Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.526
Filtrar
1.
J Nanobiotechnology ; 22(1): 411, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997706

RESUMEN

The fracture healing outcome is largely dependent on the quantities as well as osteogenic differentiation capacities of mesenchymal stem cells (MSCs) at the lesion site. Herein, macrophage membrane (MM)-reversibly cloaked nanocomplexes (NCs) are engineered for the lesion-targeted and hierarchical co-delivery of short stromal derived factor-1α peptide (sSDF-1α) and Ckip-1 small interfering RNA (Ckip-1 siRNA, siCkip-1) to promote bone repair by concurrently fostering recruitment and osteogenic differentiation of endogenous MSCs. To construct the NCs, a membrane-penetrating α-helical polypeptide first assembles with siCkip-1, and the cationic NCs are sequentially coated with catalase and an outer shell of sSDF-1α-anchored MM. Due to MM-assisted inflammation homing, intravenously injected NCs could efficiently accumulate at the fractured femur, where catalase decomposes the local hydrogen peroxide to generate oxygen bubbles that drives the shedding of sSDF-1α-anchored MM in the extracellular compartment. The exposed, cationic inner core thus enables robust trans-membrane delivery into MSCs to induce Ckip-1 silencing. Consequently, sSDF-1α-guided MSCs recruitment cooperates with siCkip-1-mediated osteogenic differentiation to facilitate bone formation and accelerate bone fracture healing. This study provides an enlightened strategy for the hierarchical co-delivery of macromolecular drugs into different cellular compartments, and it also renders a promising modality for the management of fracture healing.


Asunto(s)
Diferenciación Celular , Curación de Fractura , Macrófagos , Células Madre Mesenquimatosas , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Animales , Curación de Fractura/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , ARN Interferente Pequeño , Masculino , Membrana Celular/metabolismo , Humanos , Células RAW 264.7
2.
Open Vet J ; 14(5): 1281-1293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38938444

RESUMEN

Background: A fracture is considered a medical emergency leading to considerable complications. Aim: This study aimed to describe the accelerating action of Ag-NPs-FG on fracture healing in rabbits. Methods: Silver NPs (AgNPs) were reduced with fenugreek (FG), loaded into a starch gel base, and investigated for their morphology, size, and charge. Four equal groups were randomly formed of 40 adult male rabbits. A 3.5 mm diameter bone defect was created at the proximal metaphysis of the right tibia in each rabbit. Groups 1-4 were injected with placebo saline, AgNPs-FG, plain gel, and FG-gel at the bone defect zone, respectively. The healing was assessed for 8 weeks postoperatively based on the radiographic, bone turnover markers, and histopathological examinations. Results: The AgNPs-FG was obtained as a faint reddish color, spherical in shape, with an absorbance of 423 nm, a size of 118.0 ± 1.7 nm, and a surface charge of -7.8 ± 0.518 mV. The prepared AgNPs-FG hydrogel was clear, translucent, and homogenous. The pH values were 6.55-6.5 ± 0.2, the viscosity of 4,000 and 1,875 cPs, and spreadability of 1.6 ± 0.14 and 2.0 ± 0.15 for both FG and AgNPs-FG hydrogel, respectively. The radiographic union scale was significantly (p < 0.05) improved in group 2 with a significant (p < 0.05) increase in bone turnover markers was found in comparison to other treated groups. Histopathological examination revealed the formation of mature bone on the 28th postoperative day in groups 2 and 4. Conclusion: Colloidal nano-formulation of AgNPs-FG loaded hydrogel could be a promising formulation to accelerate rabbits' tibial bone healing process.


Asunto(s)
Nanopartículas del Metal , Plata , Tibia , Trigonella , Animales , Conejos , Trigonella/química , Plata/administración & dosificación , Plata/farmacología , Plata/química , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Tibia/cirugía , Tibia/efectos de los fármacos , Curación de Fractura/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química
3.
J Appl Biomed ; 22(2): 67-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38912861

RESUMEN

BACKGROUND AND OBJECTIVES: We aimed to determine the effects of vanillic acid (VA) on fracture healing radiologically, histologically, immunohistochemically, and biomechanically using a rat femur open fracture injury model. METHODS: 32 male Wistar-Albino rats were used and divided into two groups: the study group (VA) and the control group. From the time they were operated on until they were sacrificed, the rats in the study group were given 100 mg/kg/day VA by oral gavage. After sacrification, the femurs were analyzed. RESULTS: It was observed that the Huo histological scoring was significantly higher in the VA group (p = 0.001), and the ratio of the amount of callus tissue compared to intact bone tissue was significantly higher. While no significant difference was observed in immunohistochemical H-scores in ColI antibody staining (p = 1.000), a borderline significant difference in favor of VA was observed in ColIII antibody staining (p = 0.078). In biomechanical analysis, failure load (N), total energy (J), maximum stress (MPa), and stiffness (N/mm) measurements were significantly higher in the VA group (p = 0.040, p = 0.021, p = 0.015, and p = 0.035, respectively). CONCLUSION: It has been observed that VA, with its antioxidative properties, increases fracture healing in rats, in which an open fracture model was created. We are hopeful that such an antioxidant, which is common in nature, will increase fracture healing. Since this study is the first to examine the effect of VA on fracture healing, further studies are needed.


Asunto(s)
Fracturas del Fémur , Curación de Fractura , Ratas Wistar , Ácido Vanílico , Animales , Ácido Vanílico/farmacología , Ácido Vanílico/uso terapéutico , Curación de Fractura/efectos de los fármacos , Masculino , Fracturas del Fémur/tratamiento farmacológico , Fracturas del Fémur/patología , Ratas , Modelos Animales de Enfermedad , Fenómenos Biomecánicos/efectos de los fármacos , Fémur/efectos de los fármacos , Fémur/patología , Callo Óseo/efectos de los fármacos , Callo Óseo/patología
4.
Injury ; 55(7): 111627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834011

RESUMEN

BACKGROUND: As a two-stage surgical procedure, Masquelet's technique has been used to care for critical-size bone defects (CSD). We aimed to determine the effects of modified and altered bone cement with biological or chemical enriching agents on the progression of Masquelet's induced membrane (IM) applied to a rat femur CSD model, and to compare the histopathological, biochemical, and immunohistochemical findings of these cements to enhance IM capacity. METHODS: Thirty-five male rats were included in five groups: plain polymethyl methacrylate (PMMA), estrogen-impregnated PMMA (E+PMMA), bone chip added PMMA (BC+PMMA), hydroxyapatite-coated PMMA (HA) and calcium phosphate cement (CPC). The levels of bone alkaline phosphatase (BALP), osteocalcin (OC), and tumor necrosis factor-alpha (TNF-α) were analyzed in intracardiac blood samples collected at the end of 4 weeks of the right femur CSD intervention. All IMs collected were fixed and prepared for histopathological scoring. The tissue levels of rat-specific Transforming Growth Factor-Beta (TGF-ß), Runt-related Transcription Factor 2 (Runx2), and Vascular Endothelial Growth Factor (VEGF) were analyzed immunohistochemically. RESULTS: Serum levels of BALP and OC were significantly higher in E+PMMA and BC+PMMA groups than those of other groups (P = 0.0061 and 0.0019, respectively). In contrast, TNF-α levels of all groups with alternative bone cement significantly decreased compared to bare PMMA (P = 0.0116). Histopathological scores of E+PMMA, BC+PMMA, and CPC groups were 6.86 ± 1.57, 4.71 ± 0.76, and 6.57 ± 1.51, respectively, which were considerably higher than those of PMMA and HA groups (3.14 ± 0.70 and 1.86 ± 0.69, respectively) (P < 0.0001). Significant increases in TGF-ß and VEGF expressions were observed in E+PMMA and CPC groups (P = 0.0001 and <0.0001, respectively) whereas Runx2 expression significantly increased only in the HA group compared to other groups (P < 0.0001). CONCLUSIONS: The modified PMMA with E and BC, and CPC as an alternative spacer resulted in a well-differentiated IM and increased IM progression by elevating BALP and OC levels in serum and by mediating expressions of TGF-ß and VEGF at the tissue level. Estrogen-supplemented cement spacer has yielded promising findings between modified and alternative bone cement.


Asunto(s)
Cementos para Huesos , Modelos Animales de Enfermedad , Fémur , Polimetil Metacrilato , Factor A de Crecimiento Endotelial Vascular , Animales , Ratas , Masculino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fémur/patología , Fémur/efectos de los fármacos , Fracturas del Fémur/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteocalcina/metabolismo , Fosfatasa Alcalina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Sprague-Dawley , Fosfatos de Calcio , Curación de Fractura/efectos de los fármacos , Curación de Fractura/fisiología , Regeneración Ósea/efectos de los fármacos , Durapatita
5.
Calcif Tissue Int ; 115(2): 169-173, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38907093

RESUMEN

Teriparatide is an anabolic drug sometimes administered to patients who have atypical femoral fracture (AFF). However, whether teriparatide has beneficial effects on bone healing remains uncertain. The present study aimed to analyze the association between teriparatide and bone healing in complete AFF. A total of 59 consecutive cases (58 patients) who underwent intramedullary nailing for complete AFF were categorized based on postoperative use of teriparatide into the non-teriparatide (non-TPTD, n = 34) and teriparatide groups (TPTD, n = 25). Time-to-bone union was evaluated and compared between the two groups. Additionally, multiple regression analysis was performed to evaluate factors affecting time-to-bone union. All participants were women, with a mean age of 77.6 years (range: 62-92). No significant difference in time-to-bone union was found between the non-TPTD and TPTD groups (5.5 months vs. 5.8 months, p = 0.359). Two patients in the non-TPTD group underwent reoperation (p = 0.503) due to failure caused by inadequate fixation, and both achieved bone healing after additional fixation with blocking screws. Multiple regression analysis revealed that the anterior gap of the fracture site postoperatively was a factor affecting time-to-bone union (p = 0.014). The beneficial effect of teriparatide on bone healing in complete AFF could not be confirmed. Additional randomized controlled trials are required. Nonetheless, appropriate techniques, including efforts to reduce the gap on the tensile side during the surgery, are important for reliable bone healing.


Asunto(s)
Conservadores de la Densidad Ósea , Fracturas del Fémur , Curación de Fractura , Teriparatido , Humanos , Teriparatido/uso terapéutico , Teriparatido/farmacología , Femenino , Fracturas del Fémur/tratamiento farmacológico , Anciano , Curación de Fractura/efectos de los fármacos , Anciano de 80 o más Años , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/farmacología , Persona de Mediana Edad , Fijación Intramedular de Fracturas/métodos , Resultado del Tratamiento , Estudios Retrospectivos
6.
ScientificWorldJournal ; 2024: 7446251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854678

RESUMEN

This paper explores the role of botulinum neurotoxin in aiding fracture recovery through temporary muscle paralysis. Specifically, it investigates the effects of botulinum neurotoxin-induced paralysis of the sternocleidomastoid muscle on clavicle fractures in rats. The research aims to assess safety, effectiveness, and the impact on fracture healing. Healthy male Albino Wistar rats were divided into four groups: clavicle fracture, botulinum neurotoxin injection, both, and control. Surgeries were conducted under anaesthesia, and postoperatively, animals were monitored for 28 days. Euthanasia and radiological assessment followed, examining fracture healing and muscle changes, while tissues were histopathologically evaluated. The modified Lane-Sandhu scoring system was used for the radiographic evaluation of clavicle fractures, and the results varied from complete healing to nonunion. Histopathological examination at 28 days postfracture showed fibrous tissue, mesenchymal cells, and primary callus formation in all groups. Despite varied callus compositions, botulinum neurotoxin administration did not affect clavicle healing, as evidenced by similar scores to the control group. Several studies have explored botulinum neurotoxin applications in fracture recovery. Research suggests its potential to enhance functional recovery in certain types of fractures. Theoretical benefits include managing muscle spasticity, aiding reduction techniques, and preventing nonunion. However, botulinum neurotoxin's transient effect and nonuniversal applications should be considered. The present study found that botulinum toxin had no clear superiority in healing compared to controls, while histological evaluation showed potential adverse effects on muscle tissue. Further research is essential to understand its risk-benefit balance and long-term effects.


Asunto(s)
Toxinas Botulínicas Tipo A , Curación de Fractura , Fracturas Óseas , Ratas Wistar , Animales , Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas Tipo A/administración & dosificación , Ratas , Masculino , Curación de Fractura/efectos de los fármacos , Fracturas Óseas/tratamiento farmacológico , Tratamiento Conservador/métodos , Clavícula/lesiones , Clavícula/efectos de los fármacos , Modelos Animales de Enfermedad
7.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760744

RESUMEN

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas , Células Madre Mesenquimatosas , Nanopartículas , Animales , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Diferenciación Celular/efectos de los fármacos , Histona Desacetilasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Masculino , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Núcleo Celular/metabolismo , Curación de Fractura/efectos de los fármacos , Humanos , Proteínas de la Membrana
9.
J Orthop Surg Res ; 19(1): 309, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783358

RESUMEN

BACKGROUND: Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS: MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS: Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS: Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.


Asunto(s)
Abietanos , Apoptosis , Curación de Fractura , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Ovariectomía , Animales , Abietanos/administración & dosificación , Abietanos/farmacología , Femenino , Células Madre Mesenquimatosas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Curación de Fractura/efectos de los fármacos , Ratones , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Peróxido de Hidrógeno , Osteogénesis/efectos de los fármacos , Fracturas Osteoporóticas/prevención & control
10.
Biochem Biophys Res Commun ; 719: 150100, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38763043

RESUMEN

One of the factors that predispose to fractures is liver damage. Interestingly, fractures are sometimes accompanied by abnormal liver function. Polyene phosphatidylcholine (PPC) is an important liver repair drug. We wondered if PPC had a role in promoting fracture healing. A rat model of tibial fracture was developed using the modified Einhorn model method. X-rays were used to detect the progression of fracture healing. Progress of ossification and angiogenesis at the fracture site were analyzed by Safranin O/fast green staining and CD31 immunohistochemistry. To investigate whether PPC has a direct angiogenesis effect, HUVECs were used. We performed MTT, wound healing, Transwell migration, and tube formation assays. Finally, RT-qPCR and Western blot analysis were used to study the underlying mechanism. The results showed that PPC significantly shortened the apparent recovery time of mobility in rats. PPC treatment significantly promoted the formation of cartilage callus, endochondral ossification, and angiogenesis at the fracture site. In vitro, PPC promoted the proliferative viability of HUVECs, their ability to heal wounds, and their ability to penetrate membranes in the Transwell apparatus and increased the tube formation of cells. The transcription of VEGFA, VEGFR2, PLCγ, RAS, ERK1/2 and MEK1/2 was significantly up regulated by PPC. Further, the protein level results demonstrated a significant increase in the expression of VEGFA, VEGFR2, MEK1/2, and ERK1/2 proteins. In conclusion, our findings suggest that PPC promotes angiogenesis by activating the VEGFA/VEGFR2 and downstream signaling pathway, thereby accelerating fracture healing.


Asunto(s)
Curación de Fractura , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Fosfatidilcolinas , Ratas Sprague-Dawley , Transducción de Señal , Fracturas de la Tibia , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Curación de Fractura/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/tratamiento farmacológico , Fracturas de la Tibia/patología , Transducción de Señal/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ratas , Masculino , Fosfatidilcolinas/farmacología , Polienos/farmacología , Angiogénesis
11.
Open Vet J ; 14(4): 1012-1018, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38808286

RESUMEN

Background: The bone regeneration potential of erythropoietin (EPO) is not yet fully investigated, but some previous experimental studies demonstrated that its application activated the differentiation of osteoblasts and promoted bone formation. Aim: The aim of the present study was to evaluate the effects of recombinant human erythropoietin (rhEpo) on bone healing in cats with fragmented long bone fractures. Methods: Twelve cats were divided into two groups-control (n = 6) in which physiological saline was applied at the fracture gap site and EPO (n = 6) with the application of 1,000 IU rhEpo. The effects of EPO on blood erythrocyte counts, hemoglobin content, and hematocrit were monitored by serial complete blood cell tests, whereas bone formation was evaluated by clinical and radiographic examinations on post-operative weeks 1, 2, 3, 4, 6, and 8. Results: All tested blood parameters were within the reference range. A faster fracture healing and full limb weight-bearing were observed in the EPO group, with statistically significant differences with respect to the control group. Conclusion: The obtained results confirmed that the local application of rhEpo promoted bone healing in cats with fragmented femoral fractures and increased bone callus strength without having significant systemic effects.


Asunto(s)
Eritropoyetina , Fracturas del Fémur , Curación de Fractura , Proteínas Recombinantes , Animales , Gatos , Eritropoyetina/farmacología , Eritropoyetina/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Curación de Fractura/efectos de los fármacos , Fracturas del Fémur/veterinaria , Fracturas del Fémur/tratamiento farmacológico , Masculino , Femenino , Enfermedades de los Gatos/tratamiento farmacológico , Humanos
12.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704516

RESUMEN

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Asunto(s)
Dexametasona , Glucocorticoides , Neovascularización Fisiológica , Inhibidor 1 de Activador Plasminogénico , Animales , Ratones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Femenino , Glucocorticoides/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Dexametasona/farmacología , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Curación de Fractura/efectos de los fármacos , Ratones Noqueados , Ratones Endogámicos C57BL , Proteína Morfogenética Ósea 2/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Angiogénesis
13.
J Pak Med Assoc ; 74(4): 741-751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38751272

RESUMEN

Objective: To evaluate the effect of subcutaneous teriparatide therapy on fracture healing rate and change in bone mass density in osteoporotic hip fractures. METHODS: The meta-analysis was done from September to December 2022, and comprised literature search on Wanfang, CNKI, VIP, PubMed, Embase, Cochrane Library, and Web of Science databases from the establishment of the respective database till December 2022. The relevant journals of the library of Macao University of Science and Technology, China, were manually searched for randomised controlled trials of teriparatide in the treatment of osteoporotic hip fractures. The shortlisted studies were subjectd to Cochrane Risk of Bias tool and the Jadad Rating Scale. Meta-analysis was done using the RevMan 5.4 software provided by the Cochrane Collaboration Network. Fracture healing rate and bone mineral density were the primary outcome measures, while mortality, adverse events, malformations, complications, subsequent fractures, timed-up-and-go test, visual analogue scale score, and procollagen type I N-terminal propeptide were the secondary outcome measures. RESULTS: Of the 1,094 articles retrieved, 8(0.7%) randomised controlled trials were analysed. There were 744 patients; 372(50%) in the teriparatide group and 372(50%) in the control group. Fracture healing rate was not significantly different (p=0.82), while bone mineral density was significantly different between the groups (p<0.001). Mortality, adverse events, deformity, and complications were not significantly different (p>0.05), while subsequent fractures, timed-up-and-go score, visual analogue scale score and procollagen type I N-terminal propeptide were significantly different between the groups (p<0.05). Conclusion: The literature did not support teriparatide's ability to improve the healing rate of osteoporotic hip fractures, or to reduce mortality, adverse events, malformations, and complications. In addition, teriparatide could increase bone mineral density of osteoporotic hip fractures and the procollagen type I N-terminal propeptide value, alleviate hip pain, and reduce subsequent fracture rates. This trial is registered with PROSPERO with registration number CRD42022379832.


Asunto(s)
Conservadores de la Densidad Ósea , Densidad Ósea , Curación de Fractura , Fracturas de Cadera , Fracturas Osteoporóticas , Teriparatido , Humanos , Teriparatido/uso terapéutico , Fracturas Osteoporóticas/prevención & control , Conservadores de la Densidad Ósea/uso terapéutico , Densidad Ósea/efectos de los fármacos , Curación de Fractura/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Fragmentos de Péptidos , Procolágeno/sangre
14.
J Physiol Pharmacol ; 75(2): 173-183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736264

RESUMEN

Quercetin is widely distributed in plants as a flavonol compound with multiple biological activities. It has been found that quercetin can regulate bone homeostasis through multiple pathways and targets. This study investigated the role and specific molecular mechanisms of quercetin in regulating osteoblast viability, proliferation, migration and osteogenic differentiation. A mouse model of traumatic fracture was established and then 100 mg/kg quercetin corn oil suspension was gavaged at the same time every day for 28 days. miR-6089 and E2F transcription factor 2 (E2F2) expression levels in mice were measured. Fracture healing in mice was observed. MC3T3-E1 cells were transfected with plasmids targeting miR-6089 and E2F2, and cell viability, proliferation, migration, apoptosis, and osteogenic differentiation were determined. The targeting relationship between miR-6089 and E2F2 was verified. In vivo experiments showed that quercetin significantly increased osteocalcin (OCN) expression (P<0.05) and promoted fracture healing in traumatic fracture (TF) mice. miR-6089 expression was down-regulated (P<0.05) and E2F2 expression was up-regulated (P<0.05) in TF mice. Quercetin promoted miR-6089 expression and inhibited E2F2 expression (both P<0.05). In vitro results showed that quercetin promoted miR-6089 expression and inhibited E2F2 expression in a dose-dependent manner (both P<0.05). Quercetin dose-dependently promoted MC3T3-E1 cell viability, proliferation, migration, and osteogenic differentiation, and inhibited MC3T3-E1 cell apoptosis (all P<0.05). Up-regulating miR-6089 further promoted MC3T3-E1 cell viability, proliferation, migration and osteogenic differentiation, and inhibited MC3T3-E1 cell apoptosis (all P<0.05). miR-6089 targeted and regulated E2F2 expression. Up-regulating E2F2 attenuated the promoting effect of up-regulated miR-6089 on MC3T3-E1 cell viability, proliferation, migration, osteogenic differentiation, and inhibition of apoptosis (all P<0.05). We conclude that quercetin enhances osteoblast viability, proliferation, migration, and osteogenic differentiation by modulating the miR-6089/E2F2 axis, thereby promoting fracture healing.


Asunto(s)
Factor de Transcripción E2F2 , Curación de Fractura , MicroARNs , Osteoblastos , Osteogénesis , Quercetina , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F2/genética , Curación de Fractura/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Quercetina/farmacología
15.
J Am Soc Mass Spectrom ; 35(6): 1184-1196, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38679918

RESUMEN

Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (µCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. µCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with µCT.


Asunto(s)
Citrulina , Curación de Fractura , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Microtomografía por Rayos X , Animales , Curación de Fractura/efectos de los fármacos , Ratas , Citrulina/análisis , Citrulina/metabolismo , Citrulina/farmacología , Espectrometría de Masas en Tándem/métodos , Microtomografía por Rayos X/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Masculino , Callo Óseo/efectos de los fármacos , Callo Óseo/diagnóstico por imagen , Callo Óseo/metabolismo , Cromatografía Liquida/métodos , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/análisis , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/análisis , Fosfatidilcolinas/farmacología
16.
J Cell Biochem ; 125(6): e30568, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38616655

RESUMEN

This study aimed to explore the effects of peroxisome proliferator-activated receptor γ (PPARγ) inhibition on fracture healing of nonunion and the underlying mechanisms. Bone marrow mesenchymal stem cells (BMSCs) were treated with PPARγ antagonist GW9662 (5 µM, 10 µM). Alkaline phosphatase (ALP) staining and Alizarin Red S was used to assess early stage of osteogenesis and osteogenic differentiation. GW9662 (1 mg/kg/day) were administered intraperitoneally into the rats with bone fracture. Bone healing processes in the rat femur fracture model were recorded and assessed by radiographic methods on Weeks 8, 14, and 20 postoperation. Osteogenesis and angiogenesis at the fracture sites were evaluated by radiographic and histological methods on postoperative Week 20. GW9662 treatment increased ALP activity and Alp mRNA expression in rat BMSCs. Moreover, GW9662 administration increased matrix mineralization and mRNA and protein levels of Bmp2 and Runx2 in the BMSCs. In addition, GW9662 treatment improved radiographic score in the fracture rats and increased osteogenesis-related proteins, including type I collagen, osteopontin, and osteoglycin, in the bone tissues of the fracture sites. In conclusion, PPARγ inhibition promotes osteogenic differentiation of rat BMSCs, as well as improves the fracture healing of rats through Bmp2/Runx2 signaling pathway in the rat model of bone fracture.


Asunto(s)
Anilidas , Diferenciación Celular , Curación de Fractura , Células Madre Mesenquimatosas , Osteogénesis , PPAR gamma , Animales , Masculino , Ratas , Anilidas/farmacología , Proteína Morfogenética Ósea 2 , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Curación de Fractura/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Ratas Sprague-Dawley
17.
J Ethnopharmacol ; 330: 118234, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670404

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hai-Honghua medicinal liquor (HHML), an external Chinese herbal formula preparation, is often applied to treat freshly closed tibia/fibular fractures, ankle fractures, and other bone-related disorders, but the related molecular mechanism is unclear. AIM OF THE STUDY: To evaluate the therapeutic effect of HHML in patients with tibial/fibular and ankle fractures, and to explore its related possible mechanism. METHODS AND MATERIALS: A total of 182 patients with tibia/fibular fractures and 183 patients with ankle fractures were enrolled in this study. A randomized, controlled, unblinded clinical trial was designed to evaluate the therapeutic effect of HHML on tibial/fibular and ankle fractures. The chemical compositions of HHML were analyzed by the HPLC-Q-Extractive MS/MS. Furthermore, a rat tibial fracture model was established to evaluate the therapeutic effects of HHML in promoting fracture healing, and the mouse embryonic osteoblasts cell line of MC3T3-E1 was further carried out to explore the mechanisms of HHML on osteoblast differentiation. RESULTS: In the clinical evaluation, HHML treatment significantly shortened the time for pain and swelling in patients with tibial/fibular fractures (P < 0.01) and ankle fractures (P < 0.01), and the incidence of complications was significantly reduced as well. Subsequently, 116 constituents were identified from HHML via HPLC-Q-TOF-MS/MS analysis. In vivo, no obvious changes in weight were observed in HHML-treated rats. Moreover, the levels of bone formation markers (including osteocalcin (OCN), N-terminal propeptide of type I procollagen (PINP), alkaline phosphatase (ALP), calcium (Ca) and substance P) in rat serum were significantly increased in HHML-treated rats compared with model rats (P < 0.05). Micro-CT analysis showed bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th) of the HHML-treated rats were significantly increased (P < 0.05, vs. Model) while trabecular separation (Tb.Sp) and structure model index (SMI) values were significantly reduced (P < 0.05, vs. Model). Histological analysis showed that HHML treatment promoted the healing of fractures and cartilage repair, and increased the osteoblasts and collagen fibers. Furthermore, our results also revealed HHML could promote MC3T3-E1 cells proliferation and osteoblast differentiation via regulation of the runt-related transcription factor 2 (RUNX2), bone alkaline phosphatase (BALP), and OCN by activating phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which confirmed by adding PI3K chemical inhibitor of LY294002. CONCLUSION: HHML treatment is a reliable remedy for fractures in tibial and ankle by promotion of osteogenic differentiation via activation of PI3K/Akt pathway.


Asunto(s)
Diferenciación Celular , Medicamentos Herbarios Chinos , Osteoblastos , Osteogénesis , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Osteogénesis/efectos de los fármacos , Humanos , Ratones , Diferenciación Celular/efectos de los fármacos , Femenino , Persona de Mediana Edad , Adulto , Ratas , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Curación de Fractura/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fracturas Óseas/tratamiento farmacológico , Anciano , Adulto Joven , Modelos Animales de Enfermedad
18.
J Am Acad Orthop Surg ; 32(12): e596-e604, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579315

RESUMEN

INTRODUCTION: Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective analgesics commonly used in fracture management. Although previously associated with delayed fracture healing, multiple studies have demonstrated their safety, with minimal risks of fracture healing. Given the current opioid crisis in the United States, alternate pain control modalities are essential to reduce opioid consumption. This study aims to determine whether the combination of oral acetaminophen and intravenous ketorolac is a viable alternative to opioid-based pain management in closed tibial shaft fractures treated with intramedullary nailing. METHODS: We conducted a randomized controlled trial evaluating postoperative pain control and opioid consumption in patients with closed tibial shaft fractures who underwent intramedullary nailing. Patients were randomized into an NSAID-based pain control group (52 patients) and an opioid-based pain control group (44 patients). Visual analog scale (VAS) scores and morphine milligram equivalents (MMEs) were evaluated at 12-hour postoperative intervals during the first 48 hours after surgery. Nonunion and delayed healing rates were recorded for both groups. RESULTS: A statistically significant decrease in MMEs was noted at every measured interval (12, 24, 36, and 48 hours) in the NSAID group compared with the opioid group ( P -value 0.001, 0.001, 0.040, 0.024, respectively). No significant change in visual analog scale scores was observed at 12, 36, and 48 hours between both groups ( P -value 0.215, 0.12, and 0.083, respectively). A significant decrease in VAS scores was observed at the 24-hour interval in the NSAID group compared with the opioid group ( P -value 0.041). No significant differences in union rates were observed between groups ( P -value 0.820). DISCUSSION: Using an NSAID-based postoperative pain protocol led to a decrease in opioid consumption without affecting pain scores or union rates. Owing to the minimal risk of short-term NSAID use, their role in the perioperative management of tibia shaft fractures is justified, especially when they reduce opioid consumption markedly. LEVEL OF EVIDENCE: Therapeutic Level I.


Asunto(s)
Acetaminofén , Analgésicos Opioides , Antiinflamatorios no Esteroideos , Fijación Intramedular de Fracturas , Curación de Fractura , Ketorolaco , Dimensión del Dolor , Dolor Postoperatorio , Fracturas de la Tibia , Humanos , Fracturas de la Tibia/cirugía , Fijación Intramedular de Fracturas/métodos , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Analgésicos Opioides/administración & dosificación , Masculino , Femenino , Adulto , Ketorolaco/administración & dosificación , Ketorolaco/uso terapéutico , Acetaminofén/administración & dosificación , Acetaminofén/uso terapéutico , Persona de Mediana Edad , Curación de Fractura/efectos de los fármacos , Quimioterapia Combinada , Manejo del Dolor/métodos , Adulto Joven , Administración Oral
19.
Acta Biochim Pol ; 69(4): 839-845, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459539

RESUMEN

Bone fracture is one of the most common injuries in the human musculoskeletal system. This study was performed to investigate the effects of celastrol on bone wound healing in rats. Bone wound models of Sprague-Dawley rats were treated with low (10 µg/kg) and high (100 µg/kg) celastrol for 14 days. Serum calcium (Ca), phosphorus (P), and alkaline phosphatase (ALP) contents, bone mechanical properties, bone mineral density (BMD), and the levels of osteogenesis-related and inflammation-related proteins were assessed at the end of the experiments. Rats feeding with celastrol grew normally as control. Compared with model, celastrol administration significantly increased fracture strength, elastic load (0.12 vs 0.16 kg/m), bending energy (11.23 vs 14.23 n x mm), and BMD (0.49 vs 0.54 g/cm3), particularly at a high dose. Serum Ca (2.2 vs 2.7 mmol/L) and ALP (217.3 vs 245.8 IU/L) contents were significantly increased after a high dose celastrol administration, although P content did not change. Western blot analyses showed that OPG (0.72 vs 1.15) and COL-1 (0.20 vs 0.42) but not RUNX2 were upregulated significantly after celastrol administration, and IL-1α (0.82 vs 0.37), IL-6 (0.62 vs 0.28), MCP-1(0.68 vs 0.18), and VEGF (0.62 vs 0.42) were significantly downregulated, while IFN-γ was upregulated (0.29 vs 0.46). Our data demonstrate that celastrol effectively promotes the healing of bone wound in rats and may be further explored as a therapeutic agent to treat bone fracture.


Asunto(s)
Densidad Ósea , Curación de Fractura , Fracturas Óseas , Triterpenos Pentacíclicos , Animales , Ratas , Fosfatasa Alcalina , Ratas Sprague-Dawley , Cicatrización de Heridas/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Curación de Fractura/efectos de los fármacos
20.
PLoS One ; 17(2): e0263839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213543

RESUMEN

The ubiquitin/proteasome system controls the stability of Runx2 and JunB, proteins essential for differentiation of mesenchymal progenitor/stem cells (MPCs) to osteoblasts. Local administration of proteasome inhibitor enhances bone fracture healing by accelerating endochondral ossification. However, if a short-term administration of proteasome inhibitor enhances fracture repair and potential mechanisms involved have yet to be exploited. We hypothesize that injury activates the ubiquitin/proteasome system in callus, leading to elevated protein ubiquitination and degradation, decreased MPCs, and impaired fracture healing, which can be prevented by a short-term of proteasome inhibition. We used a tibial fracture model in Nestin-GFP reporter mice, in which a subgroup of MPCs are labeled by Nestin-GFP, to test our hypothesis. We found increased expression of ubiquitin E3 ligases and ubiquitinated proteins in callus tissues at the early phase of fracture repair. Proteasome inhibitor Bortezomib, given soon after fracture, enhanced fracture repair, which is accompanied by increased callus Nestin-GFP+ cells and their proliferation, and the expression of osteoblast-associated genes and Runx2 and JunB proteins. Thus, early treatment of fractures with Bortezomib could enhance the fracture repair by increasing the number and proliferation of MPCs.


Asunto(s)
Bortezomib/farmacología , Proliferación Celular/efectos de los fármacos , Curación de Fractura/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Fracturas de la Tibia/enzimología , Animales , Proliferación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Modelos Animales de Enfermedad , Curación de Fractura/genética , Masculino , Ratones , Ratones Transgénicos , Osteoblastos/enzimología , Complejo de la Endopetidasa Proteasomal/genética , Fracturas de la Tibia/tratamiento farmacológico , Fracturas de la Tibia/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA