. XANES spectra show unique features depending on the electronic states of the X-ray absorbing elements and provide information about the chemical environment that affects the electronic states. In this study, six bisphosphonate hydrate crystals were used to investigate, for the first time, how the phosphorus K-edge XANES spectra are affected by the interatomic interactions and charged states of phosphonate moieties. Phosphorus K-edge XANES spectra showed several differences among the bisphosphonates. In particular, the chlorine atoms covalently bonded near the phosphonate and the number of electric charges of the phosphonate moieties seemed to have large effects on peak shape in XANES spectra. Unique shapes of the XANES spectra demonstrated that differences in interactions at the oxygen atoms of the phosphonate moieties could change the shapes of the XANES spectrum peaks to the extent that each material was distinguished based on the spectra. Since slight differences in interatomic interactions and charged states lead to variations in the spectra, XANES spectroscopy could be widely applied as the fingerprint method to evaluate active pharmaceutical ingredients.


Asunto(s)
Difosfonatos , Espectroscopía de Absorción de Rayos X , Difosfonatos/química , Fósforo/química , Cristalización , Estructura Molecular
10.
Water Res ; 256: 121617, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642535

RESUMEN

The traditional electrochemical descaling process exhibits drawbacks, including low OH- utilization efficiency, constrained cathode deposition area, and protracted homogeneous precipitation time. Consequently, this study introduces a novel membrane-free electrochemical separation-filtering crystallization (MFES-FC) coupling process to treat circulating cooling water (CCW). In the membrane-free electrochemical separation (MFES) system, OH- is rapidly extracted by pump suction from the porous cathode boundary layer solution, preventing neutralization with H+, thereby enhancing the removal of Ca2+ and Mg2+. Experimental results indicate that the pH of the pump suction water can swiftly increase from 8.13 to 11.42 within 10 min. Owing to the high supersaturation of the pump suction water, this study couples the MFES with a filtration crystallization (FC) system that employs activated carbon as the medium. This approach captures scale particles to enhance water quality and expedites the homogeneous precipitation of hardness ions, shortening the treatment time while further augmenting the removal rate. After the MFES-FC treatment, the single-pass removal rates for total hardness, Ca2+ hardness, Mg2+ hardness, and alkalinity in the effluent reached 92 %, 97 %, 64 %, and 67 %, respectively, with turbidity of 3 NTU, current efficiency of 86.6 %, and energy consumption of 7.19 kWh·kg-1 CaCO3. This coupling process facilitates an effective removal of hardness and alkalinity at a comparatively low cost, offering a new reference and inspiration for advancements in electrochemical descaling technology.


Asunto(s)
Cristalización , Purificación del Agua , Purificación del Agua/métodos , Filtración/métodos , Técnicas Electroquímicas , Agua/química , Concentración de Iones de Hidrógeno
11.
Mol Pharm ; 21(5): 2315-2326, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38644570

RESUMEN

The main purpose of our studies is to demonstrate that commercially available mesoporous silica (MS) can be used to control the physical state of aripiprazole (ARP). The investigations performed utilizing differential scanning calorimetry and broadband dielectric spectroscopy reveal that silica can play different roles depending on its concentration in the system with amorphous ARP. At low MS content, it activates recrystallization of the active pharmaceutical ingredient and supports forming the III polymorphic form of ARP. At intermediate MS content (between ca. 27 and 65 wt %), MS works as a recrystallization inhibitor of ARP. At these concentrations, the formation of III polymorphic form is no longer favorable; therefore, it is possible to use this additive to obtain ARP in either IV or X polymorphic form. At the same time, employing MS in concentrations >65 wt % amorphous form of ARP with high physical stability can be obtained. Finally, regardless of the polymorphic form it crystallizes into, each composite is characterized by the same temperature dependence of relaxation times in the supercooled and glassy states.


Asunto(s)
Aripiprazol , Rastreo Diferencial de Calorimetría , Cristalización , Dióxido de Silicio , Aripiprazol/química , Dióxido de Silicio/química , Porosidad , Espectroscopía Dieléctrica , Difracción de Rayos X
12.
Int J Biol Macromol ; 268(Pt 2): 131941, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685545

RESUMEN

The inherent functional fractions (gelation and ice-affinitive fractions) of gelatin enable it as a promising cryoprotectant alternative. However, the composition-antifreeze property relationships of gelatin remain to be investigated. In this study, the HW-PSG and LW-PSG fractions of gelatin from fish scales were obtained, according to the critical gelation conditions and ice-binding measurements, respectively. Thermal hysteresis (THA) value, associated with ice nucleation, of LW-PSG was higher than that of HW-PSG. Besides, the relatively low-sized ice crystals (210-550 µm2) indicated that HW-PSG showed strong ice recrystallization inhibition (IRI) ability, compared to other groups. These results suggested that LW-PSG inhibited ice nucleation, while HW-PSG displayed the strong IRI ability. Furthermore, the antifreeze mechanisms were clarified through IRI measurements and molecular dynamics simulation. The minimum size of ice crystals was found for HW-PSG gels with dense microstructure, suggesting the HW-PSG retarded the growth of ice crystals by restricting the migration and phase transformation of water molecules. The hydrogen bond interactions between the ice crystal surface and ASN1294 and PRO1433 residues of LW-PSG, and hydrophobic interactions contributed to inhibiting the nucleation of ice crystals. This study provided some references to further enhance antifreeze performance of gelatin by modulating fragment composition.


Asunto(s)
Gelatina , Simulación de Dinámica Molecular , Gelatina/química , Animales , Hielo , Cristalización , Enlace de Hidrógeno , Crioprotectores/química , Crioprotectores/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Peces
13.
Int J Biol Macromol ; 267(Pt 1): 131268, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580011

RESUMEN

Human carbonic anhydrases (hCAs) play a central role in various physiological processes in the human body. HCAs catalyze the reversible hydration of CO2 into HCO3-, and hence maintains the fluid and pH balance. Overexpression of CA II is associated with diseases, such as glaucoma, and epilepsy. Therefore, CAs are important clinical targets and inhibition of different isoforms, especially hCA II is used in treatment of glaucoma, altitude sickness, and epilepsy. Therapeutically used CA inhibitors (CAI) are sulfonamide-based, such as acetazolamide, dichlorphenamide, methazolamide, ethoxzolamide, etc. However, they exhibit several undesirable effects such as numbness, tingling of extremities, malaise, metallic taste, fatigue, renal calculi, and metabolic acidosis. Therefore, there is an urgent need to identify safe and effective inhibitors of the hCAs. In this study, different phenyl boronic acids 1-5 were evaluated against bovine (bCA II) and hCA II. Among all, compound 1 (4-acetylphenyl boronic acid) was found to be active against bCAII and hCA II with IC50 values of 246 ± 0.48 and 281.40 ± 2.8 µM, respectively, while the remaining compounds were found in-active. Compound 1 was identified as competitive inhibitor of hCA II enzyme (Ki = 283.7 ± 0.002 µM). Additionally, compound 1 was found to be non-toxic against BJ Human fibroblast cell line. The X-ray crystal structure for hCA II in-complex with compound 1 was evaluated to a resolution of 2.6 Å. In fact, this the first structural analysis of a phenyl boron-based inhibitor bound to hCA II, allowing an additional structure-activity analysis of the compounds. Compound 1 was found to be directly bound in the active site of hCA II by interacting with His94, His119, and Thr199 residues. In addition, a bond of 3.11 Å between the zinc ion and coordinated boron atom of the boronic acid moiety of compound 1 was also observed, contributing to binding affinity of compound 1 for hCA II. PDB ID: 8IGF.


Asunto(s)
Ácidos Borónicos , Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Humanos , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Cristalografía por Rayos X , Cristalización , Animales , Bovinos , Modelos Moleculares , Relación Estructura-Actividad
14.
Colloids Surf B Biointerfaces ; 238: 113913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608463

RESUMEN

A gout attack could be viewed as a nucleation event. Many reports have shown that the typical molecular structure of crystallization inhibitors usually contains carboxyl and hydroxyl groups, which could interact with solute molecules through hydrogen bonding, thereby suppressing the nucleation and growth of crystals. Since 1923, l-lactic acid (LA), a molecule with structural features of inhibitors, has been speculated to be a trigger for acute gout because metabolized LA temporarily reduces uric acid excretion and leads to a slow increase in serum uric acid concentration. However, many cases of gout presumably triggered by elevated lactate in a very short period of 4 h are often inexplicable. Here, we present the unexpected result that LA has a significant "opposite effect" on the nucleation and growth of gouty pathological crystals, which is that as the concentration of the additive LA increases, the nucleation and growth of the crystals is suppressed and then facilitated. This approach may help our clarifying the long-standing "misunderstandings" and further understanding the association between metabolized LA and increased risk of gout attacks. Finally, a novel mechanism called "tailed-made occupancy (TMO)" was used to explain the nucleation and crystallization effects of LA on sodium urate monohydrate (MSUM).


Asunto(s)
Cristalización , Gota , Ácido Láctico , Ácido Úrico , Gota/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Humanos , Ácido Úrico/química , Ácido Úrico/metabolismo
15.
Chemosphere ; 357: 142008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614398

RESUMEN

The mixture of copper and iron often results in materials with favorable properties. The material production processes involving these metals including electroplating produce hazardous wastewater. In this study, the Fluidized Bed Homogeneous Crystallization (FBHC) process was applied to treat iron and copper-containing wastewater. The initial iron copper particles were successfully recovered from synthetic wastewater with [Fe]0:[Cu]0 of 2:1, the total metal concentration of 3 mM, at effluent pH = 7.75 ± 0.75, with the upflow velocity (U) of 1.76 m/h. The agglomerates hardening process is a crucial step for initial particle synthesis. The SEM analysis reveals the spherical particle's densified crust and porous core. The particle formation mechanism which includes the formation of the nucleus, attachment of precipitate flakes, and densification of particles was proposed after microscopic observation. The initial particles synthesized were used to initiate the treatment of synthetic wastewater at the operating condition pH = 7.75 ± 0.5, [Fe]0:[Cu]0 of 2:1, the total metal concentration of 3 mM, [CO32-]0:[M]0 = 1.2:1, and U of 28.66 m/h which results in the total metal removal of 99% and crystallization ratio of 90% and 88% for iron and copper respectively. The conditions were then applied to treat electroplating wastewater and resulted in the total metal removal of 99% for both iron and copper and a crystallization ratio of 83% and 79% for iron and copper, respectively. The treatment provided advantages in terms of treating larger amounts of sludge while eliminating the need to provide seed thus yielding a higher purity of product.


Asunto(s)
Cobre , Cristalización , Hierro , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Cobre/química , Cobre/aislamiento & purificación , Hierro/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos
16.
J Ethnopharmacol ; 329: 118149, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580188

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals. AIM OF THE STUDY: To investigated the effectiveness and mechanism of AOFOS in treating kidney stones. MATERIALS AND METHODS: A kidney stones rats model was developed, followed by examining AOFOS transport dynamics and effectiveness in live rats. Additionally, a correlation between the polysaccharide and calcium oxalate crystals was studied by combining crystallization experiments with density functional theory calculations. RESULTS: The results showed that the polysaccharide was transported to the urinary system. Furthermore, their accumulation was inhibited by controlling their crystallization and modulating calcium ion and oxalate properties in the urine. Consequently, this approach helped effectively prevent kidney stone formation in the rats. CONCLUSIONS: The present study emphasized the role of the polysaccharide AOFOS in modulating crystal properties and controlling crystal growth, providing valuable insights into their potential therapeutic use in managing kidney stone formation.


Asunto(s)
Oxalato de Calcio , Cristalización , Cálculos Renales , Animales , Oxalato de Calcio/química , Oxalato de Calcio/metabolismo , Masculino , Ratas , Cálculos Renales/prevención & control , Cálculos Renales/tratamiento farmacológico , Ratas Sprague-Dawley , Oligosacáridos/farmacología , Oligosacáridos/química , Urolitiasis/tratamiento farmacológico , Urolitiasis/prevención & control , Modelos Animales de Enfermedad , Inulina/química , Inulina/farmacología
17.
Mol Pharm ; 21(5): 2577-2589, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38647021

RESUMEN

This study aimed to repurpose the antifungal drug flucytosine (FCN) for anticancer activity together with cocrystals of nutraceutical coformers sinapic acid (SNP) and syringic acid (SYA). The cocrystal screening experiments with SNP resulted in three cocrystal hydrate forms in which two are polymorphs, namely, FCN-SNP F-I and FCN-SNP F-II, and the third one with different stoichiometry in the asymmetric unit (1:2:1 ratio of FCN:SNP:H2O, FCN-SNP F-III). Cocrystallization with SYA resulted in two hydrated cocrystal polymorphs, namely, FCN-SYA F-I and FCN-SYA F-II. All the cocrystal polymorphs were obtained concomitantly during the slow evaporation method, and one of the polymorphs of each system was produced in bulk by the slurry method. The interaction energy and lattice energies of all cocrystal polymorphs were established using solid-state DFT calculations, and the outcomes correlated with the experimental results. Further, the in vitro cytotoxic activity of the cocrystals was determined against DU145 prostate cancer and the results showed that the FCN-based cocrystals (FCN-SNP F-III and FCN-SYA F-I) have excellent growth inhibitory activity at lower concentrations compared with parent FCN molecules. The prepared cocrystals induce apoptosis by generating oxidative stress and causing nuclear damage in prostate cancer cells. The Western blot analysis also depicted that the cocrystals downregulate the inflammatory markers such as NLRP3 and caspase-1 and upregulate the intrinsic apoptosis signaling pathway marker proteins, such as Bax, p53, and caspase-3. These findings suggest that the antifungal drug FCN can be repurposed for anticancer activity.


Asunto(s)
Antifúngicos , Antineoplásicos , Apoptosis , Reposicionamiento de Medicamentos , Flucitosina , Neoplasias de la Próstata , Transducción de Señal , Apoptosis/efectos de los fármacos , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Antifúngicos/farmacología , Antifúngicos/química , Masculino , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Reposicionamiento de Medicamentos/métodos , Flucitosina/farmacología , Flucitosina/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Ácido Gálico/química , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Cristalización , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
18.
J Mater Chem B ; 12(18): 4509-4520, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647022

RESUMEN

One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.


Asunto(s)
Calcinosis , Neoplasias de la Tiroides , Zinc , Humanos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Zinc/química , Calcinosis/patología , Calcinosis/metabolismo , Carbonatos/química , Cristalización , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Durapatita/química
19.
Anal Chem ; 96(17): 6700-6706, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621112

RESUMEN

Photonic crystals with specific wavelengths can realize surface-enhanced excitation and emission intensities of fluorophores and enhance the fluorescence signals of fluorescent molecules. Herein, stretchable photonic crystals with good mechanochromic properties provide continuously adjustable forbidden wavelengths by stretching to change the lattice spacing, with reflectance peaks blue-shifted up to 110 nm to match indicators of different wavelengths and produce differentiated optical enhancement effects. Glycoproteins are significantly identified as clinical markers. However, the wide participation of glycoproteins in various life processes poses enormous complexity and critical challenges for rapid, facile, high-throughput, and accurate clinical analysis or health assessment. In this work, we proposed a stretchable photonic crystal-assisted glycoprotein identification approach for early ovarian cancer diagnosis. Stretchable photonic crystals can provide rich optical information to efficiently identify glycoproteins in complex matrices. A double-indicator fluorescence sensor was designed to respond to the protein trunk and oligosaccharide segment of glycoproteins separately for improved recognition accuracy. Seven typical glycoproteins could be discriminated from proteins, saccharides, or mixture interferents. Clinical ovarian cancer samples for early, intermediate, and advanced ovarian cancer and healthy subjects were verified with 100% accuracy. This strategy of stretchable photonic crystal-assisted glycoprotein identification provides an effective method for accurate, rapid ovarian cancer diagnosis and timely clinical treatment.


Asunto(s)
Glicoproteínas , Neoplasias Ováricas , Femenino , Neoplasias Ováricas/diagnóstico , Humanos , Glicoproteínas/análisis , Fotones , Colorantes Fluorescentes/química , Biomarcadores de Tumor/análisis , Cristalización
20.
J Am Chem Soc ; 146(17): 11592-11598, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630123

RESUMEN

Cocrystal screening and single-crystal growth remain the primary obstacles in the development of pharmaceutical cocrystals. Here, we present a new approach for cocrystal screening, microspacing in-air sublimation (MAS), to obtain new cocrystals and grow high-quality single crystals of cocrystals within tens of minutes. The method possesses the advantages of strong designable ability of devices, user-friendly control, and compatibility with materials, especially for the thermolabile molecules. A novel drug-drug cocrystal of favipiravir (FPV) with salicylamide (SAA) was first discovered by this method, which shows improved physiochemical properties. Furthermore, this method proved effective in cultivating single crystals of FPV-isonicotinamide (FPV-INIA), FPV-urea, FPV-nicotinamide (FPV-NIA), and FPV-tromethamine (FPV-Tro) cocrystals, and the structures of these cocrystals were determined for the first time. By adjusting the growth temperature and growth distance precisely, we also achieved single crystals of 10 different paracetamol (PCA) cocrystals and piracetam (PIR) cocrystals, which underscores the versatility and efficiency of this method in pharmaceutical cocrystal screening.


Asunto(s)
Amidas , Cristalización , Niacinamida , Pirazinas , Niacinamida/química , Pirazinas/química , Amidas/química , Salicilamidas/química , Urea/química , Modelos Moleculares , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA