Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Nat Microbiol ; 9(9): 2216-2231, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39187614

RESUMEN

An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.


Asunto(s)
Interacciones Huésped-Patógeno , Fagocitosis , Fagosomas , Humanos , Fagosomas/microbiología , Fagosomas/metabolismo , Fagosomas/inmunología , Interacciones Huésped-Patógeno/inmunología , Animales , Hongos/inmunología , Hongos/fisiología , Hongos/patogenicidad , Candida albicans/inmunología , Candida albicans/fisiología , Histoplasma/inmunología , Histoplasma/fisiología , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/fisiología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/fisiología , Evasión Inmune , Micosis/inmunología , Micosis/microbiología
2.
Sci Rep ; 14(1): 18187, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107496

RESUMEN

Cryptococcus neoformans (Cn) is an opportunistic yeast that causes meningoencephalitis in immunocompromised individuals. Calorie restriction (CR) prolongs Cn replicative lifespan (RLS) and mimics low-glucose environments in which Cn resides during infection. The effects of CR-mediated stress can differ among strains and have only been studied in MATα cells. Cn replicates sexually, generating two mating types, MATα and MATa. MATα strains are more dominant in clinical and environmental isolates. We sought to compare the effects of CR stress and longevity regulation between congenic MATα and MATa. Although MATα and MATa cells extended their RLS in response to CR, they engaged different pathways. The sirtuins were upregulated in MATα cells under CR, but not in MATa cells. RLS extension was SIR2-dependent in KN99α, but not in KN99a. The TOR nutrient-sensing pathway was downregulated in MATa strains under CR, while MATα strains demonstrated no difference. Lower oxidative stress and higher ATP production were observed in KN99α cells, possibly due to higher SOD expression. SIR2 was important for mitochondrial morphology and function in both mating types. Increased ATP production during CR powered the upregulated ABC transporters, increasing efflux in MATα cells. This led to enhanced fluconazole tolerance, while MATa cells remained sensitive to fluconazole. Our investigation highlights differences in the response of the mating types to CR.


Asunto(s)
Restricción Calórica , Cryptococcus neoformans , Genes del Tipo Sexual de los Hongos , Cryptococcus neoformans/fisiología , Cryptococcus neoformans/genética , Estrés Oxidativo , Regulación Fúngica de la Expresión Génica , Adenosina Trifosfato/metabolismo
3.
Curr Opin Microbiol ; 80: 102514, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39024914

RESUMEN

The sophisticated ability of living organisms to sense and respond to external stimuli is critical for survival. This is particularly true for fungal pathogens, where the capacity to adapt and proliferate within a host is essential. To this end, signaling pathways, whether evolutionarily conserved or unique, have been refined through interactions with the host. Cryptococcus neoformans, an opportunistic fungal pathogen, is responsible for over 190,000 cases and an estimated 147,000 annual deaths globally. Extensive research over the past decades has shed light on the signaling pathways underpinning the pathogenicity of C. neoformans, as well as the host's responses during infection. In this context, we delineate the regulatory mechanisms employed by C. neoformans to detect and react to stresses derived from the host.


Asunto(s)
Cryptococcus neoformans , Interacciones Huésped-Patógeno , Transducción de Señal , Estrés Fisiológico , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/fisiología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/genética , Humanos , Animales , Meningitis Criptocócica/microbiología , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
4.
Microbiol Spectr ; 12(7): e0341923, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38842336

RESUMEN

Cryptococcus neoformans is a fungal pathogen responsible for >200,000 yearly cases with a mortality as high as 81%. This burden results, in part, from an incomplete understanding of its pathogenesis and ineffective antifungal treatments; hence, there is a pressing need to understand the biology and host interactions of this yeast to develop improved treatments. Protein palmitoylation is important for cryptococcal virulence, and we previously identified the substrates of its main palmitoyl transferase. One of them was encoded by the uncharacterized gene CNAG_02129. In the filamentous fungus Neurospora crassa, a homolog of this gene named hyphal anastomosis protein 13 plays a role in proper cellular communication and filament fusion. In Cryptococcus, cellular communication is essential during mating; therefore, we hypothesized that CNAG_02129, which we named hyphal anastomosis protein 1 (HAM1), may play a role in mating. We found that ham1Δ mutants produce more fusion products during mating, filament more robustly, and exhibit competitive fitness defects under mating and non-mating conditions. Additionally, we found several differences with the major virulence factor, the polysaccharide capsule, that may affect virulence, consistent with prior studies linking virulence to mating. We observed that ham1Δ mutants have decreased capsule attachment and transfer but exhibit higher amounts of exopolysaccharide shedding and biofilm production. Finally, HAM1 expression is significantly lower in mating media relative to non-mating conditions, consistent with it acting as a negative regulator of mating. Understanding the connection between mating and virulence in C. neoformans may open new avenues of investigation into ways to improve the treatment of this disease. IMPORTANCE: Fungal mating is a vital part of the lifecycle of the pathogenic yeast Cryptococcus neoformans. More than just ensuring the propagation of the species, mating allows for sexual reproduction to occur and generates genetic diversity as well as infectious propagules that can invade mammalian hosts. Despite its importance in the biology of this pathogen, we still do not know all of the major players regulating the mating process and if they are involved or impact its pathogenesis. Here, we identified a novel negative regulator of mating that also affects certain cellular characteristics known to be important for virulence. This gene, which we call HAM1, is widely conserved across the cryptococcal family as well as in many pathogenic fungal species. This study will open new avenues of exploration regarding the function of uncharacterized but conserved genes in a variety of pathogenic fungal species and specifically in serotype A of C. neoformans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Proteínas Fúngicas , Factores de Virulencia , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/fisiología , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulencia/genética , Criptococosis/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Genes del Tipo Sexual de los Hongos/genética , Fenotipo , Regulación Fúngica de la Expresión Génica , Animales , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Ratones
5.
Microbiol Spectr ; 12(8): e0420223, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38874428

RESUMEN

The underlying mechanism of thermotolerance, which is a key virulence factor essential for pathogenic fungi such as Cryptococcus neoformans, is largely unexplored. In this study, our findings suggest that Set302, a homolog of Set3 and a subunit of histone deacetylase complex Set3C, contributes to thermotolerance in C. neoformans. Specifically, the deletion of the predicted Set3C core subunit, Set302, resulted in further reduction in the growth of C. neoformans at 39°C, and survival of transient incubation at 50°C. Transcriptomics analysis revealed that the expression levels of numerous heat stress-responsive genes altered at both 30°C and 39°C due to the lack of Set302. Notably, at 39°C, the absence of Set302 led to the downregulation of gene expression related to the ubiquitin-proteasome system (UPS). Based on the GFP-α-synuclein overexpression model to characterize misfolded proteins, we observed a pronounced accumulation of misfolded GFP-α-synuclein at 39°C, consequently inhibiting C. neoformans thermotolerance. Furthermore, the loss of Set302 exacerbated the accumulation of misfolded GFP-α-synuclein during heat stress. Interestingly, the set302∆ strain exhibited a similar phenotype under proteasome stress as it did at 39°C. Moreover, the absence of Set302 led to reduced production of capsule and melanin. set302∆ strain also displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings suggest that Set302 modulates thermotolerance by affecting the degradation of misfolded proteins and multiple virulence factors to mediate the pathogenicity of C. neoformans.IMPORTANCECryptococcus neoformans is a pathogenic fungus that poses a potential and significant threat to public health. Thermotolerance plays a crucial role in the wide distribution in natural environments and host colonization of this fungus. Herein, Set302, a critical core subunit for the integrity of histone deacetylase complex Set3C and widely distributed in various fungi and mammals, governs thermotolerance and affects survival at extreme temperatures as well as the formation of capsule and melanin in C. neoformans. Additionally, Set302 participates in regulating the expression of multiple genes associated with the ubiquitin-proteasome system (UPS). By eliminating misfolded proteins under heat stress, Set302 significantly contributes to the thermotolerance of C. neoformans. Moreover, Set302 regulates the pathogenicity and colonization ability of C. neoformans in a murine model. Overall, this study provides new insight into the mechanism of thermotolerance in C. neoformans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Proteínas Fúngicas , Termotolerancia , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/fisiología , Cryptococcus neoformans/metabolismo , Termotolerancia/genética , Animales , Ratones , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Criptococosis/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia , Regulación Fúngica de la Expresión Génica , Respuesta al Choque Térmico , Femenino , Calor , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Ratones Endogámicos BALB C
6.
Methods Mol Biol ; 2775: 349-358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758328

RESUMEN

Cryptococcus neoformans is the second major cause of death in patients with HIV. During a latent infection, this pathogenic fungus survives in the host for years without causing symptoms of active disease. Upon favorable conditions, such as immunosuppression due to HIV infection, or other conditions (steroid use or organ transplantation), the yeast may reactivate and cause active cryptococcosis. Hence, dormancy is an important phase in the pathogenesis of C. neoformans. Additionally, C. neoformans also persists during antifungal treatment and causes disease recurrence, which is a major medical problem, especially in low- and middle-income countries. To survive in the host, yeast cells must react to the stresses they are exposed to and generate a cellular response that is favorable for yeast survival. A prominent strategy used by C. neoformans to combat challenging surroundings is dormancy, which may translate into a viable, but nonculturable phenotype (VBNC). This chapter describes an in vitro protocol to generate and characterize dormant Cryptococci.


Asunto(s)
Cryptococcus neoformans , Cryptococcus neoformans/fisiología , Criptococosis/microbiología , Humanos
7.
Methods Mol Biol ; 2775: 375-384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758331

RESUMEN

Advances in understanding cellular aging research have been possible due to the analysis of the replicative lifespan of yeast cells. Studying longevity in the pathogenic yeast Cryptococcus neoformans is essential because old yeast cells with age-related phenotypes accumulate during infection and are associated with increased virulence and antifungal tolerance. Microdissection and microfluidic devices are valuable tools for continuously tracking cells at the single-cell level. In this chapter, we describe the features of these two platforms and outline technical limitations and information to study aging mechanisms while assessing the lifespan of yeast cells.


Asunto(s)
Cryptococcus neoformans , Cryptococcus neoformans/fisiología , Cryptococcus neoformans/crecimiento & desarrollo , Microdisección/métodos , Senescencia Celular , Dispositivos Laboratorio en un Chip , Análisis de la Célula Individual/métodos , Criptococosis/microbiología
8.
Methods Mol Biol ; 2775: 385-391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758332

RESUMEN

A special feature of the human fungal pathogen Cryptococcus neoformans is its morphological changes triggered by the interaction with the host. During infection, a specific increase in cell size is observed, particularly in lung tissue, from a typical cell size of 5-7 µm cells to cells larger than 10 µm, dubbed titan cells (TCs). However, the study of this specific cell subpopulation was, until now, only possible via recovery of TCs from lungs of mice during experimental infections where stable and reproducible generation of TCs occurs.The protocol described here generates TCs using in vitro conditions and measures cell size using a rapid, automated method. TC generation in vitro is robust and reproducible, generating yeast cells harboring the same characteristics of TCs generated in vivo.


Asunto(s)
Cryptococcus neoformans , Cryptococcus neoformans/citología , Cryptococcus neoformans/fisiología , Animales , Ratones , Criptococosis/microbiología , Tamaño de la Célula , Pulmón/microbiología , Pulmón/citología , Humanos
9.
Methods Mol Biol ; 2775: 277-303, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758325

RESUMEN

Cryptococcus neoformans is an opportunistic human fungal pathogen capable of surviving in a wide range of environments and hosts. It has been developed as a model organism to study fungal pathogenesis due to its fully sequenced haploid genome and optimized gene deletion and mutagenesis protocols. These methods have greatly aided in determining the relationship between Cryptococcus genotype and phenotype. Furthermore, the presence of congenic mata and matα strains associated with a defined sexual cycle has helped further understand cryptococcal biology. Several in vitro stress conditions have been optimized to closely mimic the stress that yeast encounter in the environment or within the infected host. These conditions have proven to be extremely useful in elucidating the role of several genes in allowing yeast to adapt and survive in hostile external environments. This chapter describes various in vitro stress conditions that could be used to test the sensitivity of different mutant strains, as well as the protocol for preparing them. We have also included a list of mutants that could be used as a positive control strain when testing the sensitivity of the desired strain to a specific stress.


Asunto(s)
Cryptococcus neoformans , Fenotipo , Estrés Fisiológico , Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiología , Estrés Fisiológico/genética , Humanos , Mutación , Criptococosis/microbiología
10.
Trends Microbiol ; 32(10): 984-995, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38519353

RESUMEN

While the opportunistic human pathogens Cryptococcus neoformans and Cryptococcus gattii are often isolated from plants and plant-related material, evidence suggests that these Cryptococcus species do not directly infect plants. Studies find that plants are important for Cryptococcus mating and dispersal. However, these studies have not provided enough detail about how plants and these fungi interact, especially in ways that could show the fungi are capable of causing disease. This review synthesizes recent findings from studies utilizing different plant models associated with the ecology of C. neoformans and C. gattii. Unanswered questions about their environmental role are highlighted. Overall, current research indicates that Cryptococcus utilizes plants as a substrate rather than harming them, arguing against Cryptococcus as a genuine plant pathogen. We hypothesize that plants represent reservoirs that aid dispersal, not hosts vulnerable to infection.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Plantas , Cryptococcus neoformans/fisiología , Cryptococcus neoformans/patogenicidad , Plantas/microbiología , Enfermedades de las Plantas/microbiología , Criptococosis/microbiología , Cryptococcus gattii/fisiología , Cryptococcus gattii/patogenicidad , Humanos
11.
Microbes Infect ; 26(3): 105260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37981028

RESUMEN

Organoids can meet the needs between the use of cell culture and in vivo work, bringing together aspects of multicellular tissues, providing a more similar in vitro system for the study of various components, including host-interactions with pathogens and drug response. Organoids are structures that resemble organs in vivo, originating from pluripotent stem cells (PSCs) or adult stem cells (ASCs). There is great interest in deepening the understanding of the use of this technology to produce information about fungal infections and their treatments. This work aims the use 2D human lung organoid derived from human embryonic stem cells (hESCs), to investigate Cryptococcus neoformans-host interactions. C. neoformans is an opportunistic fungus acquired by inhalation that causes systemic mycosis mainly in immunocompromised individuals. Our work highlights the suitability of human minilungs for the study of C. neoformans infection (adhesion, invasion and replication), the interaction with the surfactant and induction of the host's alveolar pro-inflammatory response.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Células Madre Embrionarias Humanas , Humanos , Cryptococcus neoformans/fisiología , Criptococosis/microbiología , Pulmón/microbiología , Técnicas de Cultivo de Célula
12.
mSphere ; 8(6): e0029923, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37850793

RESUMEN

IMPORTANCE: Eukaryotic gene transcription is typically regulated by a series of histone modifications, which play a crucial role in adapting to complex environmental stresses. In the ubiquitous human fungal pathogen Cryptococcus neoformans, sexual life cycle is a continuous intracellular differentiation process that strictly occurs in response to mating stimulation. Despite the comprehensive identification of the regulatory factors and genetic pathways involved in its sexual cycle, understanding of the epigenetic modifications involved in this process remains quite limited. In this research, we found that histone acetyltransferase Gcn5-mediated histone H3 acetylation plays a crucial role in completing the cryptococcal sexual cycle, including yeast-hyphae morphogenesis and the subsequent sexual reproduction. Furthermore, we demonstrated that Gcn5 participates in this process primarily through regulating the key morphogenesis regulator Znf2 and its targets. This study thus provided a comprehensive understanding of how histone acetylation modification impacts sexual life cycle in a high-risk human pathogenic fungus.


Asunto(s)
Cryptococcus neoformans , Histonas , Humanos , Acetilación , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/fisiología , Proteínas Fúngicas/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Estadios del Ciclo de Vida , Reproducción
13.
Methods Mol Biol ; 2667: 31-45, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37145274

RESUMEN

Cryptococcal meningitis affects millions of people worldwide and is especially prevalent in regions with a high burden of HIV/AIDS. The study of the pathophysiology of this often fatal disease has been significantly hindered by the lack of reliable experimental models, especially at the level of the brain, which is the main organ of injury. Here we outline our novel protocol for the use of hippocampal organotypic brain slice cultures (HOCs) to study the host-fungal interactions during cryptococcal infections of the brain. HOCs are a powerful platform for investigating neuroimmune interactions as they allow for the preservation of all innate neuroglial cells including microglia, astrocytes, and neurons, all of which maintain their three-dimensional architecture and functional connectivity. We made HOCs from neonatal mice and infected these with a fluorescent strain of Cryptococcus neoformans for 24 h. Using immunofluorescent staining, we confirmed the presence and morphology of microglia, astrocytes, and neurons in HOCs prior to infection. Using fluorescent and light microscopy, we also confirmed that Cryptococcus neoformans encapsulates and buds in vitro, as it would in a host. Finally, we demonstrate that infection of HOCs with Cryptococcus neoformans results in close association of the fungal cells with host microglial cells. Our results demonstrate the utility of HOCs as a model to study the pathophysiology and host neuroimmune responses in neurocryptococcosis, which may assist in improving our collective understanding of the pathogenesis of this disease.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningitis Criptocócica , Ratones , Animales , Meningitis Criptocócica/microbiología , Meningitis Criptocócica/patología , Cryptococcus neoformans/fisiología , Encéfalo/patología , Microglía/patología
14.
PLoS One ; 18(3): e0280692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928392

RESUMEN

Cryptococcus neoformans (CN) cells survive within the acidic phagolysosome of macrophages (MΦ) for extended times, then escape without impacting the viability of the host cell via a phenomenon that has been coined 'vomocytosis'. Through this mechanism, CN disseminate throughout the body, sometimes resulting in a potentially fatal condition-Cryptococcal Meningitis (CM). Justifiably, vomocytosis studies have focused primarily on MΦ, as alveolar MΦ within the lung act as first responders that ultimately expel this fungal pathogen. Herein, we hypothesize that dendritic cells (DCs), an innate immune cell with attributes that include phagocytosis and antigen presentation, can also act as 'vomocytes'. Presciently, this report shows that vomocytosis of CN indeed occurs from murine, bone marrow-derived DCs. Primarily through time-lapse microscopy imaging, we show that rates of vomocytosis events from DCs are comparable to those seen from MΦ and further, are independent of the presence of the CN capsule and infection ratios. Moreover, the phagosome-altering drug bafilomycin A inhibits this phenomenon from DCs. Although DC immunophenotype does not affect the total number of vomocytic events, we observed differences in the numbers of CN per phagosome and expulsion times. Interestingly, these observations were similar in murine, bone marrow-derived MΦ. This work not only demonstrates the vomocytic ability of DCs, but also investigates the complexity of vomocytosis regulation in this cell type and MΦ under multiple modulatory conditions. Understanding the vomocytic behavior of different phagocytes and their phenotypic subtypes is needed to help elucidate the full picture of the dynamic interplay between CN and the immune system. Critically, deeper insight into vomocytosis could reveal novel approaches to treat CM, as well as other immune-related conditions.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Animales , Ratones , Cryptococcus neoformans/fisiología , Médula Ósea , Criptococosis/microbiología , Fagocitosis , Células Dendríticas
15.
Med Microbiol Immunol ; 212(1): 53-63, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36367554

RESUMEN

It has been reported that IL-33 receptor ST2 deficiency mitigates Cryptococcus neoformans (C. neoformans) pulmonary infection in BALB/c mice. IL-33 may modulate immune responses in ST2-dependent and ST2-independent manners. The host genetic background (i.e., BALB/c, C57BL/6 J) influences immune responses against C. neoformans. In the present study, we aimed to explore the roles of IL-33 and ST2 in pulmonary C. neoformans-infected mice on a C57BL/6 J genetic background. C. neoformans infection increased IL-33 expression in lung tissues. IL-33 deficiency but not ST2 deficiency significantly extended the survival time of C. neoformans-infected mice. In contrast, either IL-33 or ST2 deficiency reduced fungal burdens in lung, spleen and brain tissues from the mice following C. neoformans intratracheal inoculation. Similarly, inflammatory responses in the lung tissues were more pronounced in both the IL-33-/- and ST2-/- infected mice. However, mucus production was decreased in IL-33-/- infected mice alone, and the level of IL-5 in bronchoalveolar lavage fluid (BALF) was substantially decreased in the IL-33-/- infected mice but not ST2-/- infected mice. Moreover, IL-33 deficiency but not ST2 deficiency increased iNOS-positive macrophages. At the early stage of infection, the reduced pulmonary fungal burden in the IL-33-/- and ST2-/- mice was accompanied by increased neutrophil infiltration. Collectively, IL-33 regulated pulmonary C. neoformans infection in an ST2-dependent and ST2-independent manner in C57BL/6 J mice.


Asunto(s)
Criptococosis , Interleucina-33 , Animales , Ratones , Criptococosis/inmunología , Cryptococcus neoformans/fisiología , Interleucina-33/genética , Pulmón , Ratones Endogámicos C57BL
16.
Front Cell Infect Microbiol ; 12: 859049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402316

RESUMEN

Macrophages are key cellular components of innate immunity, acting as the first line of defense against pathogens to modulate homeostatic and inflammatory responses. They help clear pathogens and shape the T-cell response through the production of cytokines and chemokines. The facultative intracellular fungal pathogen Cryptococcus neoformans has developed a unique ability to interact with and manipulate host macrophages. These interactions dictate how Cryptococcus infection can remain latent or how dissemination within the host is achieved. In addition, differences in the activities of macrophages have been correlated with differential susceptibilities of hosts to Cryptococcus infection, highlighting the importance of macrophages in determining disease outcomes. There is now abundant information on the interaction between Cryptococcus and macrophages. In this review we discuss recent advances regarding macrophage origin, polarization, activation, and effector functions during Cryptococcus infection. The importance of these strategies in pathogenesis and the potential of immunotherapy for cryptococcosis treatment is also discussed.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Neumonía , Criptococosis/microbiología , Cryptococcus neoformans/fisiología , Humanos , Inmunomodulación , Pulmón/patología , Macrófagos/microbiología
17.
PLoS One ; 17(3): e0266239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349591

RESUMEN

Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Criptococosis/microbiología , Cryptococcus neoformans/fisiología , Peróxido de Hidrógeno/metabolismo , Nucleósidos/metabolismo , Oxidantes/metabolismo , ARN de Transferencia/metabolismo , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo
18.
PLoS Genet ; 17(11): e1009935, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843473

RESUMEN

Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications.


Asunto(s)
Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiología , Genes Fúngicos , Genes Reporteros , Genes cdc , Meiosis , Mitosis , Ploidias , Reproducción
19.
mBio ; 12(5): e0250921, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34634930

RESUMEN

The pathogenic yeast Cryptococcus neoformans produces polyploid titan cells in response to the host lung environment that are critical for host adaptation and subsequent disease. We analyzed the in vivo and in vitro cell cycles to identify key aspects of the C. neoformans cell cycle that are important for the formation of titan cells. We identified unbudded 2C cells, referred to as a G2 arrest, produced both in vivo and in vitro in response to various stresses. Deletion of the nonessential cyclin Cln1 resulted in overproduction of titan cells in vivo and transient morphology defects upon release from stationary phase in vitro. Using a copper-repressible promoter PCTR4-CLN1 strain and a two-step in vitro titan cell formation assay, our in vitro studies revealed Cln1 functions after the G2 arrest. These studies highlight unique cell cycle alterations in C. neoformans that ultimately promote genomic diversity and virulence in this important fungal pathogen. IMPORTANCE Dysregulation of the cell cycle underlies many human genetic diseases and cancers, yet numerous organisms, including microbes, also manipulate the cell cycle to generate both morphologic and genetic diversity as a natural mechanism to enhance their chances for survival. The eukaryotic pathogen Cryptococcus neoformans generates morphologically distinct polyploid titan cells critical for host adaptation and subsequent disease. We analyzed the C. neoformans in vivo and in vitro cell cycles to identify changes required to generate the polyploid titan cells. C. neoformans paused cell cycle progression in response to various environmental stresses after DNA replication and before morphological changes associated with cell division, referred to as a G2 arrest. Release from this G2 arrest was coordinated by the cyclin Cln1. Reduced CLN1 expression after the G2 arrest was associated with polyploid titan cell production. These results demonstrate a mechanism to generate genomic diversity in eukaryotic cells through manipulation of the cell cycle that has broad disease implications.


Asunto(s)
Ciclo Celular/genética , Cryptococcus neoformans/genética , Ciclinas/genética , Proteínas Fúngicas/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Estrés Fisiológico/genética , Animales , Ciclo Celular/fisiología , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/fisiología , Ciclinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Estrés Fisiológico/fisiología , Virulencia
20.
J Immunol ; 207(8): 2107-2117, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526375

RESUMEN

A multifunctional glycoprotein, osteopontin (OPN), can modulate the function of macrophages, resulting in either protective or deleterious effects in various inflammatory diseases and infection in the lungs. Although macrophages play the critical roles in mediating host defenses against cryptococcosis or cryptococcal pathogenesis, the involvement of macrophage-derived OPN in pulmonary infection caused by fungus Cryptococcus has not been elucidated. Thus, our current study aimed to investigate the contribution of OPN to the regulation of host immune response and macrophage function using a mouse model of pulmonary cryptococcosis. We found that OPN was predominantly expressed in alveolar macrophages during C. neoformans infection. Systemic treatment of OPN during C. neoformans infection resulted in an enhanced pulmonary fungal load and an early onset of type 2 inflammation within the lung, as indicated by the increase of pulmonary eosinophil infiltration, type 2 cytokine production, and M2-associated gene expression. Moreover, CRISPR/Cas9-mediated OPN knockout murine macrophages had enhanced ability to clear the intracellular fungus and altered macrophage phenotype from pathogenic M2 to protective M1. Altogether, our data suggested that macrophage-derived OPN contributes to the elaboration of C. neoformans-induced type 2 immune responses and polarization of M2s that promote fungal survival and proliferation within macrophages.


Asunto(s)
Criptococosis/inmunología , Cryptococcus neoformans/fisiología , Eosinófilos/inmunología , Pulmón/patología , Macrófagos/inmunología , Osteopontina/metabolismo , Células Th2/inmunología , Animales , Diferenciación Celular , Procesos de Crecimiento Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Osteopontina/genética , Balance Th1 - Th2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA