Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.870
Filtrar
1.
J Environ Sci (China) ; 150: 78-90, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306442

RESUMEN

The migration and transformation of hexavalent chromium (Cr(VI)) in the environment are regulated by pyrite (FeS2). However, variations in pyrite crystal facets influence the adsorption behavior and electron transfer between pyrite and Cr(VI), thereby impacting the Cr(VI) reduction performance. Herein, two naturally common facets of pyrite were synthesized hydrothermally to investigate the facet-dependent mechanisms of Cr(VI) reduction. The experimental results revealed that the {111} facet exhibited approximately 1.30-1.50 times higher efficiency in Cr(VI) reduction compared to the {100} facet. Surface analyses and electrochemical results indicated that {111} facet displayed a higher iron-sulfur oxidation level, which was affected by its superior electrochemical properties during the reaction with Cr(VI). Density functional theory (DFT) calculations demonstrated that the narrower band gap and lower work function on {111} facet were more favorable for the electron transfer between Fe(II) and Cr(VI). Furthermore, different adsorption configurations were observed on {100} and {111} surfaces due to the unique arrangements of Fe and S atoms. Specifically, O atoms in Cr2O72- directly bound with the S sites on {100} but the Fe sites on {111}. According to the density of states (DOS), the Fe site had better reactivity than the S site in the reaction, which appeared to be related to the fracture of S-S bonds. Additionally, the adsorption configuration of Cr2O72- on {111} surface showed a stronger adsorption energy and a more stable coordination mode, favoring subsequent Cr(VI) reduction process. These findings provide an in-depth analysis of facet-dependent mechanisms underlying Cr(VI) reduction behavior, offering new insights into studying environmental interactions between heavy metals and natural minerals.


Asunto(s)
Cromo , Hierro , Oxidación-Reducción , Sulfuros , Cromo/química , Hierro/química , Sulfuros/química , Modelos Químicos , Adsorción
2.
J Environ Sci (China) ; 150: 349-361, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306410

RESUMEN

The capability of traditional ligand in countering rapid passivation on nanoscale zero-valent iron (nZVI) surface is inadequate, and the precise electron transfer mechanism remains elusive. In this study, we reported that myo-inositol hexakisphosphate (IHP), a redox-inactive organophosphorus in soil, could highly enhance Cr(VI) reduction and immobilization in comparison with typical ligands (TPP, EDTA, oxalate and phosphate). And the effects of IHP concentration, Cr(VI) concentration and initial pH were systematically investigated. Cr K-edge XANES and XPS analysis revealed that Cr(III) was the exclusive form in solid products regardless of IHP existence. Results of ATR-FTIR and FESEM inferred that IHP was adsorbed on nZVI surface via inner-sphere complexation, thus averting encapsulation of [Fe, Cr](OH)3 coprecipitate and impeding solid particles agglomeration. Additionally, IHP expedited the production of surface-bound Fe(II), primarily attributable to the interaction between nZVI and oxygen. These surface-bound Fe(II) species played a pivotal role in Cr(VI) reduction. Electrochemical analysis unveiled that IHP lowered redox potential of Fe(III)/Fe(II), thereby facilitating reaction between Fe(II) and Cr(VI), whereas inhibited direct electron transfer from nZVI core to Cr(VI). Our findings proposed a novel potential ligand for alleviating nZVI passivation in Cr(VI) removal and deepened our understanding in the process of electron transfer.


Asunto(s)
Cromo , Hierro , Cromo/química , Hierro/química , Ácido Fítico/química , Oxidación-Reducción , Modelos Químicos , Transporte de Electrón , Contaminantes del Suelo/química , Adsorción
3.
J Environ Sci (China) ; 147: 474-486, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003063

RESUMEN

Nano zero-valent iron (nZVI) is widely used in soil remediation due to its high reactivity. However, the easy agglomeration, poor antioxidant ability and passivation layer of Fe-Cr coprecipitates of nZVI have limited its application scale in Cr-contaminated soil remediation, especially in high concentration of Cr-contaminated soil. Herein, we found that the carboxymethyl cellulose on nZVI particles could increase the zeta potential value of soil and change the phase of nZVI. Along with the presence of biochar, 97.0% and 96.6% Cr immobilization efficiency through CMC-nZVI/BC were respectively achieved in high and low concentrations of Cr-contaminated soils after 90-days remediation. In addition, the immobilization efficiency of Cr(VI) only decreased by 5.1% through CMC-nZVI/BC treatment after 10 weeks aging in air, attributing to the strong antioxidation ability. As for the surrounding Cr-contaminated groundwater, the Cr(VI) removal capacity of CMC-nZVI/BC was evaluated under different reaction conditions through column experiments and COMSOL Multiphysics. CMC-nZVI/BC could efficiently remove 85% of Cr(VI) in about 400 hr when the initial Cr(VI) concentration was 40 mg/L and the flow rate was 0.5 mL/min. This study demonstrates that uniformly dispersed CMC-nZVI/BC has an excellent remediation effect on different concentrations of Cr-contaminated soils.


Asunto(s)
Carboximetilcelulosa de Sodio , Carbón Orgánico , Cromo , Restauración y Remediación Ambiental , Hierro , Contaminantes del Suelo , Contaminantes del Suelo/química , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Hierro/química , Cromo/química , Carboximetilcelulosa de Sodio/química , Suelo/química , Nanopartículas del Metal/química
4.
J Environ Sci (China) ; 148: 88-106, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095204

RESUMEN

In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200℃. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ ↔ Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Óxidos , Tolueno , Tolueno/química , Óxidos/química , Contaminantes Atmosféricos/química , Mercurio/química , Coque , Catálisis , Cromo/química , Adsorción , Manganeso/química , Compuestos de Manganeso/química , Modelos Químicos
5.
Chemosphere ; 364: 143234, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222692

RESUMEN

The influences of the positive Fe3+ and the negative Cr2O72- on the tetracycline (TC) photodegradation by N-doped dissolved black carbon (NDBC) have been investigated in this work. A series of samples (NDBC300, NDBC400 and NDBC500) have been extracted from the corresponding biochar. NDBC400 has the best photodegradation performance (79%) for TC under visible light irradiation. Adding Cr2O72- and Fe3+ can reduces TC photodegradation efficiency into 37% and 53%, respectively. This maybe from that Cr2O72- has stronger interaction with NDBC400 than Fe3+ since it can quench more fluorescence intensity of NDBC400 than Fe3+. Furthermore, Cr2O72- can reduce the steady-state concentration of 3NDBC400*, 1O2 and •OH, whereas Fe3+can just reduce the steady-state concentration of 3NDBC400* and increase the concentration of •OH. This may explain why Cr2O72- has stronger inhibit performance of TC photodegradation by NDBC400 than Fe3+. The band structures of NDBC400, NDBC400-Fe3+ and NDBC400-Cr2O72- are constructed. And the VB of NDBC400-Fe3+ has a stronger ability to produce •OH than NDBC400. In summary, coupling interaction and band structure characterization of NDBC400, NDBC400-Fe3+ and NDBC400-Cr2O72- can explain well why Cr2O72 has stronger inhibition effect than Fe3+ and Fe3+ can increase the concentration of •OH. This work provides a deep insight for the photochemical behavior of dissolved black carbon and the transformation behavior of the co-existed metal ions and antibiotics.


Asunto(s)
Antibacterianos , Cromo , Hierro , Nitrógeno , Fotólisis , Cromo/química , Antibacterianos/química , Nitrógeno/química , Hierro/química , Hollín/química , Tetraciclina/química , Carbono/química , Luz
6.
Anal Chim Acta ; 1328: 343161, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39266193

RESUMEN

BACKGROUND: Rapid industrial development has generated serious pollution, including the presence of toxic and harmful heavy metal ions. Among them, trivalent chromium ion (Cr3+) is a very important element that poses a threat to life and health in our industrial wastewater pollution. Thus, it is important to develop efficient fluorescence methods for Cr3+ detection. In this study, an upconversion luminescence biosensor for detecting Cr3+ was constructed based on a DNAzyme, strand displacement reaction (SDR), and DNA-functionalized upconversion nanoparticles (UCNPs). RESULTS: The sulfonate-rich poly (sodium 4-styrene sulfonate) (PSS) was modified onto the surface of UCNPs, forming UCNPs@PSS. Then, NH2-Capture probe DNA (NH2-Cp) was further modified onto the UCNPs@PSS surface through sulfonylation, resulting in UCNPs@PSS@NH2-Cp. The DNAzyme activated by Cr3+ triggered the release of the primer probe (Pp), which initiated the SDR system cycle, thereby releasing a tetramethylrhodamine (TAMRA)-modified signal probe (TAMRA-Sp). Finally, UCNPs@PSS@NH2-Cp bound to TAMRA-Sp through complementary base pairing, causing UCNPs and TAMRA to approach each other. Because of the luminescence resonance energy transfer (LRET) mechanism, the upconversion luminescence (UCL) signal of the UCNPs was quenched by TAMRA, enabling the detection of Cr3+ by the change of I585/I545 ratio. This biosensor has good stability, selectivity, and sensitivity, with a linear range of 0.5-75 nM and a detection limit of 0.135 nM for Cr3+. SIGNIFICANCE AND NOVELTY: Firstly, based on LRET between UCNPs and TAMRA, the quantitative analysis of Cr3+ is achieved through the changes of ratio fluorescence. Secondly, the specificity of the biosensor is improved by utilizing the specific recognition of DNA enzymes. Thirdly, the signal amplification technology of the SDR cycle greatly improves the sensitivity of biosensor. This biosensor will be useful for future environmental safety monitoring and biopsy of biological fluids.


Asunto(s)
Técnicas Biosensibles , Cromo , ADN Catalítico , Cromo/análisis , Cromo/química , Técnicas Biosensibles/métodos , ADN Catalítico/química , ADN Catalítico/metabolismo , Nanopartículas/química , Límite de Detección , Mediciones Luminiscentes , Luminiscencia
7.
Environ Geochem Health ; 46(11): 450, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316230

RESUMEN

Multilayer composite soil chamber was proposed to extract the Cr of contaminated site soil and insight into transformation of Cr fractionation associated with valence states. The variations of current, soil pH and moisture content were explored, as well as the migration of Cr fractionation and redistribution of Cr. Results indicated that duration of half peak current could be used to adjust treatment time and it varied among different composite ways. Moreover, extraction efficiency of Cr in soil near cathode was relatively higher and reached 60% when citric acid was used. Citric acid could promote the transformation between different Cr fractionations or different valence states. It could also improve the desorption of Cr, and could prevent excessive fluctuations of moisture content at the same time. Cr redistributed acrossed the soil chamber after extraction. When deionized water was used, Cr(VI) significantly migrated toward anode mainly in the form of exchangeable fractionation (EXC) while Fe-Mn oxides fractionation (Fe-Mn) which may be in the form of cationic Cr(III) hydroxides migrated toward cathode. When using citric acid, fractionations that were difficult to migrate of Cr, especially for Fe-Mn in site soils could be activated and became EXC and carbonate fractionation (CAR), then migrated to the anode or cathode. The migration of exchangeable Cr(III) was dramatically enhanced. But the use of citric acid could cause Cr(VI) transformation to Cr(III) near anode. In addition, during the migration process, EXC could go back to Fe-Mn again or transform to residue fractionation (RES).


Asunto(s)
Fraccionamiento Químico , Cromo , Ácido Cítrico , Restauración y Remediación Ambiental , Contaminantes del Suelo , Contaminantes del Suelo/química , Cromo/química , Ácido Cítrico/química , Restauración y Remediación Ambiental/métodos , Fraccionamiento Químico/métodos , Concentración de Iones de Hidrógeno , Suelo/química , Electrodos , Técnicas Electroquímicas
8.
World J Microbiol Biotechnol ; 40(10): 321, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279003

RESUMEN

Laccases act as green catalysts for oxidative cross-coupling of phenolic antioxidnt compounds, but low stability and non-recyclability limit its application. To address that, metal-organic frameworks Cu-BTC and Cr-MOF were synthesized as supports to immobilize the efficient laccase from Cerrena sp. HYB07. The Brunauer-Emmett-Teller surface area of Cu-BTC and Cr-MOF were 1213.2 and 907.1 m2/g, respectively. The two carriers respectively presented pore diameters of 1.2-10 nm and 1.4-12 nm as octahedron, indicating nano-scale mesoporosity. These Cu-BTC and Cr-MOF carriers could adsorb laccase with enzyme loading of 1933.2 and 1564.4 U/g carrier, respectively. The stability and organic solvent tolerance of Cu-BTC-laccase and Cr-MOF-laccase were both obviously improved compared to free laccase. Thermal inactivation kinetics showed that both the two immobilized laccases displayed lower thermal inactivation rate constants. Importantly, the Cu-BTC-laccase and Cr-MOF-laccase both showed much higher activity for cross-coupling of ethyl ferulate than free laccase, which had 2.5-fold higher cross-coupling efficiency than that by free laccase. The ethyl ferulate coupling product was also analyzed by mass spectroscopy and the synthesis pathway of ethyl ferulate dimer was proposed. The cross coupling of ethyl ferulate required the formation of radical intermediates of ethyl ferulate generated by laccase mediated oxidation. This work paved the way for MOFs immobilized laccase for cross coupling of antioxidant phenols.


Asunto(s)
Ácidos Cafeicos , Enzimas Inmovilizadas , Lacasa , Estructuras Metalorgánicas , Lacasa/química , Lacasa/metabolismo , Estructuras Metalorgánicas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Estabilidad de Enzimas , Cobre/química , Porosidad , Cinética , Cromo/química , Adsorción , Oxidación-Reducción , Antioxidantes/química
9.
Talanta ; 280: 126785, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217709

RESUMEN

In the present research, Fe-based metal-organic frameworks (MIL-101(Fe)-NH2) nanoparticles were synthesized by simple solvothermal methods and used to assay Cr(Ⅵ). The MIL-101(Fe)-NH2 performs dual functions: the 2-aminoterephthalic acid (NH2-BDC) ligand endows a strong fluorescence emission, and the Fe metal nodes are able to facilitate the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB) directly, resulting in the generation of oxidized-TMB (ox-TMB). Our research results showed that reducing agents such as ascorbic acid (AA) can collapse the structures of MIL-101(Fe)-NH2 because of the reduction of Fe3+ by AA, resulting in release of NH2-BDC. In the presence of Cr(Ⅵ), the fluorescence intensity of the MIL-101(Fe)-NH2 + AA system will be decreased due to the competitive reduction of Fe3+ and Cr(Ⅵ). Nevertheless, Cr(Ⅵ) can significantly accelerate the oxidation of TMB by MIL-101(Fe)-NH2 as it boosts the electron transfer rate between Fe3+ and Fe2+. Therefore, a fluorescent/colorimetric dual-mode platform was developed for the detection of Cr(Ⅵ) with an extensive linear range (7.5-750 µg/L and 13.3-1000 µg/L) as well as a remarkably low detection limit (0.99 µg/L and 1.98 µg/L). This MOF with the ability to release ligands not only provides inspiration for the design of new luminescent materials, but also offers a novel and reliable solution for the detection of Cr(Ⅵ).


Asunto(s)
Cromo , Colorimetría , Colorantes Fluorescentes , Estructuras Metalorgánicas , Cromo/análisis , Cromo/química , Estructuras Metalorgánicas/química , Colorantes Fluorescentes/química , Colorimetría/métodos , Límite de Detección , Bencidinas/química , Oxidación-Reducción , Hierro/química , Espectrometría de Fluorescencia/métodos , Peroxidasa/química , Peroxidasa/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
10.
Water Res ; 265: 122221, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128334

RESUMEN

Low molecular weight organic acids (LMWOA) are commonly present in natural water and play a pivotal role in the reduction of Cr(VI). In frozen solutions, the efficiency of Cr(VI) reduction is significantly enhanced due to the freezing concentration effect. However, this facilitation is found to be contingent upon the functional groups of LMWOA in this study. To be specific, LMWOA and Cr(VI) can form five-membered ring complexes, which greatly enhance electron transfer efficiency through Ligand-to-Metal Charge Transfer (LMCT). DFT calculations indicate that oxygen-containing groups located on carbon atoms at α positions play a crucial role in forming these complexes, ultimately determining the kinetics of Cr(VI) reduction. Moreover, freezing not only increases proton concentrations but also reduces free water molecule content in the liquid-like layer (LLL), thereby affecting LMWOA species through regulation of protonation and hydrolysis, and subsequently impacting reaction mechanisms. The stoichiometric ratios between LMWOA and Cr(VI) exceed theoretical values due to complexation with Cr(III). The reduction of Cr(VI) by LMWOA in frozen solutions is inhibited by soil solution, while the degree of inhibition varies among different types of LMWOA.


Asunto(s)
Cromo , Cromo/química , Cinética , Congelación , Peso Molecular , Oxidación-Reducción , Teoría Funcional de la Densidad , Soluciones
11.
Chemosphere ; 364: 142997, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097106

RESUMEN

Magnetic powdered activated carbon (Mag-PAC) is an effective adsorbent to remove hexavalent chromium (Cr(VI)) from water and can be recovered for reuse. However, the tradeoff between the adsorption performance of Cr(VI) and magnetic properties of Mag-PAC remains unclear. Herein, we prepared a series of Mag-PAC adsorbents containing various iron-oxide mass fractions with FeSO4·7H2O as the precursor, using a facile wet-chemical precipitation route and conducted batch experiments to evaluate the Cr(VI) adsorption performance. Results revealed that Mag-PAC was functionalized by magnetic iron oxide comprising crystalline goethite and magnetite structures. Furthermore, its adsorption performance was highly dependent on pH and was most effective at an initial solution pH of 2. Both the sorption rate constant and Cr(VI) adsorption capacity were greatly influenced by magnetization, and they gradually decreased as the iron-oxide mass fraction increased. Among the prepared adsorbents, Mag-PAC-75 (∼32% wt iron) exhibited not only an excellent Cr(VI) adsorption performance (Langmuir adsorption capacity: 75.76 mg/g) but also effective magnetic properties (saturation magnetization: 9.66 emu/g). Coexisting anions had a negligible competitive effect on Cr(VI) removal by Mag-PAC-75 at an initial pH of 2, whereas the presence of tannic acid markedly improved the Cr(VI) elimination. The presence of trivalent chromium on the surface of Mag-PAC-75 confirmed via X-ray photoelectron spectroscopy indicated that some synergistic redox reactions may occur during the sorption process. After five regeneration cycles using NaOH, Mag-PAC-75 continued to exhibit a high Cr(VI) removal efficiency and magnetic stability. These findings indicate that optimizing the adsorption performance and magnetic properties is a key factor for realizing the practical application of Mag-PAC for Cr(VI) removal. Overall, Mag-PAC may have been a promising application prospect for Cr(VI) removal from water due to its high adsorption capacity and magnetic properties, coupled with its good reusability and magnetic stability after regeneration cycles.


Asunto(s)
Carbón Orgánico , Cromo , Compuestos Férricos , Contaminantes Químicos del Agua , Purificación del Agua , Cromo/química , Adsorción , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Purificación del Agua/métodos , Compuestos Férricos/química , Concentración de Iones de Hidrógeno
12.
Chemosphere ; 364: 143003, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097113

RESUMEN

Complexing agents (CAs) can be used for the removal of Cr(VI) via nanoscale Fe0 (nZVI) reduction in cost-effective manner. However, nZVI is prone to aggregation and passivation, and some conventional CAs are toxic and difficult to biodegrade, potentially causing secondary pollution. Therefore, selecting an environmentally friendly CA for assisting in the removal of Cr(VI) via supported nZVI is imperative. Herein, NaA molecular sieve membrane-supported nZVI (nZVI/NaA-NF) was prepared via the secondary growth and liquid-phase reduction method using nickel foam (NF) as the carrier. The physicochemical characteristics of nZVI/NaA-NF before and after reaction were analysed via SEM, EDS, and XPS. A CA-improved nZVI/NaA-NF was used for the effective removal of Cr(VI) in a continuous fixed-bed system. Furthermore, the influences of various experimental factors including the CA type, CA concentration, solution pH, space velocity, and inlet Cr(VI) concentration on Cr(VI) removal were systematically investigated. The results demonstrated that nZVI particles were homogeneously immobilized on the NaA molecular sieve membrane/NF for fresh nZVI/NaA-NF, and tetrasodium iminidisuccinate (IDS-4Na) inhibited the aggregation of Cr(III)/Fe(III) (hydr)oxide precipitates during the reaction. IDS-4Na demonstrated excellent promotive effect on Cr(VI) removal via nZVI/NaA-NF. The breakthrough time for Cr(VI) in the addition of IDS-4Na was considerably longer than that of nZVI/NaA-NF alone. The breakthrough concentration of Cr(VI) only reached 1.1% and 9.9% of the inlet concentration at 220 and 240 min, with an IDS-4Na concentration of 4 mM, a pH of 2.5, and a space velocity of 0.265 min-1. The Bohart-Adams model was appropriate to predict the initial part of Cr(VI) breakthrough curves in the nZVI/NaA-NF fixed bed. The saturated concentration (N0) increased with an increase in inlet Cr(VI) concentration. The Yoon-Nelson model afforded good fitting results for all breakthrough curves of Cr(VI). The k' value increased with an increase in space velocity, and the τ value decreased.


Asunto(s)
Cromo , Hierro , Níquel , Cromo/química , Níquel/química , Hierro/química , Contaminantes Químicos del Agua/química , Adsorción , Membranas Artificiales , Nanopartículas del Metal/química
13.
Chemosphere ; 364: 143021, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111676

RESUMEN

Molybdenum disulfide (MoS2) is heralded as an exemplary two-dimensional (2D) functional material, largely attributed to its distinctive layered structure. Upon forming heterojunctions with reducing species, MoS2 displays remarkable photocatalytic properties. In this research, we fabricated a novel heterojunction photocatalyst, FeS/MoS2-0.05, through the integration of FeS with hollow MoS2. This composite aims at the efficient photocatalytic reduction of hexavalent chromium (Cr(VI)). A comprehensive array of characterization techniques unveiled that MoS2 flakes, dispersed on FeS, provide numerous active sites for photocatalysis at the heterojunction interface. The inclusion of FeS seemingly promotes the formation of sulfur vacancies on MoS2. Consequently, this heterojunction catalyst exhibits photocatalytic activity surpassing pristine MoS2 by a factor of 3.77. The augmented activity of the FeS/MoS2-0.05 catalyst is attributed chiefly to an internal electric field at the interface. This field enhances the facilitation of charge transfer and separation significantly. Density functional theory (DFT) calculations, coupled with experimental analyses, corroborate this observation. Additionally, DFT calculations indicate that sulfur vacancies act as pivotal sites for Cr(VI) adsorption. Significantly, the adsorption energy of Cr(VI) species shows enhanced favorability under acidic conditions. Our results suggest that the FeS/MoS2-0.05 heterojunction photocatalyst presents substantial potential for the remediation of Cr(VI)-contaminated wastewater.


Asunto(s)
Cromo , Disulfuros , Molibdeno , Azufre , Molibdeno/química , Cromo/química , Disulfuros/química , Catálisis , Azufre/química , Adsorción , Procesos Fotoquímicos , Contaminantes Químicos del Agua/química
14.
Chemosphere ; 364: 143093, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173834

RESUMEN

Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (Ⅲ), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.


Asunto(s)
Cromo , Microplásticos , Cloruro de Polivinilo , Contaminantes Químicos del Agua , Cromo/química , Microplásticos/química , Contaminantes Químicos del Agua/química , Adsorción , Cloruro de Polivinilo/química , Cinética , Electrones , Restauración y Remediación Ambiental/métodos
15.
Int J Biol Macromol ; 278(Pt 2): 134697, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147352

RESUMEN

In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.


Asunto(s)
Cromo , Lignina , Contaminantes Químicos del Agua , Lignina/química , Cromo/química , Cromo/aislamiento & purificación , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Polímeros/química , Polímeros/síntesis química , Agua/química , Concentración de Iones de Hidrógeno , Polimerizacion
16.
Environ Pollut ; 360: 124701, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39127337

RESUMEN

The presence of organic phosphorus may influence the characteristics of Cr(VI) reduction and immobilization on Fe(II)-bearing clay minerals under anoxic conditions, as the organic phosphorus tends to bind strongly to clay minerals in soil. Herein, reduced nontronite (rNAu-2) was used to reduction of Cr(VI) in the presence of phytic acid (IHP) at neutral pH. With IHP concentration from 0 to 500 µM, Cr(VI) reduction decreased obviously (17.8%) within first 5 min, and then preferred to stagnate during 4-12 h (≥50 µM). After that, Cr(VI) was reduced continuously at a slightly faster rate. Density functional theory (DFT) calculations revealed that IHP primarily absorbed at the edge sites of rNAu-2 to form Fe-IHP complexes. X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), and Fourier transform infrared spectroscopy (FTIR) results demonstrated that IHP hindered the ingress of CrO42- into the interlayer space of rNAu-2 and impeded their reduction by trioctahedral Fe(II) and Al-Fe(II) at basal plane sites in the initial stage. Additionally, Fe(II) extraction results showed that IHP promoted the electron from interior transfer to near-edge, but hindered it further transfer to surface, resulting in the inhibition on Cr(VI) reduction at edge sites during the later stage. Consequently, IHP inhibits the reduction and immobilization of Cr(VI) by rNAu-2. Our study offers novel insights into electron transfer pathways during the Cr(VI) reduction by rNAu-2 with coexisting IHP, thereby improve the understanding of the geochemical processes of chromium within the iron cycle in soil.


Asunto(s)
Cromo , Arcilla , Ácido Fítico , Cromo/química , Arcilla/química , Ácido Fítico/química , Minerales/química , Oxidación-Reducción , Transporte de Electrón , Hierro/química , Contaminantes del Suelo/química , Difracción de Rayos X , Suelo/química , Compuestos Ferrosos/química
17.
Environ Sci Pollut Res Int ; 31(40): 53497-53509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190253

RESUMEN

In this study, the ionic liquid (IL) trioctylmethylammonium salicylate (TOMAS) was prepared and incorporated into a polymer inclusion membrane (PIM) based on cellulose triacetate (CTA) as the polymer for the removal of Cr(VI). Various parameters including the effect of membrane composition (plasticizer and carrier concentration) as well as variables affecting both the feed phase and receiving solution have been investigated. Optimal results were achieved with a PIM made of 50% CTA and 50% TOMAS (% in mass) without the addition of any plasticizer. Using this PIM, Cr(VI) was effectively transported from a feed solution consisting of 10 mg L-1 Cr(VI) in 0.01 mol L-1 NaNO3 at pH = 2, to a receiving solution containing 0.1 mol L-1 NaOH. The transport of Cr(VI) was not affected by the presence of other metals, such as Cr(III), Cd(II), Zn(II), Cu(II), and Ni(II), and a selective recovery rate of 93.61% for both single-ion and mixed-ion solutions after 24 h of processing was obtained. Finally, the stability of the membrane was also investigated, with a slight decrease in efficiency observed after 5 days of reuse.


Asunto(s)
Cromo , Polímeros , Cromo/química , Polímeros/química , Compuestos de Amonio Cuaternario/química , Contaminantes Químicos del Agua/química , Membranas Artificiales , Celulosa/química , Celulosa/análogos & derivados
18.
Environ Sci Pollut Res Int ; 31(42): 54618-54633, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39207620

RESUMEN

Chromium and arsenic are among the priority pollutants to be controlled by regulatory and health agencies due to their ability to accumulate in food chains and the harmful effects on health resulting from the ingestion of food contaminated with metals and metalloids. In the present work, four biohybrid membrane systems were developed as alternatives for the removal of these pollutants, three based on polyvinyl alcohol polymeric mesh (PVA, PVA-magnetite, PVA L-cysteine) and one based on polybutylene adipate terephthalate (PBAT), all associated with bioremediation agents. The efficiency of the bioassociation process was assessed through count methods and microscopy. The removal capacity of these systems was evaluated in synthetic liquid medium, both in the absence and in the presence of soybean (Glycine max L.) seedlings. The content of chromium and arsenic was also analyzed in aerial and hypogeous tissues of seedlings grown on contaminated solid substrate. PVA and PVA-magnetite biohybrid membranes showed the highest removal rates, between 57 and 75% of the initial arsenic content and more than 80% of the initial chromium content after 48 h of treatment, when evaluated in synthetic liquid media with initial concentrations of 2.5 ppm of pentavalent arsenic and 5 ppm of hexavalent chromium, both in presence and absence of seedlings. PVA and PBAT promoted a significant reduction of arsenic translocation to the aerial parts, generally edible, of this crop of agronomic interest. The systems tested showed a high potential for biotechnological applications in matrices affected by the presence of arsenic and chromium.


Asunto(s)
Arsénico , Cromo , Glycine max , Plantones , Glycine max/metabolismo , Arsénico/metabolismo , Cromo/química , Biodegradación Ambiental
19.
Environ Sci Pollut Res Int ; 31(39): 52371-52390, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39150669

RESUMEN

Effective management and remediation strategies are crucial to minimize the impacts of both organic and inorganic contaminants on environmental quality and human health. This study investigates a novel approach utilizing cotton shell activated carbon (CSAC), rice husk activated carbon (RHAC), and wasp hive activated carbon (WHAC), produced through alkali treatment and carbonization under N2 atmosphere at 600 °C. The adsorption capacities of biomass-derived mesoporous activated carbons (CSAC, RHAC, WHAC) alongside macroporous commercial activated carbons (CAC) were evaluated for removing rhodamine B (Rh B) and hexavalent chromium (Cr6+). The CSAC exhibits remarkable adsorption efficiency (255.4 mg.g-1) for Cr(VI) removal, while RHAC demonstrates superior efficacy (174.2 mg.g-1) for Rh B adsorption. Investigating various optimal parameters including initial pH (pH 3 for Cr and pH 7 for Rh B), catalyst dosage (200 mg.L-1), and initial concentration (20 mg.L-1), the Redlich-Peterson isotherm model is applied to reveal a hybrid adsorption mechanism encompassing monolayer (chemisorption) and multilayer (van der Waals adsorption) processes. Kinetic analysis highlights the pseudo-second-order and Elovich models as the most suitable, suggesting physiochemisorption mechanisms. Thermodynamic analysis indicates the endothermic nature of the adsorption process, with increased randomness at the solid-solution interface. Isosteric heat investigations using Clausius-Clapeyron, Arrhenius, and Eyring equations reveal a heterogeneous surface nature across all activated carbons. Further confirmation of Rh B and Cr(VI) adsorption onto activated carbons is provided through FTIR, FESEM, and EDAX analysis. This study highlights the innovation and promise of utilizing biomass-derived activated carbons for effective pollutant removal.


Asunto(s)
Biomasa , Carbón Orgánico , Cromo , Rodaminas , Adsorción , Cromo/química , Rodaminas/química , Carbón Orgánico/química , Animales , Contaminantes Químicos del Agua/química , Cinética
20.
Int J Biol Macromol ; 278(Pt 3): 134769, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151866

RESUMEN

Heavy metal pollution poses a significant environmental challenge to worldwide, especially in developing countries. This study focuses on eliminating the heavy metal chromium (VI) ion from wastewater, employing an eco-friendly and economical ternary blend composed of Chitosan (CS), Carboxymethyl cellulose (CMC), and bioactive glass (BAG). The innovative bioactive glass is crafted from biosilica extracted from biowaste of cow dung ash, calcium oxide from eggshell ash, and phosphorus pentoxide. The CS/CMC/BAG blend is prepared via sol-gel method and characterized using XRD, FT-IR, TGA, BET, TEM and SEM revealing a porous structural morphology during blending. Batch adsorption studies explore various parameters such as pH, adsorbent dose, contact time and initial metal ion concentrations. The results are then evaluated through adsorption kinetics and adsorption isotherms (Langmuir, Freundlich, D-R, and Temkin isotherm modeling). The investigation concludes that the optimal conditions for Cr (VI) removal are pH 3, contact time of 300 min, adsorbent dosage of 0.5 g, and an initial metal ion concentration of 50 ppm. The adsorption isotherm model indicates an excellent fit with the Freundlich isotherm (R2 = 0.9576) and pseudo-second-order kinetics (R2 = 0.981). In summary, the CS/CMC/BAG ternary blend exhibits a remarkable ability to effectively remove heavy metal Cr(VI) ions from industrial wastewater.


Asunto(s)
Carboximetilcelulosa de Sodio , Quitosano , Cromo , Vidrio , Contaminantes Químicos del Agua , Quitosano/química , Carboximetilcelulosa de Sodio/química , Cromo/química , Adsorción , Vidrio/química , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Aguas Residuales/química , Metales Pesados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA