Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.630
Filtrar
1.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715103

RESUMEN

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Asunto(s)
Proteínas de Unión al Calcio , Cromosomas Humanos Par 14 , Metilación de ADN , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular , Humanos , Proteínas de Unión al Calcio/genética , Metilación de ADN/genética , Cromosomas Humanos Par 14/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Impresión Genómica/genética , Proteínas de la Membrana/genética , Niño , Masculino , Hibridación Genómica Comparativa/métodos , Femenino , Deleción Cromosómica , Preescolar , Fenotipo , Anomalías Múltiples/genética , Trastornos de Impronta , Hipotonía Muscular , Facies
2.
BMC Nephrol ; 25(1): 165, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755555

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a malignant disorder characterized by monoclonal differentiated plasma cells. While it is more commonly diagnosed in elderly individuals, it can also affect younger populations, though with a lower incidence. CASE PRESENTATION: Here, we present the case of a 32-year-old woman diagnosed with IgA lambda MM. She presented with fatigue, nausea, acute kidney injury (AKI) with a rapid increase in creatinine, and anemia. A kidney biopsy was done to rule out a rapidly progressive glomerular disease and a diagnosis was thus reached. A genetic workup revealed t(14;16) translocation and an extra copy of TP53. The patient received aggressive intravenous steroids and intravenous fluid resuscitation, resulting in an improvement in renal function. Treatment with daratumumab in combination with bortezomib, thalidomide, and dexamethasone was initiated and well tolerated. Despite the generally poor prognosis of IgA MM, our case emphasizes the importance of considering MM in young patients with unexplained kidney injury. CONCLUSION: Early recognition and prompt intervention are essential in managing MM patients, especially in those with high-risk cytogenetic abnormalities. This case serves as a reminder for clinicians to maintain a high index of suspicion for MM, even in younger populations, when presented with unexplained kidney injury.


Asunto(s)
Lesión Renal Aguda , Mieloma Múltiple , Proteinuria , Translocación Genética , Humanos , Femenino , Adulto , Mieloma Múltiple/complicaciones , Mieloma Múltiple/genética , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Proteinuria/etiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/genética , Inmunoglobulina A , Cadenas lambda de Inmunoglobulina/genética , Cromosomas Humanos Par 14/genética
3.
J Clin Exp Hematop ; 64(1): 21-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38538317

RESUMEN

We characterized 5 B-cell tumors carrying t(14;19)(q32;q13) that creates the IGH::BCL3 fusion gene. The patients' ages ranged between 55 and 88 years. Two patients presented with progression or recurrence of B-cell chronic lymphocytic leukemia (B-CLL)/small lymphocytic lymphoma (SLL), two with diffuse large B-cell lymphoma (DLBCL) of non-germinal center B-like phenotype, and the remaining one with composite angioimmunoblastic T-cell lymphoma and Epstein-Barr virus-positive DLBCL. The presence of t(14;19)(q32;q13) was confirmed by fluorescence in situ hybridization (FISH), showing colocalization of 3' IGH and 3' BCL3 probes on der(14)t(14;19) and 5' BCL3 and 5' IGH probes on der(19)t(14;19). One B-CLL case had t(2;14)(p13;q32)/IGH::BCL11A, and 2 DLBCL cases had t(8;14)(q24;q32) or t(8;11;14)(q24;q11;q32), both of which generated IGH::MYC by FISH, and showed nuclear expression of MYC and BCL3 by immunohistochemistry. The IGH::BCL3 fusion gene was amplified by long-distance polymerase chain reaction in 2 B-CLL/SLL cases and the breakpoints occurred immediately 5' of BCL3 exon 1 and within the switch region associated with IGHA1. The 5 cases shared IGHV preferentially used in B-CLL cells, but the genes were unmutated in 2 B-CLL/SLL cases and significantly mutated in the remaining 3. B-cell tumors with t(14;19)(q32;q13) can be divided into B-CLL/SLL and DLBCL groups, and the anatomy of IGH::BCL3 in the latter may be different from that of the former.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Hibridación Fluorescente in Situ , Translocación Genética , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4 , Linfoma de Células B Grandes Difuso/genética , Cromosomas Humanos Par 14/genética
5.
Haematologica ; 109(2): 493-508, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37560801

RESUMEN

The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Hibridación Fluorescente in Situ , Translocación Genética , Reordenamiento Génico , Linfoma de Células B Grandes Difuso/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cromosomas Humanos Par 14/genética
6.
J Oncol Pharm Pract ; 30(3): 552-561, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113108

RESUMEN

BACKGROUND: The plasma cell malignancy, multiple myeloma (MM), remains incurable despite advanced treatment protocols. Overexpression of Bcl-2 (an anti-apoptotic protein), in MM harboring the translocation (11;14), contributes to resistance to prior therapy. Venetoclax, a selective oral inhibitor of BCL-2 is a novel agent that shows promise as a therapeutic agent. AIMS: The objective of this systematic review is to address how the use of venetoclax, alone or as a combination regimen, contributed to the treatment of patients with t(11:14) positive relapsed/refractory multiple myeloma (RRMM). DATA SOURCES: This systematic review was conducted in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was done on 5th June 2022. A literature search was conducted on PubMed and Scopus, 145 articles were screened and 10 studies were included. Risk of bias assessment was performed using the Methodological Index for Non-Randomized Studies (MINORS) criteria. DATA SUMMARY: Across the studies reviewed, a total of 311 patients were identified with t(11;14) positive RRMM. The overall response rate achieved ranged between 33% and 95.5%. Furthermore, the use of venetoclax has exhibited a favorable adverse effect profile. Side effects included hematological side effects, nausea, vomiting, and diarrhea. CONCLUSION: Venetoclax demonstrates promising results. When given with drugs like dexamethasone, daratumumab and carfilzomib, a synergistic effect is seen in treating translocation (11:14) positive relapsed/refractory MM. The use of venetoclax in clinical practice can potentially improve outcomes and quality of life in RRMM patients, and future research should continue to explore this promising treatment option.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Mieloma Múltiple , Sulfonamidas , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 14/genética , Resistencia a Antineoplásicos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Sulfonamidas/administración & dosificación , Translocación Genética
8.
Am J Med Genet A ; 191(8): 2225-2231, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222159

RESUMEN

Kagami-Ogata syndrome and Temple syndrome are imprinting disorders caused by the abnormal expression of genes in an imprinted cluster on chromosome 14q32. Here, we report a female with mild features of the Kagami-Ogata syndrome phenotype with polyhydramnios, neonatal hypotonia, feeding difficulties, abnormal foot morphology, patent foramen ovale, distal arthrogryposis, normal facial profile, and a bell-shaped thorax without coat hanger ribs. The single nucleotide polymorphism array revealed the interstitial deletion of chromosome 14q32.2-q32.31 (117 kb in size), involving the RTL1as and MEG8 genes, and other small nucleolar RNAs and microRNAs. The differentially methylated regions (DMRs) appeared unaltered. The RTL1as gene deletion and the normal methylation pattern of the MEG3 gene loci were confirmed by methylation-specific multiplex ligation-dependent probe amplification. Deletions of the 14q32 region without involving DMRs, and encompassing only the RTL1as and MEG8 genes, are poorly described in the literature. The mother's chromosomal microarray also confirmed the identical 14q32.2 deletion, although she presented a normal phenotype. The maternally inherited 14q32 deletion was responsible for Kagami-Ogata syndrome in our patient. It was not sufficient, however, to produce Temple syndrome or any other pathogenic phenotype in the patient's mother.


Asunto(s)
Anomalías Múltiples , Trastornos de los Cromosomas , Recién Nacido , Embarazo , Humanos , Femenino , Trastornos de los Cromosomas/genética , Impresión Genómica , Herencia Materna , Fenotipo , Anomalías Múltiples/genética , Disomía Uniparental , Cromosomas Humanos Par 14/genética
9.
J Hum Genet ; 68(7): 507-514, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36882509

RESUMEN

Three types of chromosomal translocations, t(4;14)(p16;q32), t(14;16)(q32;q23), and t(11;14)(q13;q32), are associated with prognosis and the decision making of therapeutic strategy for multiple myeloma (MM). In this study, we developed a new diagnostic modality of the multiplex FISH in immunophenotyped cells in suspension (Immunophenotyped-Suspension-Multiplex (ISM)-FISH). For the ISM-FISH, we first subject cells in suspension to the immunostaining by anti-CD138 antibody and, then, to the hybridization with four different FISH probes for genes of IGH, FGFR3, MAF, and CCND1 tagged by different fluorescence in suspension. Then, cells are analyzed by the imaging flow cytometry MI-1000 combined with the FISH spot counting tool. By this system of the ISM-FISH, we can simultaneously examine the three chromosomal translocations, i.e, t(4;14), t(14;16), and t(11;14), in CD138-positive tumor cells in more than 2.5 × 104 nucleated cells with the sensitivity at least up to 1%, possibly up to 0.1%. The experiments on bone marrow nucleated cells (BMNCs) from 70 patients with MM or monoclonal gammopathy of undetermined significance demonstrated the promising qualitative diagnostic ability in detecting t(11;14), t(4;14), and t(14;16) of our ISM-FISH, which was more sensitive compared with standard double-color (DC) FISH examining 200 interphase cells with its best sensitivity up to 1.0%. Moreover, the ISM-FISH showed a positive concordance of 96.6% and negative concordance of 98.8% with standard DC-FISH examining 1000 interphase cells. In conclusion, the ISM-FISH is a rapid and reliable diagnostic tool for the simultaneous examination of three critically important IGH translocations, which may promote risk-adapted individualized therapy in MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Translocación Genética/genética , Citometría de Flujo , Hibridación Fluorescente in Situ/métodos , Reordenamiento Génico , Cromosomas Humanos Par 14/genética
11.
J Clin Exp Hematop ; 62(4): 242-248, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36436932

RESUMEN

We describe two patients with primary diffuse large B-cell lymphoma of the central nervous system (PCNS-DLBCL). The first patient (case 1) was a woman in her late 70s who presented with a tumor in the left frontal lobe, whereas the second patient (case 2) was a man in his early 70s who presented with a left frontal lobe tumor associated with intratumoral hemorrhage. The histopathology of the tumor specimen disclosed the proliferation of large cells with centroblastic (case 1) or immunoblastic/plasmablastic (case 2) cytomorphology and an accumulation of the tumor cells within the perivascular space. The cells in both cases were positive for CD20, CD79a, BCL6, IRF4/MUM1, MYC, and BCL2 and negative for CD5 and CD10. G-banding revealed t(8;14)(q24;q32) in case 1, and the tetraploid-range karyotype including two or three copies of der(3)t(3;14)(q27;q32) and der(14)t(3;14)(q27;q32) in case 2. Fluorescence in situ hybridization applied to metaphase spreads confirmed colocalization of MYC and IGH (case 1) and BCL6 and IGH (case 2) hybridization signals on the relevant derivative chromosomes. Case 1 carried the MYD88L265P mutation. This case report provides clear evidence for the occurrence of t(8;14)(q24;q32) and t(3;14)(q27;q32) in PCNS-DLBCL using metaphase-based cytogenetic analysis.


Asunto(s)
Linfoma de Células B Grandes Difuso , Translocación Genética , Masculino , Femenino , Humanos , Hibridación Fluorescente in Situ , Metafase , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Mutación , Cromosomas Humanos Par 14/genética
12.
Eur J Med Genet ; 65(10): 104580, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35953028

RESUMEN

Kagami-Ogata syndrome (KOS) is an imprinting disorder characterized by polyhydramnios, bell-shaped thorax with coat-hanger appearance (curved ribs), respiratory distress, abdominal wall defects, and distinct facial features, together with intellectual developmental delay with special needs. Abnormal expression of the imprinted genes on chromosome 14q32.2 causes KOS. Epimutation with aberrant hypermethylation of the MEG3/DLK1: intergenic differentially methylated region (MEG3/DLK1:IG-DMR) and the MEG3:TSS-DMR is one of the etiologies of KOS. We report two infants with KOS caused by epimutation presenting with some characteristic clinical features, mild clinical course, and almost normal motor and intellectual development. Methylation analysis for ten DMRs related to major imprinting disorders using pyrosequencing with genomic DNA (gDNA) extracted from leukocytes showed abnormally increased methylation levels of the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR in both patients, but lower than those in patients with paternal uniparental disomy chromosome 14 (upd(14)pat). The methylation levels in the DMRs other than both DMRs were within normal range. We also conducted methylation analysis for the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR with gDNA extracted from nails and buccal cells of both patients. Methylation levels in the MEG3:TSS-DMR, particularly in buccal cells, were closer to normal range compared to those in leukocytes. Microsatellite analysis for chromosome 14 and array comparative hybridization analysis showed no upd(14)pat or microdeletion involving the 14q32.2 imprinted region in either patient. A differential mosaic ratio of cells with aberrant methylation of DMRs at the 14q32.2 imprinted region among tissues (connective tissue, lung, and brain) might have led to their atypical clinical features. Further studies of patients with epimutation should further expand the phenotypic spectrum of KOS.


Asunto(s)
ARN Largo no Codificante , Disomía Uniparental , Cromosomas Humanos Par 14/genética , Metilación de ADN , Impresión Genómica , Humanos , Lactante , Mucosa Bucal , ARN Largo no Codificante/genética
14.
J Clin Invest ; 132(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166240

RESUMEN

The chromosomal t(4;14) (p16;q32) translocation drives high expression of histone methyltransferase nuclear SET domain-containing 2 (NSD2) and plays vital roles in multiple myeloma (MM) evolution and progression. However, the mechanisms of NSD2-driven epigenomic alterations in chemoresistance to proteasome inhibitors (PIs) are not fully understood. Using a CRISPR/Cas9 sgRNA library in a bone marrow-bearing MM model, we found that hepatoma-derived growth factor 2 (HRP2) was a suppressor of chemoresistance to PIs and that its downregulation correlated with a poor response and worse outcomes in the clinic. We observed suppression of HRP2 in bortezomib-resistant MM cells, and knockdown of HRP2 induced a marked tolerance to PIs. Moreover, knockdown of HRP2 augmented H3K27me3 levels, consequentially intensifying transcriptome alterations promoting cell survival and restriction of ER stress. Mechanistically, HRP2 recognized H3K36me2 and recruited the histone demethylase MYC-induced nuclear antigen (MINA) to remove H3K27me3. Tazemetostat, a highly selective epigenetic inhibitor that reduces H3K27me3 levels, synergistically sensitized the anti-MM effects of bortezomib both in vitro and in vivo. Collectively, these results provide a better understanding of the origin of chemoresistance in patients with MM with the t(4;14) translocation and a rationale for managing patients with MM who have different genomic backgrounds.


Asunto(s)
Reprogramación Celular , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 4/genética , Dioxigenasas , Epigénesis Genética/efectos de los fármacos , Histona Demetilasas , Mieloma Múltiple , Proteínas de Neoplasias , Proteínas Nucleares , Inhibidores de Proteasoma/farmacología , Translocación Genética , Línea Celular Tumoral , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Epigenómica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
15.
PLoS One ; 17(1): e0250799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35020748

RESUMEN

Carotid plaque is a subclinical measure of atherosclerosis. We have previously shown measures of carotid plaque to be heritable in a sample of 100 Dominican families and found evidence for linkage and association of common variants (CVs) on 7q36, 11p15, 14q32 and 15q23 with plaque presence. Our current study aimed to refine these regions further and identify rare variants (RVs) influencing plaque presence. Therefore, we performed targeted sequencing of the one LOD unit down region on 7q36, 11p15, 14q32 and 15q23 in 12 Dominican families with evidence for linkage to plaque presence. Gene-based RV analyses were performed using the Sequence Association Test for familial data (F-SKAT) under two filtering algorithms; 1. all exonic RVs and 2. non-synonymous RVs. Replication analyses were performed using a sample of 22 Dominican families and 556 unrelated Dominicans with Exome Array data. To identify additional non-synonymous RVs influencing plaque, we looked for co-segregation of RVs with plaque in each of the sequenced families. Our most strongly associated gene with evidence for replication was AMPD3 which showed suggestive association with plaque presence in the sequenced families (exonic RV p = 0.003, nonsynonymous RV p = 0.005) and replication families (exonic RV p = 0.04, nonsynonymous RV p = 0.02). Examination of the sequenced family pedigrees revealed two missense variants on chromosome 11 which co-segregated with plaque presence in one of our families; rs61751342 (located in DENND2B), and rs61760882 (located in RNF141). The rs61751342 missense variant is an eQTL for SCUBE2 in the atrial appendage. Notably, SCUBE2 encodes a protein which interacts with vascular endothelial growth factor (VEGF) receptor 2 to regulate VEGF-induced angiogenesis, thus providing biologic plausibility for this gene in atherosclerosis. In conclusion, using targeted sequencing of previously-identified linkage regions, we have identified suggestive evidence for the role of RVs in carotid plaque pathogenesis.


Asunto(s)
Ligamiento Genético , Placa Aterosclerótica/genética , AMP Desaminasa/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Proteínas de Unión al Calcio/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 7/genética , Proteínas de Unión al ADN/genética , República Dominicana , Genotipo , Humanos , Persona de Mediana Edad , Linaje , Placa Aterosclerótica/patología , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
16.
Leukemia ; 36(1): 126-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34172895

RESUMEN

The germline predisposition associated with the autosomal dominant inheritance of the 14q32 duplication implicating ATG2B/GSKIP genes is characterized by a wide clinical spectrum of myeloid neoplasms. We analyzed 12 asymptomatic carriers and 52 patients aged 18-74 years from six families, by targeted sequencing of 41 genes commonly mutated in myeloid malignancies. We found that 75% of healthy carriers displayed early clonal hematopoiesis mainly driven by TET2 mutations. Molecular landscapes of patients revealed two distinct routes of clonal expansion and leukemogenesis. The first route is characterized by the clonal dominance of myeloproliferative neoplasms (MPN)-driver events associated with TET2 mutations in half of cases and mutations affecting splicing and/or the RAS pathway in one-third of cases, leading to the early development of MPN, mostly essential thrombocythemia, with a high risk of transformation (50% after 10 years). The second route is distinguished by the absence of MPN-driver mutations and leads to AML without prior MPN. These patients mostly harbored a genomic landscape specific to acute myeloid leukemia secondary to myelodysplastic syndrome. An unexpected result was the total absence of DNMT3A mutations in this cohort. Our results suggest that the germline duplication constitutively mimics hematopoiesis aging by favoring TET2 clonal hematopoiesis.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Cromosomas Humanos Par 14/genética , Hematopoyesis Clonal , Duplicación de Gen , Leucemia Mieloide Aguda/patología , Síndromes Mielodisplásicos/patología , Trastornos Mieloproliferativos/patología , Proteínas Represoras/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Anciano , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN , Susceptibilidad a Enfermedades , Femenino , Estudios de Seguimiento , Células Germinativas , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Persona de Mediana Edad , Mutación , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
19.
Cancer Sci ; 113(1): 297-307, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34687579

RESUMEN

Precise quantification of copy-number alterations (CNAs) in a tumor genome is difficult. We have applied a comprehensive copy-number analysis method, digital multiplex ligation-dependent probe amplification (digitalMLPA), for targeted gene copy-number analysis in clear cell renal cell carcinoma (ccRCC). Copy-number status of all chromosomal arms and 11 genes was determined in 60 ccRCC samples. Chromosome 3p loss and 5q gain, known as early changes in ccRCC development, as well as losses at 9p and 14q were detected in 56/60 (93.3%), 31/60 (51.7%), 11/60 (18.3%), and 33/60 (55%), respectively. Through gene expression analysis, a significant positive correlation was detected in terms of 14q loss determined using digitalMLPA and downregulation of mRNA expression ratios with HIF1A and L2HGDH (P = .0253 and .0117, respectively). Patients with early metastasis (<1 y) (n = 18) showed CNAs in 6 arms (in median), whereas metastasis-free patients (n = 34) showed those in significantly less arms (3 arms in median) (P = .0289). In particular, biallelic deletion of CDKN2A/2B was associated with multiple CNAs (≥7 arms) in 3 tumors. Together with sequence-level mutations in genes VHL, PBRM1, SETD2, and BAP1, we performed multiple correspondence analysis, which identified the association of 9p loss and 4q loss with early metastasis (both P < .05). This analysis indicated the association of 4p loss and 1p loss with poor survival (both, P < .05). These findings suggest that CNAs have essential roles in aggressiveness of ccRCC. We showed that our approach of measuring CNA through digitalMLPA will facilitate the selection of patients who may develop metastasis.


Asunto(s)
Carcinoma de Células Renales/genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 9/genética , Variaciones en el Número de Copia de ADN , Neoplasias Renales/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/mortalidad , Estudios de Casos y Controles , Deleción Cromosómica , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/mortalidad , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Metástasis de la Neoplasia , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA