Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
New Phytol ; 243(4): 1329-1346, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898642

RESUMEN

Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.


Asunto(s)
Cycadopsida , Sequías , Hojas de la Planta , Agua , Xilema , Xilema/fisiología , Xilema/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Cycadopsida/fisiología , Cycadopsida/anatomía & histología , Especificidad de la Especie
2.
Plant Physiol ; 195(2): 1117-1133, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38298164

RESUMEN

Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.


Asunto(s)
Cycadopsida , Epigénesis Genética , Estrés Fisiológico , Cycadopsida/genética , Cycadopsida/fisiología , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Fenotipo
3.
Ann Bot ; 133(4): 559-572, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38324309

RESUMEN

BACKGROUND AND AIMS: The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS: We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS: The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and ß-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS: Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.


Asunto(s)
Autofagia , Evolución Biológica , Pared Celular , Xilema , Pared Celular/metabolismo , Autofagia/fisiología , Xilema/fisiología , Cycadopsida/fisiología , Floema , Proteínas de Plantas/metabolismo , Magnoliopsida/fisiología , Helechos/fisiología , Helechos/citología
4.
New Phytol ; 242(6): 2803-2816, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38184785

RESUMEN

We investigated the mining mode of insect feeding, involving larval consumption of a plant's internal tissues, from the Middle Jurassic (165 million years ago) Daohugou locality of Northeastern China. Documentation of mining from the Jurassic Period is virtually unknown, and results from this time interval would address mining evolution during the temporal gap of mine-seed plant diversifications from the previous Late Triassic to the subsequent Early Cretaceous. Plant fossils were examined with standard microscopic procedures for herbivory and used the standard functional feeding group-damage-type system of categorizing damage. All fossil mines were photographed and databased. We examined 2014 plant specimens, of which 27 occurrences on 14 specimens resulted in eight, new, mine damage types (DTs) present on six genera of bennettitalean, ginkgoalean, and pinalean gymnosperms. Three conclusions emerge from this study. First, these mid-Mesozoic mines are morphologically conservative and track plant host anatomical structure rather than plant phylogeny. Second, likely insect fabricators of these mines were three basal lineages of polyphagan beetles, four basal lineages of monotrysian moths, and a basal lineage tenthredinoid sawflies. Third, the nutrition hypothesis, indicating that miners had greater access to nutritious, inner tissues of new plant lineages, best explains mine evolution during the mid-Mesozoic.


Asunto(s)
Evolución Biológica , Cycadopsida , Fósiles , Insectos , Animales , Insectos/fisiología , Insectos/anatomía & histología , Cycadopsida/fisiología , Cycadopsida/anatomía & histología , Herbivoria , Filogenia , Minería , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA