RESUMEN
Optical DNA mapping (ODM) allows visualization of long-range sequence information along single DNA molecules. The data can for example be used for detecting long range structural variations, for aiding DNA sequence assembly of complex genomes and for mapping epigenetic marks and DNA damage across the genome. ODM traditionally utilizes sequence specific marks based on nicking enzymes, combined with a DNA stain, YOYO-1, for detection of the DNA contour. Here we use a competitive binding approach, based on YOYO-1 and netropsin, which highlights the contour of the DNA molecules, while simultaneously creating a continuous sequence specific pattern, based on the AT/GC variation along the detected molecule. We demonstrate and validate competitive-binding-based ODM using bacterial artificial chromosomes (BACs) derived from the human genome and then turn to DNA extracted from white blood cells. We generalize our findings with in-silico simulations that show that we can map a vast majority of the human genome. Finally, we demonstrate the possibility of combining competitive binding with enzymatic labeling by mapping DNA damage sites induced by the cytotoxic drug etoposide to the human genome. Overall, we demonstrate that competitive-binding-based ODM has the potential to be used both as a standalone assay for studies of the human genome, as well as in combination with enzymatic approaches, some of which are already commercialized.
Asunto(s)
Benzoxazoles/química , Mapeo Cromosómico/métodos , ADN/química , Genoma Humano , Netropsina/química , Compuestos de Quinolinio/química , Análisis de Secuencia de ADN/métodos , Antineoplásicos Fitogénicos/farmacología , Sitios de Unión , Unión Competitiva , Cromosomas Artificiales Bacterianos/química , ADN/genética , Etopósido/farmacología , Colorantes Fluorescentes/química , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Imagen Individual de Molécula/métodosRESUMEN
Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid tegument protein encoded by ORF51 of the EHV-1 genome. EHV-1 UL11 was previously reported by other researchers using the RacL22 and RacH strains to be nonessential for viral replication in cultured cells. Here, we constructed UL11 mutant viruses including a UL11 null mutant and three C-terminal truncated mutants, for further characterization of EHV-1 UL11 using bacterial artificial chromosome (BAC) technology based on the neuropathogenic strain Ab4p. EHV-1 Ab4p UL11 was localized to juxtanuclear and Golgi regions as reported by other researchers. We found that no progeny viruses were produced by transfection of fetal equine kidney cells and rabbit kidney (RK-13) cells with the UL11 null mutant and truncation mutant BAC DNAs. However, mutant viruses were generated after transfection of RK13-UL11 cells constitutively expressing EHV-1 UL11 with the mutant BAC DNAs. In conclusion, UL11 of EHV-1 Ab4p is essential for replication in cultured cells.
Asunto(s)
Células Epiteliales/virología , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/patogenicidad , Sistemas de Lectura Abierta , Proteínas Estructurales Virales/genética , Replicación Viral , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/ultraestructura , Núcleo Celular/virología , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , Células Epiteliales/ultraestructura , Expresión Génica , Aparato de Golgi/ultraestructura , Aparato de Golgi/virología , Herpesvirus Équido 1/crecimiento & desarrollo , Herpesvirus Équido 1/metabolismo , Caballos , Riñón/citología , Riñón/virología , Mutación , Conejos , Proteínas Estructurales Virales/metabolismo , VirulenciaRESUMEN
Prenatal diagnosis focuses on the detection of anatomic and physiologic problems with a foetus before birth. Karyotyping is currently considered the gold standard for prenatal diagnosis of chromosomal abnormalities, but this method can be time consuming. This study evaluated the diagnostic accuracy of the BACs-on-BeadsTM (BoBs™) assay for the rapid diagnosis of aneuploidies and microdeletions. A total of 625 samples from pregnant women in Fujian province, in southeastern China-including three chorionic villus biopsies, 523 amniotic fluid samples, and 99 umbilical-cord centesis samples-were assessed for chromosomal abnormalities by karyotyping and by the BoBs™ assay. A diagnosis was successfully achieved by karyotyping for 98.8% (618/625) and by the BoBs™ assay for 100% (625/625) of the samples. Both assays were concordant for trisomy 21 (2.72%, 17/625), trisomy 18 (1.12%, 7/625), trisomy 13 (0.48%, 3/625), and sex chromosome aneuploidies (0.8%, 5/625). Unlike karyotyping, the BoBs™ assay detected 22q11.2 microdeletion (0.64%, 4/625), 22q11.2 microduplication (0.16%, 1/625), Smith-Magenis syndrome microdeletion (0.16%, 1/625), and Miller-Dieker syndrome microdeletion (0.16%, 1/625). Thus, the BoBs™ assay is a reliable and rapid test for detecting common aneuploidies and microdeletions for prenatal diagnosis, and could be used instead of karyotyping for detection of common aneuploidies as well as to provide additional information regarding microdeletions.
Asunto(s)
Aneuploidia , Aberraciones Cromosómicas , Trastornos de los Cromosomas/diagnóstico , Cromosomas Artificiales Bacterianos/química , Diagnóstico Prenatal/métodos , Eliminación de Secuencia , Adulto , Análisis Citogenético/métodos , Femenino , Humanos , Cariotipificación/métodos , Microesferas , Técnicas de Diagnóstico Molecular/métodos , Embarazo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Aberraciones Cromosómicas Sexuales , Adulto JovenRESUMEN
BACKGROUND: Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. METHODS: The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. RESULTS: We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. CONCLUSIONS: AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.
Asunto(s)
Clonación Molecular/métodos , ADN/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Biología Sintética/métodos , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales Bacterianos/metabolismo , ADN/química , ADN/genética , Plásmidos/genéticaRESUMEN
The genome of the cattle tick Rhipicephalus microplus, an ectoparasite with global distribution, is estimated to be 7.1Gbp in length and consists of approximately 70% repetitive DNA. We report the draft assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genome. Our hybrid approach produced an assembly consisting of 2.0Gbp represented in 195,170 scaffolds with a N50 of 60,284bp. The Rmi v2.0 assembly is 51.46% repetitive with a large fraction of unclassified repeats, short interspersed elements, long interspersed elements and long terminal repeats. We identified 38,827 putative R. microplus gene loci, of which 24,758 were protein coding genes (≥100 amino acids). OrthoMCL comparative analysis against 11 selected species including insects and vertebrates identified 10,835 and 3,423 protein coding gene loci that are unique to R. microplus or common to both R. microplus and Ixodes scapularis ticks, respectively. We identified 191 microRNA loci, of which 168 have similarity to known miRNAs and 23 represent novel miRNA families. We identified the genomic loci of several highly divergent R. microplus esterases with sequence similarity to acetylcholinesterase. Additionally we report the finding of a novel cytochrome P450 CYP41 homolog that shows similar protein folding structures to known CYP41 proteins known to be involved in acaricide resistance.
Asunto(s)
Enfermedades de los Bovinos/parasitología , Genoma/genética , Rhipicephalus/genética , Infestaciones por Garrapatas/veterinaria , Animales , Vectores Arácnidos/genética , Secuencia de Bases , Bovinos , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/genética , ADN/química , ADN/aislamiento & purificación , Elementos Transponibles de ADN , Evolución Molecular , Femenino , Biblioteca de Genes , Masculino , MicroARNs/química , MicroARNs/genética , Modelos Genéticos , Anotación de Secuencia Molecular , Control de Ácaros y Garrapatas/métodos , Infestaciones por Garrapatas/parasitologíaRESUMEN
Histone deacetylases (HDACs) play crucial roles during mammalian development and for cellular homeostasis. In addition, these enzymes are promising targets for small molecule inhibitors in the treatment of cancer and neurological diseases. Conditional HDAC knock-out mice are excellent tools for defining the functions of individual HDACs in vivo and for identifying the molecular targets of HDAC inhibitors in disease. Here, we describe the generation of tissue-specific HDAC knock-out mice and delineate a strategy for the generation of conditional HDAC knock-in mice.
Asunto(s)
Blastocisto/enzimología , Cromatina/metabolismo , Epigénesis Genética , Vectores Genéticos/metabolismo , Histona Desacetilasa 1/genética , Células Madre Embrionarias de Ratones/enzimología , Animales , Blastocisto/citología , Southern Blotting , Sistemas CRISPR-Cas , Cromatina/química , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , Cruzamientos Genéticos , Femenino , Técnicas de Sustitución del Gen , Vectores Genéticos/química , Histona Desacetilasa 1/deficiencia , Recombinación Homóloga , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Especificidad de Órganos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismoRESUMEN
Mutations in leucine-rich repeat kinase 2 (LRRK2) lead to late-onset, autosomal dominant Parkinson's disease, characterized by the degeneration of dopamine neurons of the substantia nigra pars compacta, a deficit in dopamine neurotransmission and the development of motor and non-motor symptoms. The most prevalent Parkinson's disease LRRK2 mutations are located in the kinase (G2019S) and GTPase (R1441C) encoding domains of LRRK2. To better understand the sequence of events that lead to progressive neurophysiological deficits in vulnerable neurons and circuits in Parkinson's disease, we have generated LRRK2 bacterial artificial chromosome transgenic rats expressing either G2019S or R1441C mutant, or wild-type LRRK2, from the complete human LRRK2 genomic locus, including endogenous promoter and regulatory regions. Aged (18-21 months) G2019S and R1441C mutant transgenic rats exhibit L-DOPA-responsive motor dysfunction, impaired striatal dopamine release as determined by fast-scan cyclic voltammetry, and cognitive deficits. In addition, in vivo recordings of identified substantia nigra pars compacta dopamine neurons in R1441C LRRK2 transgenic rats reveal an age-dependent reduction in burst firing, which likely results in further reductions to striatal dopamine release. These alterations to dopamine circuit function occur in the absence of neurodegeneration or abnormal protein accumulation within the substantia nigra pars compacta, suggesting that nigrostriatal dopamine dysfunction precedes detectable protein aggregation and cell death in the development of Parkinson's disease. In conclusion, our longitudinal deep-phenotyping provides novel insights into how the genetic burden arising from human mutant LRRK2 manifests as early pathophysiological changes to dopamine circuit function and highlights a potential model for testing Parkinson's therapeutics.
Asunto(s)
Envejecimiento/metabolismo , Antiparkinsonianos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Levodopa/farmacología , Mutación , Enfermedad de Parkinson/genética , Potenciales de Acción , Envejecimiento/patología , Sustitución de Aminoácidos , Animales , Muerte Celular/genética , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Regiones Promotoras Genéticas , Dominios Proteicos , Ratas , Ratas Transgénicas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patologíaRESUMEN
The localization of a protein is intrinsically linked to its role in the structural and functional organization of the cell. Advances in transgenic technology have streamlined the use of protein localization as a function discovery tool. Here we review the use of large genomic DNA constructs such as bacterial artificial chromosomes as a transgenic platform for systematic tag-based protein function exploration.
Asunto(s)
ADN Complementario/genética , Ingeniería Genética/métodos , Genómica/métodos , Imagen Molecular/métodos , Transgenes , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , ADN Complementario/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Coloración y Etiquetado/métodosRESUMEN
We have developed a new, sequence-specific DNA labeling strategy that will dramatically improve DNA mapping in complex and structurally variant genomic regions, as well as facilitate high-throughput automated whole-genome mapping. The method uses the Cas9 D10A protein, which contains a nuclease disabling mutation in one of the two nuclease domains of Cas9, to create a guide RNA-directed DNA nick in the context of an in vitro-assembled CRISPR-CAS9-DNA complex. Fluorescent nucleotides are then incorporated adjacent to the nicking site with a DNA polymerase to label the guide RNA-determined target sequences. This labeling strategy is very powerful in targeting repetitive sequences as well as in barcoding genomic regions and structural variants not amenable to current labeling methods that rely on uneven distributions of restriction site motifs in the DNA. Importantly, it renders the labeled double-stranded DNA available in long intact stretches for high-throughput analysis in nanochannel arrays as well as for lower throughput targeted analysis of labeled DNA regions using alternative methods for stretching and imaging the labeled long DNA molecules. Thus, this method will dramatically improve both automated high-throughput genome-wide mapping as well as targeted analyses of complex regions containing repetitive and structurally variant DNA.
Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , Mapeo Cromosómico/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/química , Endonucleasas/química , Etiquetado Corte-Fin in Situ/métodos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , ADN/genética , Desoxirribonucleasa I/química , Desoxirribonucleasa I/genética , Endonucleasas/genética , Colorantes Fluorescentes/química , Genoma Humano , VIH-1/química , VIH-1/genética , Humanos , Mutación , Plásmidos/química , Plásmidos/metabolismo , Estructura Terciaria de Proteína , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genéticaRESUMEN
The National Institute of Genetics Mouse Genome database (NIG_MoG; http://molossinus.lab.nig.ac.jp/msmdb/) primarily comprises the whole-genome sequence data of two inbred mouse strains, MSM/Ms and JF1/Ms. These strains were established at NIG and originated from the Japanese subspecies Mus musculus molossinus. NIG_MoG provides visualized genome polymorphism information, browsing single-nucleotide polymorphisms and short insertions and deletions in the genomes of MSM/Ms and JF1/Ms with respect to C57BL/6J (whose genome is predominantly derived from the West European subspecies M. m. domesticus). This allows users, especially wet-lab biologists, to intuitively recognize intersubspecific genome divergence in these mouse strains using visual data. The database also supports the in silico screening of bacterial artificial chromosome (BAC) clones that contain genomic DNA from MSM/Ms and the standard classical laboratory strain C57BL/6N. NIG_MoG is thus a valuable navigator for exploring mouse genome polymorphisms and BAC clones that are useful for studies of gene function and regulation based on intersubspecific genome divergence.
Asunto(s)
Bases de Datos Genéticas , Genoma , Genotipo , Mutación INDEL , Polimorfismo de Nucleótido Simple , Programas Informáticos , Animales , Cromosomas Artificiales Bacterianos/química , Células Clonales , Ratones , Ratones Endogámicos , Fenotipo , Especificidad de la EspecieRESUMEN
Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.
Asunto(s)
Cromosomas Artificiales Bacterianos/metabolismo , Replicación del ADN , Escherichia coli/genética , Ingeniería Genética/métodos , Telomerasa/genética , Proteínas Virales/genética , Cromosomas Artificiales Bacterianos/química , Colifagos/enzimología , Colifagos/genética , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Recombinación Homóloga , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Telomerasa/metabolismo , Proteínas Virales/metabolismoRESUMEN
Transformation-associated recombination (TAR) cloning allows selective isolation of full-length genes and genomic loci as large circular Yeast Artificial Chromosomes (YACs) in yeast. The method has a broad application for structural and functional genomics, long-range haplotyping, characterization of chromosomal rearrangements, and evolutionary studies. In this paper, we describe a basic protocol for gene isolation by TAR as well as a method to convert TAR isolates into Bacterial Artificial Chromosomes (BACs) using a retrofitting vector. The retrofitting vector contains a 3' HPRT-loxP cassette to allow subsequent gene loading into a unique loxP site of the HAC-based (Human Artificial Chromosome) gene delivery vector. The benefit of combining the TAR gene cloning technology with the HAC gene delivery system for gene expression studies is discussed.
Asunto(s)
Clonación Molecular/métodos , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Esferoplastos/genética , Animales , Células CHO , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , Cromosomas Artificiales Humanos/química , Cromosomas Artificiales Humanos/metabolismo , Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/metabolismo , Cricetulus , ADN de Hongos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Esferoplastos/metabolismo , Transformación GenéticaRESUMEN
Shotgun sequencing and assembly of a large, complex genome can be both expensive and challenging to accurately reconstruct the true genome sequence. Repetitive DNA arrays, paralogous sequences, polyploidy, and heterozygosity are main factors that plague de novo genome sequencing projects that typically result in highly fragmented assemblies and are difficult to extract biological meaning. Targeted, sub-genomic sequencing offers complexity reduction by removing distal segments of the genome and a systematic mechanism for exploring prioritized genomic content through BAC sequencing. If one isolates and sequences the genome fraction that encodes the relevant biological information, then it is possible to reduce overall sequencing costs and efforts that target a genomic segment. This chapter describes the sub-genome assembly protocol for an organism based upon a BAC tiling path derived from a genome-scale physical map or from fine mapping using BACs to target sub-genomic regions. Methods that are described include BAC isolation and mapping, DNA sequencing, and sequence assembly.
Asunto(s)
Cromosomas Artificiales Bacterianos/química , Mapeo Contig/métodos , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Cromosomas Artificiales Bacterianos/metabolismo , Dermatoglifia del ADN , Enzimas de Restricción del ADN/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Galactósidos/metabolismo , Biblioteca Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Indoles/metabolismo , Isopropil Tiogalactósido/farmacologíaRESUMEN
The genomic DNA libraries based on Bacteria Artificial Chromosomes (BAC) are the foundation of whole genomic mapping, sequencing, and annotation for many species like mice and humans. With their large insert size, BACs harbor the gene-of-interest and nearby transcriptional regulatory elements necessary to direct the expression of the gene-of-interest in a temporal and cell-type specific manner. When replacing a gene-of-interest with a transgene in vivo, the transgene can be expressed with the same patterns and machinery as that of the endogenous gene. This chapter describes in detail a method of using lambda-red recombineering to make BAC transgene constructs with the integration of a transgene into a designated location within a BAC. As the final BAC construct will be used for transfection in cell lines or making transgenic animals, specific considerations with BAC transgenes such as genotyping, BAC coverage and integrity as well as quality of BAC DNA will be addressed. Not only does this approach provide a practical and effective way to modify large DNA constructs, the same recombineering principles can apply to smaller high copy plasmids as well as to chromosome engineering.
Asunto(s)
Cromosomas Artificiales Bacterianos/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Plásmidos/metabolismo , Transgenes , Animales , Animales Modificados Genéticamente/genética , Bacteriófago lambda/genética , Línea Celular , Cromosomas Artificiales Bacterianos/química , ADN Bacteriano/metabolismo , Electroporación , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Galactósidos/metabolismo , Biblioteca Genómica , Recombinación Homóloga , Indoles/metabolismo , Isopropil Tiogalactósido/farmacología , Operón , Plásmidos/químicaRESUMEN
A step-by-step detailed procedure is presented to progressively truncate genomic DNA inserts from either end in BACs. The bacterial transposon Tn10 carrying a loxP or a lox511 site is inserted at random into BAC DNA inside the bacterial cell. The cells are then infected with bacteriophage P1. The Cre protein expressed by phage P1 generates end-deletions by specifically recombining the inserted loxP (or lox511) with the loxP (or lox511) endogenous to and flanking insert DNA in BACs from the respective end. The Cre protein also helps phage P1 transduce the BAC DNA by packaging it in P1 heads. This packaging by P1 not only recovers the rare BAC clones containing Tn10 insertions efficiently but also selects end-truncated BACs from those containing inversions of portions of their DNA caused by transposition of Tn10 in the opposite orientation. The libraries of end-deleted BACs generated by this procedure are suitable for numerous mapping studies. Because DNA in front of the loxP (or lox511) arrowheads in the Tn10 transposon is retained at the newly created BAC end, exogenous DNA cassettes such as enhancer-traps and iTol2 ends can be efficiently introduced into BAC ends for germline expression in zebrafish or mice. The methodology should facilitate functional mapping studies of long-range cis-acting gene regulatory sequences in these organisms.
Asunto(s)
Bacteriófago P1/genética , Cromosomas Artificiales Bacterianos/genética , Elementos Transponibles de ADN , Elementos de Facilitación Genéticos , Integrasas/genética , Transducción Genética/métodos , Animales , Animales Modificados Genéticamente/genética , Bacteriófago P1/metabolismo , Cromosomas Artificiales Bacterianos/química , Integrasas/metabolismo , Ratones , Plásmidos/química , Plásmidos/genética , Transposasas/genética , Transposasas/metabolismo , Pez Cebra/genéticaRESUMEN
BAC clones containing the entire genomic region of a gene including the long-range regulatory elements are very useful for gene functional analysis. However, large genes often span more than the insert of a BAC clone, and single BACs covering the entire region of interest are not available. Here, we describe a general system for linking two or more overlapping BACs into a single clone. Two rounds of homologous recombination are used. In the first, the BAC inserts are subcloned into the pBACLink vectors. In the second, the two BACs are combined together. Multiple BACs in a contig can be combined by alternating use of the pBACLInk vectors, resulting in several BAC clones containing as much of the genomic region of a gene as required. Such BACs can then be used in gene expression studies and/or gene therapy applications.
Asunto(s)
Cromosomas Artificiales Bacterianos/metabolismo , Clonación Molecular/métodos , Escherichia coli/genética , Ingeniería Genética/métodos , Vectores Genéticos/metabolismo , Plásmidos/metabolismo , Cromosomas Artificiales Bacterianos/química , Electroporación , Escherichia coli/metabolismo , Vectores Genéticos/química , Biblioteca Genómica , Recombinación Homóloga , Plásmidos/química , TransgenesRESUMEN
The isolation of germ line competent mouse Embryonic Stem (ES) cells and the ability to modify the genome by homologous recombination has revolutionized life science research. Since its initial discovery, several approaches have been introduced to increase the efficiency of homologous recombination, including the use of isogenic DNA for the generation of targeting constructs, and the use of Bacterial Artificial Chromosomes (BACs). BACs have the advantage of combining long stretches of homologous DNA, thereby increasing targeting efficiencies, with the possibilities delivered by BAC recombineering approaches, which provide the researcher with almost unlimited possibilities to efficiently edit the genome in a controlled fashion. Despite these advantages of BAC targeting approaches, a widespread use has been hampered, mainly because of the difficulties in identifying BAC-targeted knockout alleles by conventional methods like Southern Blotting. Recently, we introduced a novel BAC targeting strategy, in which Restriction Fragment Length Polymorphisms (RFLPs) are targeted in polymorphic mouse ES cells, enabling an efficient and easy PCR-based readout to identify properly targeted alleles. Here we provide a detailed protocol for the generation of targeting constructs, targeting of ES cells, and convenient PCR-based analysis of targeted clones, which enable the user to generate knockout ES cells of almost every gene in the mouse genome within a 2-month period.
Asunto(s)
Cromosomas Artificiales Bacterianos/metabolismo , Células Madre Embrionarias/metabolismo , Escherichia coli/genética , Marcación de Gen/métodos , Vectores Genéticos/metabolismo , Genoma , Plásmidos/metabolismo , Alelos , Animales , Cromosomas Artificiales Bacterianos/química , Electroporación , Embrión de Mamíferos , Células Madre Embrionarias/citología , Escherichia coli/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/química , Biblioteca Genómica , Recombinación Homóloga , Ratones , Ratones Noqueados , Plásmidos/química , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de RestricciónRESUMEN
A critical factor in the study of herpesviruses, their genes and gene functions is the capacity to derive mutants that harbor deletions, truncations, or insertions within the genetic elements of interest. Once constructed the impact of the introduced mutation on the phenotypic properties of the rescued virus can be determined in either in vitro or in vivo systems. However, the construction of such mutants by traditional virological mutagenesis techniques can be a difficult and laborious undertaking. The maintenance of a viral genome as an infectious bacterial artificial chromosome (iBAC), however, endows the capacity to manipulate the viral genome for mutagenesis studies with relative ease. Here, the construction and characterization of two gene deletion mutants of an alphaherpesvirus maintained as iBAC in combination with an inducible homologous recombination system in Escherichia coli is detailed. The methodology is generally applicable to any iBAC and is demonstrated to be a highly efficient and informative approach for mutant virus construction.
Asunto(s)
Cromosomas Artificiales Bacterianos/química , Escherichia coli/genética , Genes Virales , Genoma Viral , Herpesvirus Bovino 1/genética , Mutagénesis , Animales , Bovinos , Cromosomas Artificiales Bacterianos/metabolismo , Clonación Molecular/métodos , Electroporación , Escherichia coli/metabolismo , Herpesvirus Bovino 1/metabolismo , Recombinación Homóloga , Plásmidos/química , Plásmidos/metabolismo , TransgenesRESUMEN
Many of the experimental approaches aimed at studying gene function heavily rely on the ability to make precise modifications in the gene's DNA sequence. Homologous recombination (HR)-based strategies provide a convenient way to create such types of modifications. HR-based DNA sequence manipulations can be enormously facilitated by expressing in E. coli a small set of bacteriophage proteins that make the exchange of DNA between a linear donor and the target DNA molecules extremely efficient. These in vivo recombineering techniques have been incorporated as essential components of the molecular toolbox in many model organisms. In this chapter, we describe the experimental procedures involved in recombineering-based tagging of an Arabidopsis gene contained in a plant transformation-ready bacterial artificial chromosome (TAC).
Asunto(s)
Arabidopsis/genética , Bacteriófago lambda/genética , Cromosomas Artificiales Bacterianos/metabolismo , Escherichia coli/genética , Ingeniería Genética/métodos , Vectores Genéticos/metabolismo , Arabidopsis/metabolismo , Bacteriófago lambda/metabolismo , Cromosomas Artificiales Bacterianos/química , Clonación Molecular , Electroporación , Escherichia coli/metabolismo , Vectores Genéticos/química , Recombinación Homóloga , MutagénesisRESUMEN
The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Ustilago where they stably integrated into their genome. To this end, Bacterial Artificial Chromosome (BAC) clones containing large fungal genomic DNA fragments were converted via a Lambda phage-based recombineering step to Agrobacterium transfer-competent binary vectors (BIBACs) with a Ustilago-specific selection marker. The fungal genomic DNA fragment was subsequently successfully delivered as T-DNA through Agrobacterium-mediated transformation into Ustilago species where an intact copy stably integrated into the genome. By modifying the recombineering vector, this method can theoretically be adapted for many different fungi.