Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 800
Filtrar
1.
Sci Rep ; 14(1): 15883, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987579

RESUMEN

Salinity stress poses a significant treat to crop yields and product quality worldwide. Application of a humic acid bio stimulant and grafting onto tolerant rootstocks can both be considered sustainable agronomic practices that can effectively ameliorate the negative effects of salinity stress. This study aimed to assess the above mentioned ameliorative effects of both practices on cucumber plants subjected to saline environments. To attain this goal a factorial experiment was carried out in the form of a completely randomized design with three replications. The three factors considered were (a) three different salinity levels (0, 5, and 10 dS m-1 of NaCl), (b) foliar application of humic acid at three levels (0, 100, and 200 mg L-1), and (c) both grafted and ungrafted plants. Vegetative traits including plant height, fresh and dry weight and number of leaf exhibited a significant decrease under increasing salinity stress. However, the application of humic acid at both levels mitigated these effects compared to control plants. The reduction in relative water content (RWC) of the leaf caused by salinity, was compensated by the application of humic acid and grafting. Thus, the highest RWC (86.65%) was observed in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. Electrolyte leakage (EL) increased under salinity stress, but the application of humic acid and grafting improved this trait and the lowest amount of EL (26.95%) was in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. The highest amount of catalase (0.53 mmol H2O2 g-1 fw min-1) and peroxidase (12.290 mmol H2O2 g-1 fw min-1) enzymes were observed in the treatment of 10 dS m-1 of NaCl and 200 mg L-1 humic acid. The highest amount of total phenol (1.99 mg g-1 FW), total flavonoid (0.486 mg g-1 FW), total soluble carbohydrate (30.80 mg g-1 FW), soluble protein (34.56 mg g-1 FW), proline (3.86 µg g-1 FW) was in grafting plants with 0 dS m-1 of NaCl and 200 mg L-1 of humic acid. Phenolic acids and phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) enzymes increased with increasing salinity and humic acid levels. Contrary to humic acid, salt stress increased the sodium (Na+) and chlorine (Cl-) and decreased the amount of potassium (K+) and calcium (Ca2+) in the root and leaf of ungrafted cucumber. However, the application 200 mg L-1 humic acid appeared to mitigate these effects, thereby suggesting a potential role in moderating physiological processes and improving growth of cucumber plants subjected to salinity stress. According to the obtained results, spraying of humic acid (200 mg L-1) and the use of salt resistant rootstocks are recommended to increase tolerance to salt stress in cucumber. These results, for the first time, clearly demonstrated that fig leaf gourd a new highly salt-tolerant rootstock, enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot and increasing the amount of compatible osmolytes.


Asunto(s)
Cucumis sativus , Sustancias Húmicas , Estrés Salino , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Salinidad , Agricultura/métodos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
2.
Plant Physiol Biochem ; 214: 108878, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968841

RESUMEN

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (H2O2) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV). However, buthionine sulfoximine (BSO, a GSH synthase inhibitor) treatment drastically reversed or attenuated the effects of NO. Importantly, the combination of SNP and GSH treatment had the best effect in alleviating chilling-induced oxidative stress by upregulating the activities of antioxidant enzyme, including superoxidase dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) and improved the PAs content, thereby increased activities of CI, CII, CIII, CIV, and CV. This potentially contributes to the maintenance of oxidative phosphorylation originating from mitochondria. In addition, the high activity of S-nitrosoglutathione reductase (GSNOR) in the combined treatment of SNP and GSH possibly mediates the conversion of NO and GSH to S-nitrosoglutathione. Our study revealed that the combined treatment with NO and GSH to synergistically improve the cold tolerance of cucumber seedlings under prolonged low-temperature stress.


Asunto(s)
Antioxidantes , Frío , Cucumis sativus , Glutatión , Mitocondrias , Óxido Nítrico , Poliaminas , Cucumis sativus/metabolismo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/fisiología , Óxido Nítrico/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Poliaminas/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo
3.
Plant Physiol Biochem ; 214: 108915, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972240

RESUMEN

Copper (Cu) toxicity in crops is a result of excessive release of Cu into environment. Little is known about mitigation of Cu toxicity through the application of carbon-based nanomaterials including water-soluble fullerene C60 derivatives. Two derivatives of fullerene were examined: polyhydroxylated C60 (fullerenol) and arginine C60 derivative. In order to study the response of Cu-stressed plants (Cucumis sativus L.) to these nanomaterials, metabolomics analysis by gas chromatography-mass spectrometry (GC-MS) was performed. Excess Cu (15 µM) caused substantial increase in xylem sap Cu, retarded dry biomass and leaf chlorosis of hydroponically grown cucumber. In Cu-stressed leaves, metabolomes was disturbed towards suppression metabolism of nitrogen (N) compounds and activation metabolism of hexoses. Also, upregulation of some metabolites involving in antioxidant defense system, such as ascorbic acid, tocopherol and ferulic acid, was occurred in Cu-stressed leaves. Hydroponically added fullerene adducts decreased the xylem sap Cu and alleviated Cu toxicity with effectiveness has been most pronounced for arginine C60 derivative. Metabolic responses of plants subjected to high Cu with fullerene derivatives were opposite to that observed under Cu alone. Fatty acids up-regulation (linolenic acid) and antioxidant molecules (tocopherol) down-regulation might indicate that arginine C60 adduct can alleviate Cu induced oxidative stress. Although fullerenol slightly improved cucumber growth, its effect on metabolic state of Cu-stressed plants was not statistically significant. We suggest that tested fullerene C60 adducts have a potential to prevent Cu toxicity in plants through a mechanism associated with their capability to restrict xylem transport of Cu from roots to shoot, and to maintain antioxidative properties of plants.


Asunto(s)
Cobre , Cucumis sativus , Fulerenos , Fulerenos/farmacología , Fulerenos/metabolismo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cobre/toxicidad , Cobre/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Metaboloma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo
4.
J Agric Food Chem ; 72(28): 15586-15600, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949485

RESUMEN

Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Termotolerancia , Factores de Transcripción , Cucumis sativus/genética , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Termotolerancia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Calor , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
5.
J Agric Food Chem ; 72(28): 15633-15642, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950134

RESUMEN

The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.


Asunto(s)
Bacillus , Proteínas Bacterianas , Biodegradación Ambiental , Nitrorreductasas , Zea mays , Bacillus/enzimología , Bacillus/metabolismo , Bacillus/genética , Nitrorreductasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Zea mays/metabolismo , Zea mays/microbiología , Cucumis sativus/microbiología , Cucumis sativus/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química
6.
Plant Sci ; 346: 112177, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964612

RESUMEN

The fruit shape of cucumber is an important agronomic trait, and mining regulatory genes, especially dominant ones, is vital for cucumber breeding. In this study, we identified a short and fat fruit mutant, named sff, from an EMS mutagenized population. Compared to the CCMC (WT), sff (MT) exhibited reduced fruit length and increased dimeter. Segregation analysis revealed that the sff phenotype is controlled by a semi-dominant single gene with dosage effects. Through map-based cloning, the SFF locus was narrowed down to a 52.6 kb interval with two SNPs (G651A and C1072T) in the second and third exons of CsaV3_1G039870, which encodes an IQD family protein, CsSUN. The G651A within the IQ domain of CsSUN was identified as the unique SNP among 114 cucumber accessions, and it was the primary cause of the functional alteration in CsSUN. By generating CsSUN knockout lines in cucumber, we confirmed that CsSUN was responsible for sff mutant phenotype. The CsSUN is localized to the plasma membrane. CsSUN exhibited the highest expression in the fruit with lower expression in sff compared to WT. Histological observations suggest that the sff mutant phenotype is due to increased transverse cell division and inhibited longitudinal cell division. Transcriptome analysis revealed that CsSUN significantly affected the expression of genes related to cell division, expansion, and auxin signal transduction. This study unveils CsSUN's crucial role in shaping cucumber fruit and offers novel insights for cucumber breeding.


Asunto(s)
Cucumis sativus , Frutas , Mutación , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica de las Plantas
7.
Genes (Basel) ; 15(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39062604

RESUMEN

Yellowing leaves are ideal materials for studying the metabolic pathways of photosynthetic pigment chloroplast development, and the mechanism of photosynthetic systems. Here, we obtained a triploid material HCC (2n = 3x = 26), which was derived from hybridization between the artificial tetraploid Cucumis × hytivus (2n = 4x = 38, HHCC) and the cultivated cucumber Cucumis sativus (2n = 2x = 14, CC), and this triploid HCC showed obvious leaf yellowing characteristics. Phenotypic observation results showed that chloroplast development was impaired, the chlorophyll content decreased, and photosynthesis decreased in yellowing HCC leaves. The transcriptome results indicated that HCC-GLK is significantly downregulated in HCC and participates in the regulation of leaf yellowing. GO enrichment analysis revealed that differential genes were enriched in the heme binding and tetrapyrrole binding pathways related to leaf color. KEGG enrichment analysis revealed that differential genes were predominantly enriched in photosynthesis-related pathways. The experimental results of VIGS and yeast hybridization showed that silencing the GLK gene can induce leaf yellowing in cucumber plants, and the GLK protein can affect plant chloroplast development by interacting with the CAB3C protein (light-harvesting chlorophyll a/b binding) in the plant chlorophyll synthesis pathway. The current findings have not only enhanced our understanding of the regulatory mechanism of the GLK transcription factor in cucumber but also introduced novel insights and directions for investigating the molecular mechanism underlying polyploid leaf yellowing.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Transcriptoma , Cucumis sativus/genética , Cucumis sativus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotosíntesis/genética , Clorofila/metabolismo , Clorofila/genética , Perfilación de la Expresión Génica/métodos
8.
Planta ; 260(2): 53, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009858

RESUMEN

MAIN CONCLUSION: NH4+ is necessary for full functionality of reduction-based Fe deficiency response in plants. Nitrogen (N) is present in soil mainly as nitrate (NO3-) or ammonium (NH4+). Although the significance of a balanced supply of NO3- and NH4+ for optimal growth has been generally accepted, its importance for iron (Fe) acquisition has not been sufficiently investigated. In this work, hydroponically grown cucumber (Cucumis sativus L. cv. Maximus) plants were supplied with NO3- as the sole N source under -Fe conditions. Upon the appearance of chlorosis, plants were supplemented with 2 mM NH4Cl by roots or leaves. The NH4+ treatment increased leaf SPAD and the HCl-extractable Fe concentration while decreased root apoplastic Fe. A concomitant increase in the root concentration of nitric oxide and activity of FRO and its abolishment by an ethylene action inhibitor, indicated activation of the components of Strategy I in NH4+-treated plants. Ammonium-pretreated plants showed higher utilization capacity of sparingly soluble Fe(OH)3 and higher root release of H+, phenolics, and organic acids. The expression of the master regulator of Fe deficiency response (FIT) and its downstream genes (AHA1, FRO2, and IRT1) along with EIN3 and STOP1 was increased by NH4+ application. Temporal analyses and the employment of a split-root system enabled us to suggest that a permanent presence of NH4+ at concentrations lower than 2 mM is adequate to produce an unknown signal and causes a sustained upregulation of Fe deficiency-related genes, thus augmenting the Fe-acquisition machinery. The results indicate that NH4+ appears to be a widespread and previously underappreciated component of plant reduction-based Fe deficiency response.


Asunto(s)
Compuestos de Amonio , Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Hierro , Raíces de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/fisiología , Compuestos de Amonio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Hierro/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transducción de Señal , Deficiencias de Hierro , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Nitratos/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitrógeno/metabolismo
9.
Physiol Plant ; 176(4): e14422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962815

RESUMEN

Low temperatures pose a common challenge in the production of cucumbers and tomatoes, hindering plant growth and, in severe cases, leading to plant death. In our investigation, we observed a substantial improvement in the growth of cucumber and tomato seedlings through the application of corn steep liquor (CSL), myo-inositol (MI), and their combinations. When subjected to low-temperature stress, these treatments resulted in heightened levels of photosynthetic pigments, thereby fostering enhanced photosynthesis in both tomato and cucumber plants. Furthermore, it contributed to a decrease in malondialdehyde (MDA) levels and electrolyte leakage (REP). The effectiveness of the treatment was further validated through the analysis of key gene expressions (CBF1, COR, MIOX4, and MIPS1) in cucumber. Particularly, noteworthy positive outcomes were noted in the treatment involving 0.6 mL L-1 CSL combined with 72 mg L-1 MI. This study provides valuable technical insights into leveraging the synergistic effects of inositol and maize leachate to promote early crop growth and bolster resistance to low temperatures.


Asunto(s)
Frío , Cucumis sativus , Inositol , Plantones , Solanum lycopersicum , Zea mays , Inositol/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/genética , Zea mays/fisiología , Plantones/crecimiento & desarrollo , Plantones/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Cucumis sativus/genética , Cucumis sativus/fisiología , Fotosíntesis/efectos de los fármacos , Malondialdehído/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
10.
Plant Physiol Biochem ; 214: 108962, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067105

RESUMEN

Melatonin (Mel) is recognized as a prominent plant growth regulator. This study investigated the alleviating effect of Mel pretreatment on growth inhibition caused by low-temperature (LT) stress (10 °C/6 °C) in cucumber seedlings and explored the role of the Ca2+/Calcium-dependent protein kinases (CPKs) signaling pathway in Mel-regulated LT tolerance. The main results are as follows: compared to LT treatment alone, 100 µM Mel increased both the content of Ca2+ (highest about 42.01%) and the expression levels of Ca2+ transporter and cyclic nucleotide-gated channel (CNGC) genes under LT. Similarly, Mel enhanced the content of CPKs (highest about 27.49%) and the expression levels of CPKs family genes in cucumber leaves under LT. Additionally, pretreatment with 100 µM Mel for three days strengthened the antioxidant defense and photosynthesis of seedlings under LT. Genes in the ICE-CBF-COR pathway and the MAPK cascade were upregulated by Mel, with maximum upregulations reaching approximately 2.5-fold and 1.9-fold, respectively, thus conferring LT tolerance to cucumber seedlings. However, the above beneficial effects of Mel were weakened by co-treatment with calcium signaling blockers (LaCl3 or EGTA) or CPKs inhibitors (TFP or W-7), suggesting that the Ca2+/CPKs pathway is involved in the Mel-mediated regulation of LT tolerance. In conclusion, this study revealed that Mel can alleviate growth inhibition in cucumber seedlings under LT stress and demonstrated that the Ca2+/CPKs signaling pathway is crucial for the Mel-mediated enhancement of LT tolerance. The findings hold promise for providing theoretical insights into the application of Mel in agricultural production and for investigating its underlying mechanisms of action.


Asunto(s)
Frío , Cucumis sativus , Melatonina , Proteínas de Plantas , Plantones , Transducción de Señal , Cucumis sativus/efectos de los fármacos , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Melatonina/farmacología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Fotosíntesis/efectos de los fármacos
11.
Plant J ; 119(3): 1353-1368, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829920

RESUMEN

Cucumber plants are highly susceptible to the hemibiotroph oomycete Phytophthora melonis. However, the mechanism of resistance to cucumber blight remains poorly understood. Here, we demonstrated that cucumber plants with impairment in the biosynthesis of brassinosteroids (BRs) or gibberellins (GAs) were more susceptible to P. melonis. By contrast, increasing levels of endogenous BRs or exogenously application of 24-epibrassinolide enhanced the resistance of cucumber plants against P. melonis. Furthermore, we found that both knockout and overexpression of the BR biosynthesis gene CYP85A1 reduced the endogenous GA3 content compared with that of wild-type plants under the condition of inoculation with P. melonis, and the enhancement of disease resistance conferred by BR was inhibited in plants with silencing of the GA biosynthetic gene GA20ox1 or KAO. Together, these findings suggest that GA homeostasis is an essential factor mediating BRs-induced disease resistance. Moreover, BZR6, a key regulator of BR signaling, was found to physically interact with GA20ox1, thereby suppressing its transcription. Silencing of BZR6 promoted endogenous GA biosynthesis and compromised GA-mediated resistance. These findings reveal multifaceted crosstalk between BR and GA in response to pathogen infection, which can provide a new approach for genetically controlling P. melonis damage in cucumber production.


Asunto(s)
Brasinoesteroides , Cucumis sativus , Resistencia a la Enfermedad , Giberelinas , Phytophthora , Enfermedades de las Plantas , Phytophthora/fisiología , Brasinoesteroides/metabolismo , Cucumis sativus/microbiología , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/parasitología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal
12.
J Agric Food Chem ; 72(26): 14570-14580, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887997

RESUMEN

Enhancing the initial stages of plant growth by using polymeric gels for seed priming presents a significant challenge. This study aimed to investigate a microgel derived from polyetheramine-poly(propylene oxide) (PPO) and a bisepoxide (referred to as micro-PPO) as a promising alternative to optimize the seed germination process. The micro-PPO integrated with an iron micronutrient showed a positive impact on seed germination compared with control (Fe solutions) in which the root length yield improved up to 39%. Therefore, the element map by synchrotron-based X-ray fluorescence shows that the Fe intensities in the seed primers with the micro-PPO-Fe gel are about 3-fold higher than those in the control group, leading to a gradual distribution of Fe species through most internal embryo tissues. The use of micro-PPO for seed priming underscores their potential for industrial applications due to the nontoxicity results in zebrafish assays and environmentally friendly synthesis of the water-dispersible monomers employed.


Asunto(s)
Aminas , Cucumis sativus , Germinación , Hierro , Microgeles , Semillas , Germinación/efectos de los fármacos , Semillas/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/química , Hierro/metabolismo , Hierro/química , Aminas/química , Aminas/metabolismo , Microgeles/química , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Pez Cebra/metabolismo , Animales
13.
Gene ; 927: 148626, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830516

RESUMEN

Cucumber (Cucumis sativus L.) is an important horticultural crop in China. Consumer requirements for aesthetically pleasing appearances of horticultural crops are gradually increasing, and cucumbers having a good visual appearance, as well as flavor, are important for breeding and industry development. The gloss of cucumber fruit epidermis is an important component of its appeal, and the wax layer on the fruit surface plays important roles in plant growth and forms a powerful barrier against external biotic and abiotic stresses. The wax of the cucumber epidermis is mainly composed of alkanes, and the luster of cucumber fruit is mainly determined by the alkane and silicon contents of the epidermis. Several genes, transcription factors, and transporters affect the synthesis of ultra-long-chain fatty acids and change the silicon content, further altering the gloss of the epidermis. However, the specific regulatory mechanisms are not clear. Here, progress in research on the luster of cucumber fruit epidermis from physiological, biochemical, and molecular regulatory perspectives are reviewed. Additionally, future research avenues in the field are discussed.


Asunto(s)
Cucumis sativus , Frutas , Regulación de la Expresión Génica de las Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891917

RESUMEN

The European "Green Deal" policies are shifting toward more sustainable and environmentally conscious agricultural practices, reducing the use of chemical fertilizer and pesticides. This implies exploring alternative strategies. One promising alternative to improve plant nutrition and reinforce plant defenses is the use of beneficial microorganisms in the rhizosphere, such as "Plant-growth-promoting rhizobacteria and fungi". Despite the great abundance of iron (Fe) in the Earth's crust, its poor solubility in calcareous soil makes Fe deficiency a major agricultural issue worldwide. Among plant promoting microorganisms, the yeast Debaryomyces hansenii has been very recently incorporated, for its ability to induce morphological and physiological key responses to Fe deficiency in plants, under hydroponic culture conditions. The present work takes it a step further and explores the potential of D. hansenii to improve plant nutrition and stimulate growth in cucumber plants grown in calcareous soil, where ferric chlorosis is common. Additionally, the study examines D. hansenii's ability to induce systemic resistance (ISR) through a comparative relative expression study by qRT-PCR of ethylene (ET) biosynthesis (ACO1), or ET signaling (EIN2 and EIN3), and salicylic acid (SA) biosynthesis (PAL)-related genes. The results mark a significant milestone since D. hansenii not only enhances nutrient uptake and stimulates plant growth and flower development but could also amplify induced systemic resistance (ISR). Although there is still much work ahead, these findings make D. hansenii a promising candidate to be used for sustainable and environmentally friendly integrated crop management.


Asunto(s)
Producción de Cultivos , Fertilizantes , Producción de Cultivos/métodos , Hierro/metabolismo , Cucumis sativus/microbiología , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Deficiencias de Hierro , Regulación de la Expresión Génica de las Plantas , Debaryomyces/metabolismo , Rizosfera , Etilenos/metabolismo , Microbiología del Suelo , Ácido Salicílico/metabolismo
15.
Plant Physiol Biochem ; 212: 108780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850726

RESUMEN

The study evaluated the effects of treating irrigation water with a coaxial flow variator (CFV) on the morpho-physiology of pot-cultivated test species, including cucumber (Cucumis sativus, CU), lettuce (Lactuca sativa, LE), and sorghum (Sorghum vulgare, SO), in early stages of growth. CFV caused a lower oxidation reduction potential (ORP), increased pH and flow resistance and inductance. It induced changes in the absorbance characteristics of water in specific spectral regions, likely associated with greater stretching and reduced bending vibrations compared to untreated water. While assimilation rate and photosynthetic efficiency were not significantly affected at 60 days after sowing, treated water increased the stomatal conductance to water vapour gsw (+79%) and the electron transport rate ETR (+10%) in CU, as well as the non-photochemical quenching NPQ (+33%) in SO. Treated water also reduced leaf temperature in all species (-0.86 °C on average). This translated into improved plant biomass (leaves: +34%; roots: +140%) and reduced leaf-to-root biomass ratio (-42%) in SO, allowing both faster aerial growth and soil colonization, which can be exploited to improve plant tolerance against abiotic stresses. In the C3 species CU and LE, plant biomass was instead reduced, although significantly in LE only, while the leaf-to-root biomass ratio was generally enhanced, a result likely profitable in the cultivation of leafy vegetables. This is a preliminary trial on the effects of functionalized water and much remains to be investigated in other physiological processes, plant species, and growth stages for the full exploitation of this water treatment in agronomy.


Asunto(s)
Cucumis sativus , Lactuca , Fotosíntesis , Agua , Agua/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Cucumis sativus/fisiología , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Riego Agrícola/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo
16.
Plant J ; 119(1): 332-347, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700955

RESUMEN

The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.


Asunto(s)
Ascomicetos , Cucumis sativus , Enfermedades de las Plantas , Proteínas de Plantas , Cucumis sativus/microbiología , Cucumis sativus/genética , Cucumis sativus/metabolismo , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteína Tumoral Controlada Traslacionalmente 1 , Transducción de Señal , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética
17.
Plant J ; 119(2): 796-813, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733630

RESUMEN

Skin color is an important trait that determines the cosmetic appearance and quality of fruits. In cucumber, the skin color ranges from white to brown in mature fruits. However, the genetic basis for this important trait remains unclear. We conducted a genome-wide association study of natural cucumber populations, along with map-based cloning techniques, on an F2 population resulting from a cross between Pepino (with yellow-brown fruit skin) and Zaoer-N (with creamy fruit skin). We identified CsMYB60 as a candidate gene responsible for skin coloration in mature cucumber fruits. In cucumber accessions with white to pale yellow skin color, a premature stop mutation (C to T) was found in the second exon region of CsMYB60, whereas light yellow cucumber accessions exhibited splicing premature termination caused by an intronic mutator-like element insertion in CsMYB60. Transgenic CsMYB60c cucumber plants displayed a yellow-brown skin color by promoting accumulation of flavonoids, especially hyperoside, a yellow-colored flavonol. CsMYB60c encodes a nuclear protein that primarily acts as a transcriptional activator through its C-terminal activation motif. RNA sequencing and DNA affinity purification sequencing assays revealed that CsMYB60c promotes skin coloration by directly binding to the YYTACCTAMYT motif in the promoter regions of flavonoid biosynthetic genes, including CsF3'H, which encodes flavonoid 3'-hydroxylase. The findings of our study not only offer insight into the function of CsMYB60 as dominantly controlling fruit coloration, but also highlight that intronic DNA mutations can have a similar phenotypic impact as exonic mutations, which may be valuable in future cucumber breeding programs.


Asunto(s)
Cucumis sativus , Flavonoides , Frutas , Regulación de la Expresión Génica de las Plantas , Pigmentación , Proteínas de Plantas , Factores de Transcripción , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flavonoides/metabolismo , Pigmentación/genética , Estudio de Asociación del Genoma Completo , Plantas Modificadas Genéticamente
18.
Phytochemistry ; 224: 114151, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768880

RESUMEN

The plant lipoxygenase cascade is a source of various regulatory oxylipins that play a role in cell signalling, stress adaptation, and immune response. Recently, we detected an unprecedented 16(S)-lipoxygenase, CsLOX3, in the leaves and fruit pericarp of cucumber (Cucumis sativus L.). In the present work, an array of products biosynthesized through the conversions of α-linolenic acid 16-hydroperoxide (16-HPOT) was detected. Firstly, a prominent 15-hydroxy-9,12-pentadecadienoic acid (Me/TMS) was detected, the product of hydroperoxide lyase (HPL) chain cleavage of 16-HPOT and further reduction of aldehyde 15-oxo-9,12-pentadecadienoic acid to alcohol. Besides, the presence of dicarboxylic acid, 3,6-pentadecadiene-1,15-dioic acid, was deduced from the detection of its catalytic hydrogenation product, pentadecane-1,15-dioic acid. Finally, 12,15-dihydroxypentadecanoic acid (Me/TMS) was detected amongst the hydrogenated products, thus indicating the presence of the parent 12,15-dihydroxy-9,13-pentadecadienoic acid. To confirm the proposed HPL chain cleavage, the 16(S)-HPOT was prepared and incubated with the recombinant cucumber HPL CYP74B6 enzyme. The CYP74B6 possessed high activity towards 16-HPOT. Chain cleavage yields the (9Z,12Z)-15-oxo-9,12-pentadecadienoic acid, undergoing a spontaneous isomerization into (9Z,13E)-15-oxo-9,13-pentadecadienoic acid. Thus, the cucumber plants as well as the recombinant cucumber HPL CYP74B6 possessed unprecedented 16-HPL activity, cleaving 16-HPOT into a C15 fragment, 15-oxo-9,12-pentadecadienoic acid, and a complementary volatile C3 fragment, propionic aldehyde. The 16-LOX/16-HPL route of oxylipin biosynthesis presents a novel facet of the plant LOX pathway.


Asunto(s)
Aldehído-Liasas , Cucumis sativus , Sistema Enzimático del Citocromo P-450 , Oxilipinas , Cucumis sativus/metabolismo , Cucumis sativus/enzimología , Aldehído-Liasas/metabolismo , Aldehído-Liasas/química , Oxilipinas/metabolismo , Oxilipinas/química , Oxilipinas/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Estructura Molecular
19.
Plant Physiol Biochem ; 212: 108681, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776825

RESUMEN

Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.


Asunto(s)
Cucumis sativus , Citocininas , Regulación de la Expresión Génica de las Plantas , MicroARNs , Cucumis sativus/genética , Cucumis sativus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Citocininas/metabolismo , Frutas/genética , Frutas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Compuestos de Fenilurea/farmacología , Piridinas
20.
J Nanobiotechnology ; 22(1): 268, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764056

RESUMEN

The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.


Asunto(s)
Frío , Cucumis sativus , Hierro , Plantones , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Cucumis sativus/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de los fármacos , Hierro/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Germinación/efectos de los fármacos , Hidróxidos/farmacología , Hidróxidos/metabolismo , Fertilizantes , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nanopartículas/química , Estrés Fisiológico , Magnesio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA