Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273254

RESUMEN

The fruit surface is a critical first line of defense against environmental stress. Overlaying the fruit epidermis is the cuticle, comprising a matrix of cutin monomers and waxes that provides protection and mechanical support throughout development. The epidermal layer of the cucumber (Cucumis sativus L.) fruit also contains prominent lipid droplets, which have recently been recognized as dynamic organelles involved in lipid storage and metabolism, stress response, and the accumulation of specialized metabolites. Our objective was to genetically characterize natural variations for traits associated with the cuticle and lipid droplets in cucumber fruit. Phenotypic characterization and genome-wide association studies (GWAS) were performed using a resequenced cucumber core collection accounting for >96% of the allelic diversity present in the U.S. National Plant Germplasm System collection. The collection was grown in the field, and fruit were harvested at 16-20 days post-anthesis, an age when the cuticle thickness and the number and size of lipid droplets have stabilized. Fresh fruit tissue sections were prepared to measure cuticle thickness and lipid droplet size and number. The collection showed extensive variation for the measured traits. GWAS identified several QTLs corresponding with genes previously implicated in cuticle or lipid biosynthesis, including the transcription factor SHINE1/WIN1, as well as suggesting new candidate genes, including a potential lipid-transfer domain containing protein found in association with isolated lipid droplets.


Asunto(s)
Cucumis sativus , Frutas , Estudio de Asociación del Genoma Completo , Gotas Lipídicas , Sitios de Carácter Cuantitativo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Gotas Lipídicas/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo
2.
Plant Sci ; 348: 112229, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151803

RESUMEN

Nickel phytotoxicity has been attributed, among others, to oxidative stress. However, little is known about Ni-induced phospholipid modifications, including the oxidative ones. Accumulation of reactive oxygen species (ROS), antioxidative enzyme activities, malondialdehyde and the early lipid oxidation products contents, membrane permeability, phospholipid profile as well as phospholipid unsaturation degree were studied in the 1st and the 2nd leaves of hydroponically grown cucumber seedlings subjected to Ni stress. Compared to the 2nd leaf the 1st one showed stronger visual Ni toxicity symptoms, higher Ni, O2.- and H2O2 accumulation as well as greater enhancement in membrane permeability. Enzyme activities were differently influenced by Ni stress, however most pronounced changes were generally found in the 1st leaf. Ni treatment resulted in oxidation of leaf lipids, which was evidenced by appearance of increased contents of MDA and the early produced oxylipins. Among the latter 9-hydroxyoctadecatrienoic acid (9-HOTrE) and 13-hydroxyoctadecatrienoic acid (13-HOTrE) contents showed the most pronounced increase in response to Ni treatment. Exposure to the metal led to the changes in the leaf phospholipid profile and increased degree of phospholipid unsaturation. The obtained results have been discussed in relation to the difference in Ni stress severity between the 1st and the 2nd leaves.


Asunto(s)
Cucumis sativus , Níquel , Estrés Oxidativo , Fosfolípidos , Hojas de la Planta , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Níquel/toxicidad , Níquel/metabolismo , Fosfolípidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Cucumis sativus/metabolismo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Malondialdehído/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo
3.
Plant Physiol Biochem ; 215: 109055, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182426

RESUMEN

Low temperature (LT) is an important environmental factor affecting the growth and yield of plants. Melatonin (MT) can effectively enhance the LT tolerance of cucumber. This study found that LT stress induced the expression of Comt1 (caffeic acid O-methyltransferase 1), with the highest expression being about 2-times that of the control. Meanwhile, the content of MT was found to be roughly 63.16% of that in the control samples. Compared with LT treatment alone, exogenous MT pretreatment upregulated the expression levels of TOR (Target of rapamycin), PIN1 (Pin-formed 1), and YUC4 (YUCCA 4), with maximum upregulations reaching approximately 66.67%, 79.32%, and 42.86%, respectively. These results suggest that MT may modulate the tolerance of cucumber seedlings to LT stress by regulating the expression of TOR, PIN1, and YUC4. In addition, co-treatment with AZD-8055 (a TOR inhibitor) or NPA (N-1-naphthylphthalamic acid, an auxin polar transport inhibitor) and MT attenuated MT-induced resistance to LT stress, leading to higher levels of reactive oxygen species (ROS), reduced antioxidant defense capacity, and increased damage to the membrane system in cucumber seedlings. Concurrently, the content of osmoregulatory substances and the photosynthesis decreased. These results demonstrate that both TOR and auxin were required for MT to alleviate LT-induced damage in cucumber. In summary, the present study demonstrates that TOR and auxin signaling synergistically contribute to alleviating LT damage in cucumber seedlings by exogenous MT. These findings help us understand the function of MT and provide insights into the regulatory network of MT that regulates the LT tolerance of plants.


Asunto(s)
Cucumis sativus , Ácidos Indolacéticos , Melatonina , Plantones , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Melatonina/farmacología , Melatonina/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Ácidos Indolacéticos/metabolismo , Frío , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Serina-Treonina Quinasas TOR/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
4.
ACS Nano ; 18(34): 23154-23167, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39140713

RESUMEN

Efficient delivery of nanoparticles (NPs) to plants is important for agricultural application. However, to date, we still lack knowledge about how NPs' charge matters for its translocation pathway, i.e., symplastic and apoplastic pathways, in plants. In this study, we synthesized and used negatively charged citrate sourced carbon dots (C-CDs, -37.97 ± 1.89 mV), Cy5 coated C-CDs (Cy5-C-CDs, -41.90 ± 2.55 mV), positively charged PEI coated carbon dots (P-CDs, +43.03 ± 1.71 mV), and Cy5 coated P-CDs (Cy5-P-CDs, +48.80 ± 1.21 mV) to investigate the role of surface charges and coatings on the employed translocation pathways (symplastic and apoplastic pathways) of charged NPs in plants. Our results showed that, different from the higher fluorescence intensity of P-CDs and Cy5-P-CDs in extracellular than intracellular space, the fluorescence intensity of C-CDs and Cy5-C-CDs was similar between intracellular and extracellular space in cucumber and cotton roots. It suggests that the negatively charged CDs were translocated via both symplastic and apoplastic pathways, but the positively charged CDs were mainly translocated via the apoplastic pathway. Furthermore, our results showed that root applied negatively charged C-CDs demonstrated higher leaf fluorescence than did positively charged P-CDs in both cucumber (8.09 ± 0.99 vs 3.75 ± 0.23) and cotton (7.27 ± 1.06 vs 3.23 ± 0.22), indicating that negatively charged CDs have a higher translocation efficiency from root to leaf than do positively charged CDs. It should be noted that CDs do not affect root cell activities, ROS level, and photosynthetic performance in cucumber and cotton, showing its good biocompatibility. Overall, this study not only figured out that root applied negatively charged CDs employed both symplastic and apoplastic pathways to do the transportation in roots compared with mainly the employment of apoplastic pathway for positively charge CDs, but also found that negatively charge CDs could be more efficiently translocated from root to leaf than positively charged CDs, indicating that imparting negative charge to NPs, at least CDs, matters for its efficient delivery in crops.


Asunto(s)
Carbono , Raíces de Plantas , Puntos Cuánticos , Carbono/química , Carbono/metabolismo , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Cucumis sativus/metabolismo , Carbocianinas/química
5.
BMC Plant Biol ; 24(1): 812, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198785

RESUMEN

BACKGROUND: The yield of major crops is generally limited by sink capacity and source strength. Cucumber is a typical raffinose family oligosaccharides (RFOs)-transporting crop. Non-coding RNAs and alternative polyadenylation (APA) play important roles in the regulation of growth process in plants. However, their roles on the sink‒source regulation have not been demonstrated in RFOs-translocating species. RESULTS: Here, whole-transcriptome sequencing was applied to compare the leaves of cucumber under different sink strength, that is, no fruit-carrying leaves (NFNLs) and fruit-carrying leaves (FNLs) at 12th node from the bottom. The results show that 1101 differentially expressed (DE) mRNAs, 79 DE long non-coding RNAs (lncRNAs) and 23 DE miRNAs were identified, which were enriched in photosynthesis, energy production and conversion, plant hormone signal transduction, starch and carbohydrate metabolism and protein synthesis pathways. Potential co-expression networks like, DE lncRNAs-DE mRNAs/ DE miRNAs-DE mRNAs, and competing endogenous RNA (ceRNA) regulation models (DE lncRNAs-DE miRNAs-DE mRNAs) associated with sink‒source allocation, were constructed. Furthermore, 37 and 48 DE genes, which enriched in MAPK signaling and plant hormone signal transduction pathway, exist differentially APA, and SPS (CsaV3_2G033300), GBSS1 (CsaV3_5G001560), ERS1 (CsaV3_7G029600), PNO1 (CsaV3_3G003950) and Myb (CsaV3_3G022290) may be regulated by both ncRNAs and APA between FNLs and NFNLs, speculating that ncRNAs and APA are involved in the regulation of gene expression of cucumber sink‒source carbon partitioning. CONCLUSIONS: These results reveal a comprehensive network among mRNAs, ncRNAs, and APA in cucumber sink-source relationships. Our findings also provide valuable information for further research on the molecular mechanism of ncRNA and APA to enhance cucumber yield.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Poliadenilación , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
6.
Plant Sci ; 346: 112177, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964612

RESUMEN

The fruit shape of cucumber is an important agronomic trait, and mining regulatory genes, especially dominant ones, is vital for cucumber breeding. In this study, we identified a short and fat fruit mutant, named sff, from an EMS mutagenized population. Compared to the CCMC (WT), sff (MT) exhibited reduced fruit length and increased dimeter. Segregation analysis revealed that the sff phenotype is controlled by a semi-dominant single gene with dosage effects. Through map-based cloning, the SFF locus was narrowed down to a 52.6 kb interval with two SNPs (G651A and C1072T) in the second and third exons of CsaV3_1G039870, which encodes an IQD family protein, CsSUN. The G651A within the IQ domain of CsSUN was identified as the unique SNP among 114 cucumber accessions, and it was the primary cause of the functional alteration in CsSUN. By generating CsSUN knockout lines in cucumber, we confirmed that CsSUN was responsible for sff mutant phenotype. The CsSUN is localized to the plasma membrane. CsSUN exhibited the highest expression in the fruit with lower expression in sff compared to WT. Histological observations suggest that the sff mutant phenotype is due to increased transverse cell division and inhibited longitudinal cell division. Transcriptome analysis revealed that CsSUN significantly affected the expression of genes related to cell division, expansion, and auxin signal transduction. This study unveils CsSUN's crucial role in shaping cucumber fruit and offers novel insights for cucumber breeding.


Asunto(s)
Cucumis sativus , Frutas , Mutación , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica de las Plantas
7.
Biochim Biophys Acta Bioenerg ; 1865(4): 149490, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960078

RESUMEN

Photosystem I (PSI) is an essential protein complex for oxygenic photosynthesis and is also known to be an important source of reactive oxygen species (ROS) in the light. When ROS are generated within PSI, the photosystem can be damaged. The so-called PSI photoinhibition is a lethal event for oxygenic phototrophs, and it is prevented by keeping the reaction center chlorophyll (P700) oxidized in excess light conditions. Whereas regulatory mechanisms for controlling P700 oxidation have been discovered already, the molecular mechanism of PSI photoinhibition is still unclear. Here, we characterized the damage mechanism of PSI photoinhibition by in vitro transient absorption and electron paramagnetic resonance (EPR) spectroscopy in isolated PSI from cucumber leaves that had been subjected to photoinhibition treatment. Photodamage to PSI was induced by two different light treatments: 1. continuous illumination with high light at low (chilling) temperature (C/LT) and 2. repetitive flashes at room temperature (F/RT). These samples were compared to samples that had been illuminated with high light at room temperature (C/RT). The [FeS] clusters FX and (FA FB) were destructed in C/LT but not in F/RT. Transient absorption spectroscopy indicated that half of the charge separation was impaired in F/RT, however, low-temperature EPR revealed the light-induced FX signal at a similar size as in the case of C/RT. This indicates that the two branches of electron transfer in PSI were affected differently. Electron transfer at the A-branch was inhibited in F/RT and also partially in C/LT, while the B-branch remained active.


Asunto(s)
Cucumis sativus , Luz , Oxidación-Reducción , Complejo de Proteína del Fotosistema I , Hojas de la Planta , Complejo de Proteína del Fotosistema I/metabolismo , Cucumis sativus/metabolismo , Cucumis sativus/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Frío , Espectroscopía de Resonancia por Spin del Electrón , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo
8.
Genes (Basel) ; 15(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39062604

RESUMEN

Yellowing leaves are ideal materials for studying the metabolic pathways of photosynthetic pigment chloroplast development, and the mechanism of photosynthetic systems. Here, we obtained a triploid material HCC (2n = 3x = 26), which was derived from hybridization between the artificial tetraploid Cucumis × hytivus (2n = 4x = 38, HHCC) and the cultivated cucumber Cucumis sativus (2n = 2x = 14, CC), and this triploid HCC showed obvious leaf yellowing characteristics. Phenotypic observation results showed that chloroplast development was impaired, the chlorophyll content decreased, and photosynthesis decreased in yellowing HCC leaves. The transcriptome results indicated that HCC-GLK is significantly downregulated in HCC and participates in the regulation of leaf yellowing. GO enrichment analysis revealed that differential genes were enriched in the heme binding and tetrapyrrole binding pathways related to leaf color. KEGG enrichment analysis revealed that differential genes were predominantly enriched in photosynthesis-related pathways. The experimental results of VIGS and yeast hybridization showed that silencing the GLK gene can induce leaf yellowing in cucumber plants, and the GLK protein can affect plant chloroplast development by interacting with the CAB3C protein (light-harvesting chlorophyll a/b binding) in the plant chlorophyll synthesis pathway. The current findings have not only enhanced our understanding of the regulatory mechanism of the GLK transcription factor in cucumber but also introduced novel insights and directions for investigating the molecular mechanism underlying polyploid leaf yellowing.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Transcriptoma , Cucumis sativus/genética , Cucumis sativus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotosíntesis/genética , Clorofila/metabolismo , Clorofila/genética , Perfilación de la Expresión Génica/métodos
9.
Sci Rep ; 14(1): 15883, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987579

RESUMEN

Salinity stress poses a significant treat to crop yields and product quality worldwide. Application of a humic acid bio stimulant and grafting onto tolerant rootstocks can both be considered sustainable agronomic practices that can effectively ameliorate the negative effects of salinity stress. This study aimed to assess the above mentioned ameliorative effects of both practices on cucumber plants subjected to saline environments. To attain this goal a factorial experiment was carried out in the form of a completely randomized design with three replications. The three factors considered were (a) three different salinity levels (0, 5, and 10 dS m-1 of NaCl), (b) foliar application of humic acid at three levels (0, 100, and 200 mg L-1), and (c) both grafted and ungrafted plants. Vegetative traits including plant height, fresh and dry weight and number of leaf exhibited a significant decrease under increasing salinity stress. However, the application of humic acid at both levels mitigated these effects compared to control plants. The reduction in relative water content (RWC) of the leaf caused by salinity, was compensated by the application of humic acid and grafting. Thus, the highest RWC (86.65%) was observed in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. Electrolyte leakage (EL) increased under salinity stress, but the application of humic acid and grafting improved this trait and the lowest amount of EL (26.95%) was in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. The highest amount of catalase (0.53 mmol H2O2 g-1 fw min-1) and peroxidase (12.290 mmol H2O2 g-1 fw min-1) enzymes were observed in the treatment of 10 dS m-1 of NaCl and 200 mg L-1 humic acid. The highest amount of total phenol (1.99 mg g-1 FW), total flavonoid (0.486 mg g-1 FW), total soluble carbohydrate (30.80 mg g-1 FW), soluble protein (34.56 mg g-1 FW), proline (3.86 µg g-1 FW) was in grafting plants with 0 dS m-1 of NaCl and 200 mg L-1 of humic acid. Phenolic acids and phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) enzymes increased with increasing salinity and humic acid levels. Contrary to humic acid, salt stress increased the sodium (Na+) and chlorine (Cl-) and decreased the amount of potassium (K+) and calcium (Ca2+) in the root and leaf of ungrafted cucumber. However, the application 200 mg L-1 humic acid appeared to mitigate these effects, thereby suggesting a potential role in moderating physiological processes and improving growth of cucumber plants subjected to salinity stress. According to the obtained results, spraying of humic acid (200 mg L-1) and the use of salt resistant rootstocks are recommended to increase tolerance to salt stress in cucumber. These results, for the first time, clearly demonstrated that fig leaf gourd a new highly salt-tolerant rootstock, enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot and increasing the amount of compatible osmolytes.


Asunto(s)
Cucumis sativus , Sustancias Húmicas , Estrés Salino , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Salinidad , Agricultura/métodos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
10.
Plant Physiol Biochem ; 214: 108878, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968841

RESUMEN

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (H2O2) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV). However, buthionine sulfoximine (BSO, a GSH synthase inhibitor) treatment drastically reversed or attenuated the effects of NO. Importantly, the combination of SNP and GSH treatment had the best effect in alleviating chilling-induced oxidative stress by upregulating the activities of antioxidant enzyme, including superoxidase dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) and improved the PAs content, thereby increased activities of CI, CII, CIII, CIV, and CV. This potentially contributes to the maintenance of oxidative phosphorylation originating from mitochondria. In addition, the high activity of S-nitrosoglutathione reductase (GSNOR) in the combined treatment of SNP and GSH possibly mediates the conversion of NO and GSH to S-nitrosoglutathione. Our study revealed that the combined treatment with NO and GSH to synergistically improve the cold tolerance of cucumber seedlings under prolonged low-temperature stress.


Asunto(s)
Antioxidantes , Frío , Cucumis sativus , Glutatión , Mitocondrias , Óxido Nítrico , Poliaminas , Cucumis sativus/metabolismo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/fisiología , Óxido Nítrico/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Poliaminas/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo
11.
Plant Physiol Biochem ; 214: 108915, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972240

RESUMEN

Copper (Cu) toxicity in crops is a result of excessive release of Cu into environment. Little is known about mitigation of Cu toxicity through the application of carbon-based nanomaterials including water-soluble fullerene C60 derivatives. Two derivatives of fullerene were examined: polyhydroxylated C60 (fullerenol) and arginine C60 derivative. In order to study the response of Cu-stressed plants (Cucumis sativus L.) to these nanomaterials, metabolomics analysis by gas chromatography-mass spectrometry (GC-MS) was performed. Excess Cu (15 µM) caused substantial increase in xylem sap Cu, retarded dry biomass and leaf chlorosis of hydroponically grown cucumber. In Cu-stressed leaves, metabolomes was disturbed towards suppression metabolism of nitrogen (N) compounds and activation metabolism of hexoses. Also, upregulation of some metabolites involving in antioxidant defense system, such as ascorbic acid, tocopherol and ferulic acid, was occurred in Cu-stressed leaves. Hydroponically added fullerene adducts decreased the xylem sap Cu and alleviated Cu toxicity with effectiveness has been most pronounced for arginine C60 derivative. Metabolic responses of plants subjected to high Cu with fullerene derivatives were opposite to that observed under Cu alone. Fatty acids up-regulation (linolenic acid) and antioxidant molecules (tocopherol) down-regulation might indicate that arginine C60 adduct can alleviate Cu induced oxidative stress. Although fullerenol slightly improved cucumber growth, its effect on metabolic state of Cu-stressed plants was not statistically significant. We suggest that tested fullerene C60 adducts have a potential to prevent Cu toxicity in plants through a mechanism associated with their capability to restrict xylem transport of Cu from roots to shoot, and to maintain antioxidative properties of plants.


Asunto(s)
Cobre , Cucumis sativus , Fulerenos , Fulerenos/farmacología , Fulerenos/metabolismo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cobre/toxicidad , Cobre/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Metaboloma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo
12.
Physiol Plant ; 176(4): e14422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962815

RESUMEN

Low temperatures pose a common challenge in the production of cucumbers and tomatoes, hindering plant growth and, in severe cases, leading to plant death. In our investigation, we observed a substantial improvement in the growth of cucumber and tomato seedlings through the application of corn steep liquor (CSL), myo-inositol (MI), and their combinations. When subjected to low-temperature stress, these treatments resulted in heightened levels of photosynthetic pigments, thereby fostering enhanced photosynthesis in both tomato and cucumber plants. Furthermore, it contributed to a decrease in malondialdehyde (MDA) levels and electrolyte leakage (REP). The effectiveness of the treatment was further validated through the analysis of key gene expressions (CBF1, COR, MIOX4, and MIPS1) in cucumber. Particularly, noteworthy positive outcomes were noted in the treatment involving 0.6 mL L-1 CSL combined with 72 mg L-1 MI. This study provides valuable technical insights into leveraging the synergistic effects of inositol and maize leachate to promote early crop growth and bolster resistance to low temperatures.


Asunto(s)
Frío , Cucumis sativus , Inositol , Plantones , Solanum lycopersicum , Zea mays , Inositol/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/genética , Zea mays/fisiología , Plantones/crecimiento & desarrollo , Plantones/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Cucumis sativus/genética , Cucumis sativus/fisiología , Fotosíntesis/efectos de los fármacos , Malondialdehído/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
13.
J Agric Food Chem ; 72(28): 15586-15600, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949485

RESUMEN

Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Termotolerancia , Factores de Transcripción , Cucumis sativus/genética , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Termotolerancia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Calor , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
14.
J Agric Food Chem ; 72(28): 15633-15642, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950134

RESUMEN

The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.


Asunto(s)
Bacillus , Proteínas Bacterianas , Biodegradación Ambiental , Nitrorreductasas , Zea mays , Bacillus/enzimología , Bacillus/metabolismo , Bacillus/genética , Nitrorreductasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Zea mays/metabolismo , Zea mays/microbiología , Cucumis sativus/microbiología , Cucumis sativus/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química
15.
Planta ; 260(2): 53, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009858

RESUMEN

MAIN CONCLUSION: NH4+ is necessary for full functionality of reduction-based Fe deficiency response in plants. Nitrogen (N) is present in soil mainly as nitrate (NO3-) or ammonium (NH4+). Although the significance of a balanced supply of NO3- and NH4+ for optimal growth has been generally accepted, its importance for iron (Fe) acquisition has not been sufficiently investigated. In this work, hydroponically grown cucumber (Cucumis sativus L. cv. Maximus) plants were supplied with NO3- as the sole N source under -Fe conditions. Upon the appearance of chlorosis, plants were supplemented with 2 mM NH4Cl by roots or leaves. The NH4+ treatment increased leaf SPAD and the HCl-extractable Fe concentration while decreased root apoplastic Fe. A concomitant increase in the root concentration of nitric oxide and activity of FRO and its abolishment by an ethylene action inhibitor, indicated activation of the components of Strategy I in NH4+-treated plants. Ammonium-pretreated plants showed higher utilization capacity of sparingly soluble Fe(OH)3 and higher root release of H+, phenolics, and organic acids. The expression of the master regulator of Fe deficiency response (FIT) and its downstream genes (AHA1, FRO2, and IRT1) along with EIN3 and STOP1 was increased by NH4+ application. Temporal analyses and the employment of a split-root system enabled us to suggest that a permanent presence of NH4+ at concentrations lower than 2 mM is adequate to produce an unknown signal and causes a sustained upregulation of Fe deficiency-related genes, thus augmenting the Fe-acquisition machinery. The results indicate that NH4+ appears to be a widespread and previously underappreciated component of plant reduction-based Fe deficiency response.


Asunto(s)
Compuestos de Amonio , Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Hierro , Raíces de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/fisiología , Compuestos de Amonio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Hierro/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transducción de Señal , Deficiencias de Hierro , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Nitratos/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitrógeno/metabolismo
16.
Plant Physiol Biochem ; 214: 108962, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067105

RESUMEN

Melatonin (Mel) is recognized as a prominent plant growth regulator. This study investigated the alleviating effect of Mel pretreatment on growth inhibition caused by low-temperature (LT) stress (10 °C/6 °C) in cucumber seedlings and explored the role of the Ca2+/Calcium-dependent protein kinases (CPKs) signaling pathway in Mel-regulated LT tolerance. The main results are as follows: compared to LT treatment alone, 100 µM Mel increased both the content of Ca2+ (highest about 42.01%) and the expression levels of Ca2+ transporter and cyclic nucleotide-gated channel (CNGC) genes under LT. Similarly, Mel enhanced the content of CPKs (highest about 27.49%) and the expression levels of CPKs family genes in cucumber leaves under LT. Additionally, pretreatment with 100 µM Mel for three days strengthened the antioxidant defense and photosynthesis of seedlings under LT. Genes in the ICE-CBF-COR pathway and the MAPK cascade were upregulated by Mel, with maximum upregulations reaching approximately 2.5-fold and 1.9-fold, respectively, thus conferring LT tolerance to cucumber seedlings. However, the above beneficial effects of Mel were weakened by co-treatment with calcium signaling blockers (LaCl3 or EGTA) or CPKs inhibitors (TFP or W-7), suggesting that the Ca2+/CPKs pathway is involved in the Mel-mediated regulation of LT tolerance. In conclusion, this study revealed that Mel can alleviate growth inhibition in cucumber seedlings under LT stress and demonstrated that the Ca2+/CPKs signaling pathway is crucial for the Mel-mediated enhancement of LT tolerance. The findings hold promise for providing theoretical insights into the application of Mel in agricultural production and for investigating its underlying mechanisms of action.


Asunto(s)
Frío , Cucumis sativus , Melatonina , Proteínas de Plantas , Plantones , Transducción de Señal , Cucumis sativus/efectos de los fármacos , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Melatonina/farmacología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Fotosíntesis/efectos de los fármacos
17.
Plant J ; 119(3): 1353-1368, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829920

RESUMEN

Cucumber plants are highly susceptible to the hemibiotroph oomycete Phytophthora melonis. However, the mechanism of resistance to cucumber blight remains poorly understood. Here, we demonstrated that cucumber plants with impairment in the biosynthesis of brassinosteroids (BRs) or gibberellins (GAs) were more susceptible to P. melonis. By contrast, increasing levels of endogenous BRs or exogenously application of 24-epibrassinolide enhanced the resistance of cucumber plants against P. melonis. Furthermore, we found that both knockout and overexpression of the BR biosynthesis gene CYP85A1 reduced the endogenous GA3 content compared with that of wild-type plants under the condition of inoculation with P. melonis, and the enhancement of disease resistance conferred by BR was inhibited in plants with silencing of the GA biosynthetic gene GA20ox1 or KAO. Together, these findings suggest that GA homeostasis is an essential factor mediating BRs-induced disease resistance. Moreover, BZR6, a key regulator of BR signaling, was found to physically interact with GA20ox1, thereby suppressing its transcription. Silencing of BZR6 promoted endogenous GA biosynthesis and compromised GA-mediated resistance. These findings reveal multifaceted crosstalk between BR and GA in response to pathogen infection, which can provide a new approach for genetically controlling P. melonis damage in cucumber production.


Asunto(s)
Brasinoesteroides , Cucumis sativus , Resistencia a la Enfermedad , Giberelinas , Phytophthora , Enfermedades de las Plantas , Phytophthora/fisiología , Brasinoesteroides/metabolismo , Cucumis sativus/microbiología , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/parasitología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal
18.
J Agric Food Chem ; 72(26): 14570-14580, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887997

RESUMEN

Enhancing the initial stages of plant growth by using polymeric gels for seed priming presents a significant challenge. This study aimed to investigate a microgel derived from polyetheramine-poly(propylene oxide) (PPO) and a bisepoxide (referred to as micro-PPO) as a promising alternative to optimize the seed germination process. The micro-PPO integrated with an iron micronutrient showed a positive impact on seed germination compared with control (Fe solutions) in which the root length yield improved up to 39%. Therefore, the element map by synchrotron-based X-ray fluorescence shows that the Fe intensities in the seed primers with the micro-PPO-Fe gel are about 3-fold higher than those in the control group, leading to a gradual distribution of Fe species through most internal embryo tissues. The use of micro-PPO for seed priming underscores their potential for industrial applications due to the nontoxicity results in zebrafish assays and environmentally friendly synthesis of the water-dispersible monomers employed.


Asunto(s)
Aminas , Cucumis sativus , Germinación , Hierro , Microgeles , Semillas , Germinación/efectos de los fármacos , Semillas/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/química , Hierro/metabolismo , Hierro/química , Aminas/química , Aminas/metabolismo , Microgeles/química , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Pez Cebra/metabolismo , Animales
19.
Plant Physiol Biochem ; 212: 108780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850726

RESUMEN

The study evaluated the effects of treating irrigation water with a coaxial flow variator (CFV) on the morpho-physiology of pot-cultivated test species, including cucumber (Cucumis sativus, CU), lettuce (Lactuca sativa, LE), and sorghum (Sorghum vulgare, SO), in early stages of growth. CFV caused a lower oxidation reduction potential (ORP), increased pH and flow resistance and inductance. It induced changes in the absorbance characteristics of water in specific spectral regions, likely associated with greater stretching and reduced bending vibrations compared to untreated water. While assimilation rate and photosynthetic efficiency were not significantly affected at 60 days after sowing, treated water increased the stomatal conductance to water vapour gsw (+79%) and the electron transport rate ETR (+10%) in CU, as well as the non-photochemical quenching NPQ (+33%) in SO. Treated water also reduced leaf temperature in all species (-0.86 °C on average). This translated into improved plant biomass (leaves: +34%; roots: +140%) and reduced leaf-to-root biomass ratio (-42%) in SO, allowing both faster aerial growth and soil colonization, which can be exploited to improve plant tolerance against abiotic stresses. In the C3 species CU and LE, plant biomass was instead reduced, although significantly in LE only, while the leaf-to-root biomass ratio was generally enhanced, a result likely profitable in the cultivation of leafy vegetables. This is a preliminary trial on the effects of functionalized water and much remains to be investigated in other physiological processes, plant species, and growth stages for the full exploitation of this water treatment in agronomy.


Asunto(s)
Cucumis sativus , Lactuca , Fotosíntesis , Agua , Agua/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Cucumis sativus/fisiología , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Riego Agrícola/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo
20.
Gene ; 927: 148626, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830516

RESUMEN

Cucumber (Cucumis sativus L.) is an important horticultural crop in China. Consumer requirements for aesthetically pleasing appearances of horticultural crops are gradually increasing, and cucumbers having a good visual appearance, as well as flavor, are important for breeding and industry development. The gloss of cucumber fruit epidermis is an important component of its appeal, and the wax layer on the fruit surface plays important roles in plant growth and forms a powerful barrier against external biotic and abiotic stresses. The wax of the cucumber epidermis is mainly composed of alkanes, and the luster of cucumber fruit is mainly determined by the alkane and silicon contents of the epidermis. Several genes, transcription factors, and transporters affect the synthesis of ultra-long-chain fatty acids and change the silicon content, further altering the gloss of the epidermis. However, the specific regulatory mechanisms are not clear. Here, progress in research on the luster of cucumber fruit epidermis from physiological, biochemical, and molecular regulatory perspectives are reviewed. Additionally, future research avenues in the field are discussed.


Asunto(s)
Cucumis sativus , Frutas , Regulación de la Expresión Génica de las Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA