RESUMEN
Objective: Patients with pathogenic variants in the GATA Binding Protein 2 (GATA2), a hematopoietic transcription factor, are at risk for human papillomavirus-related (HPV) anogenital cancer at younger than expected ages. A female cohort with GATA2 haploinsufficiency was systematically assessed by two gynecologists to characterize the extent and severity of anogenital HPV disease, which was also compared with affected males. Methods: A 17-year retrospective review of medical records, including laboratory, histopathology and cytopathology records was performed for patients diagnosed with GATA2 haploinsufficiency followed at the National Institutes of Health. Student's t-test and Mann-Whitney U test or Fisher's exact test were used to compare differences in continuous or categorical variables, respectively. Spearman's rho coefficient was employed for correlations. Results: Of 68 patients with GATA2 haploinsufficiency, HPV disease was the initial manifestation in 27 (40%). HPV occurred at median 18.9 (15.2-26.2) years in females, and 25.6 (23.4-26.9) years in males. Fifty-two (76%), 27 females and 25 males, developed HPV-related squamous intraepithelial lesions (SIL) including two males with oral cancer. Twenty-one patients developed anogenital high-grade SIL (HSIL) or carcinoma (16 females versus 5 males, (59% versus 20%, respectively, p=0.005) at median 27 (18.6-59.3) years for females and 33 (16.5-40.1) years for males. Females were more likely than males to require >2 surgeries to treat recurrent HSIL (p=0.0009). Of 30 patients undergoing hematopoietic stem cell transplant (HSCT) to manage disease arising from GATA2 haploinsufficiency, 12 (nine females, three males) had persistent HSIL/HPV disease. Of these nine females, eight underwent peri-transplant surgical treatment of HSIL. Five of seven who survived post-HSCT received HPV vaccination and had no or minimal evidence of HPV disease 2 years post-HSCT. HPV disease persisted in two receiving immunosuppression. HPV disease/low SIL (LSIL) resolved in all three males. Conclusion: Females with GATA2 haploinsufficiency exhibit a heightened risk of recurrent, multifocal anogenital HSIL requiring frequent surveillance and multiple treatments. GATA2 haploinsufficiency must be considered in a female with extensive, multifocal genital HSIL unresponsive to multiple surgeries. This population may benefit from early intervention like HSCT accompanied by continued, enhanced surveillance and treatment by gynecologic oncologists and gynecologists in those with anogenital HPV disease.
Asunto(s)
Deficiencia GATA2 , Factor de Transcripción GATA2 , Predisposición Genética a la Enfermedad , Infecciones por Papillomavirus , Humanos , Femenino , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/complicaciones , Adulto , Masculino , Estudios Retrospectivos , Deficiencia GATA2/genética , Adolescente , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/deficiencia , Adulto Joven , Neoplasias de los Genitales Femeninos/genética , Neoplasias de los Genitales Femeninos/virología , Neoplasias del Ano/genética , Neoplasias del Ano/etiología , Neoplasias del Ano/virología , Haploinsuficiencia , Papillomaviridae/genética , Virus del Papiloma HumanoRESUMEN
In their paper, using zebrafish models, Gioacchino et al. have demonstrated the GATA2 haploinsufficiency, the genetic hallmark of GATA2 deficiency syndrome, promotes erythroid and myeloid cytopenia, and have discovered a self-regulatory mechanism to compensate GATA2 levels and protein function. Commentary on: Gioacchino et al. GATA2 heterozygosity causes an epigenetic feedback mechanism resulting in myeloid and erythroid dysplasia. Br J Haematol 2024;205:580-593.
Asunto(s)
Deficiencia GATA2 , Factor de Transcripción GATA2 , Pez Cebra , Deficiencia GATA2/genética , Animales , Pez Cebra/genética , Humanos , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/deficiencia , Haploinsuficiencia , Modelos Animales de Enfermedad , Epigénesis GenéticaRESUMEN
A retrospective analysis was conducted on a MonoMAC syndrome case admitted in October 2022 to the First Affiliated Hospital of Zhejiang University School of Medicine. The patient, a 16-year-old female with a history of persistent monocytopenia and mild anemia for several years, experienced recurrent symptoms of cough, expectoration, and fever, leading to multiple visits to the hospital. The diagnosis of MonoMAC syndrome was confirmed through comprehensive assessments including routine blood tests, pathogen metagenomic sequencing, lung and bone marrow biopsies, and next-generation sequencing of peripheral blood. The patient underwent haploidentical hematopoietic stem cell transplantation, with a smooth course of transplantation, achieving neutrophil engraftment on + 16 d and platelet engraftment on + 17 d, eventually restoring normal monocyte and NK cell counts. MonoMAC syndrome patients often initially present with infectious symptoms, and the diagnosis can be established based on significant monocytopenia in routine blood tests, history of non-tuberculous mycobacterial infections, and GATA2 germline mutations. Allogeneic hematopoietic stem cell transplantation may be required for some patients to improve their prognosis.
Asunto(s)
Deficiencia GATA2 , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Femenino , Adolescente , Deficiencia GATA2/diagnóstico , Deficiencia GATA2/genética , Factor de Transcripción GATA2/genética , Trasplante Homólogo , Estudios RetrospectivosRESUMEN
BACKGROUND: Haemophagocytic lymphohistiocytosis (HLH) is a syndrome that occurs in patients with severe systemic hyperinflammation. GATA binding protein 2 (GATA2) is a transcription factor and key component in haematopoiesis and stem cell biology. CASE PRESENTATION: Three patients with HLH, one with Mycobacterium avium infection, one with Epstein-Barr virus (EBV) infection, and one with Mycobacterium kansasii infection, were all subsequently found to have a defect in the GATA2 gene through genetic testing. CONCLUSIONS: GATA2 deficiency syndrome should be considered in patients with myelodysplastic syndrome, nontuberculous mycobacterium infection and HLH. In addition, the GATA2 gene variant may be a genetic defect that could be the cause of the primary HLH. However, further studies are needed to confirm the role of GATA2 pathogenic variants in the pathogenesis of HLH.
Asunto(s)
Deficiencia GATA2 , Factor de Transcripción GATA2 , Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/genética , Deficiencia GATA2/genética , Deficiencia GATA2/complicaciones , Masculino , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/deficiencia , Femenino , Infecciones por Virus de Epstein-Barr/complicaciones , AdultoRESUMEN
Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.
Asunto(s)
Colágeno , Factor de Transcripción GATA2 , Heterocigoto , Linfedema , Animales , Ratones , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patología , Colágeno/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Ratones Noqueados , Haploinsuficiencia , Deficiencia GATA2/metabolismo , Deficiencia GATA2/genética , Ratones Endogámicos C57BLRESUMEN
GATA2 deficiency is a rare disorder encompassing a broadly variable phenotype and its clinical picture is continuously evolving. Since it was first described in 2011, up to 500 patients have been reported. Here, we describe a cohort of 31 Italian patients (26 families) with molecular diagnosis of GATA2 deficiency. Patients were recruited contacting all the Italian Association of Pediatric Hematology and Oncology (AIEOP) centers, the Hematology Department in their institution and Italian societies involved in the field of vascular anomalies, otorhinolaryngology, dermatology, infectious and respiratory diseases. Median age at the time of first manifestation, molecular diagnosis and last follow-up visit was 12.5 (age-range, 2-52 years), 18 (age-range, 7-64 years) and 22 years (age-range, 3-64), respectively. Infections (39%), hematological malignancies (23%) and undefined cytopenia (16%) were the most frequent symptoms at the onset of the disease. The majority of patients (55%) underwent hematopoietic stem cell transplantation. During the follow-up rarer manifestations emerged. The clinical penetrance was highly variable, with the coexistence of severely affected pediatric patients and asymptomatic adults in the same pedigree. Two individuals remained asymptomatic at the last follow-up visit. Our study highlights new (pilonidal cyst/sacrococcygeal fistula, cholangiocarcinoma and gastric adenocarcinoma) phenotypes and show that lymphedema may be associated with null/regulatory mutations. Countrywide studies providing long prospective follow-up are essential to unveil the exact burden of rarer manifestations and the natural history in GATA2 deficiency.
Asunto(s)
Deficiencia GATA2 , Trasplante de Células Madre Hematopoyéticas , Adolescente , Adulto , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto Joven , Deficiencia GATA2/diagnóstico , Deficiencia GATA2/genética , Deficiencia GATA2/terapia , Estudios de Asociación Genética , Italia/epidemiología , Estudios ProspectivosRESUMEN
Haploinsufficiency of GATA2, also known as GATA2 deficiency, leads to a wide spectrum of clinical manifestations. Here we described another 28-year-old man with a GATA2 variant who also suffered from hemophagocytic lymphohistiocytosis(HLH), who was finally diagnosed with HLH triggered by Mycobacterium avium bloodstream infection due to primary immunodeficiency. We reviewed GATA2 deficiency patients with HLH and found that GATA2 variants causing loss of zinc finger domains were associated with HLH, and erythema nodosa might be an accompanying symptom.
Asunto(s)
Deficiencia GATA2 , Linfohistiocitosis Hemofagocítica , Infección por Mycobacterium avium-intracellulare , Masculino , Humanos , Adulto , Deficiencia GATA2/complicaciones , Deficiencia GATA2/diagnóstico , Deficiencia GATA2/genética , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Infección por Mycobacterium avium-intracellulare/complicaciones , Infección por Mycobacterium avium-intracellulare/diagnóstico , Haploinsuficiencia , Dedos de Zinc/genética , Factor de Transcripción GATA2/genéticaRESUMEN
Germline pathogenic variants (PVs) in the gene encoding the GATA2 transcription factor can result in profound reductions of monocytes, dendritic cells, natural killer cells and B cells. GATA2 PVs are associated with an increased risk of myeloid malignancies and a predisposition to nontuberculous mycobacterial and human papillomavirus infections. Additionally, invasive fungal infections (IFIs) have been reported in individuals with GATA2 PVs, even in the absence of myeloid malignancies. In this report, we present the case of a 40-year-old man with Emberger syndrome (GATA2 mutation, recently diagnosed acute myeloid leukaemia [AML] and history of lymphedema with hearing loss) who developed Mucorales sinusitis while receiving his first course of remission induction chemotherapy. Additionally, we review the literature on all published cases of proven IFIs in patients with GATA2 PVs. Clinicians should be aware that patients with GATA2 PVs could be vulnerable to opportunistic IFIs, even in the absence of AML and antineoplastic therapy. Furthermore, the distinctly unusual occurrence of mucormycosis during the first course of induction chemotherapy for AML in our patient indicates that patients with germline GATA2 PVs receiving induction chemotherapy for AML might be at high risk for early onset of IFIs due to aggressive, opportunistic moulds.
Asunto(s)
Deficiencia GATA2 , Infecciones Fúngicas Invasoras , Leucemia Mieloide Aguda , Mucorales , Masculino , Humanos , Adulto , Deficiencia GATA2/complicaciones , Deficiencia GATA2/diagnóstico , Deficiencia GATA2/genética , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/genética , Mutación , Infecciones Fúngicas Invasoras/diagnóstico , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Factor de Transcripción GATA2/genéticaRESUMEN
Mutations in the transcription factor GATA2 can cause MonoMAC syndrome, a GATA2 deficiency disease characterized by several findings, including disseminated nontuberculous mycobacterial infections, severe deficiencies of monocytes, natural killer cells, and B lymphocytes, and myelodysplastic syndrome. GATA2 mutations are found in â¼90% of patients with a GATA2 deficiency phenotype and are largely missense mutations in the conserved second zinc-finger domain. Mutations in an intron 5 regulatory enhancer element are also well described in GATA2 deficiency. Here, we present a multigeneration kindred with the clinical features of GATA2 deficiency but lacking an apparent GATA2 mutation. Whole genome sequencing revealed a unique adenine-to-thymine variant in the GATA2 -110 enhancer 116,855 bp upstream of the GATA2 ATG start site. The mutation creates a new E-box consensus in position with an existing GATA-box to generate a new hematopoietic regulatory composite element. The mutation segregates with the disease in several generations of the family. Cell type-specific allelic imbalance of GATA2 expression was observed in the bone marrow of a patient with higher expression from the mutant-linked allele. Allele-specific overexpression of GATA2 was observed in CRISPR/Cas9-modified HL-60 cells and in luciferase assays with the enhancer mutation. This study demonstrates overexpression of GATA2 resulting from a single nucleotide change in an upstream enhancer element in patients with MonoMAC syndrome. Patients in this study were enrolled in the National Institute of Allergy and Infectious Diseases clinical trial and the National Cancer Institute clinical trial (both trials were registered at www.clinicaltrials.gov as #NCT01905826 and #NCT01861106, respectively).
Asunto(s)
Deficiencia GATA2 , Síndromes Mielodisplásicos , Humanos , Deficiencia GATA2/genética , Secuencias Reguladoras de Ácidos Nucleicos , Síndromes Mielodisplásicos/genética , Mutación , Regulación de la Expresión Génica , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismoRESUMEN
PURPOSE OF REVIEW: GATA2 deficiency is a haploinsufficiency syndrome associated with a wide spectrum of disease, including severe monocytopenia and B and NK lymphopenia, predisposition to myeloid malignancies, human papillomavirus infections, and infections with opportunistic organisms, particularly nontuberculous mycobacteria, herpes virus, and certain fungi. GATA2 mutations have variable penetrance and expressivity with imperfect genotype-phenotype correlations. However, approximately 75% of patients will develop a myeloid neoplasm at some point. Allogeneic hematopoietic cell transplantation (HCT) is the only currently available curative therapy. Here, we review the clinical manifestations of GATA2 deficiency, characterization of the hematologic abnormalities and progression to myeloid malignancy, and current HCT practices and outcomes. RECENT FINDINGS: Cytogenetic abnormalities are common with high rates of trisomy 8, monosomy 7, and unbalanced translocation der(1;7) and may suggest an underlying GATA2 deficiency in patients presenting with myelodysplastic syndrome (MDS). Mutations in ASXL1 and STAG2 are the most frequently encountered somatic mutations and are associated with lower survival probability. A recent report of 59 patients with GATA2 deficiency who underwent allogenic HCT with myeloablative, busulfan-based conditioning and post-transplant cyclophosphamide reported excellent overall and event-free survival of 85% and 82% with reversal of disease phenotype and low rates of graft versus host disease. Allogeneic HCT with myeloablative conditioning results in disease correction and should be considered for patients with a history of recurrent, disfiguring and/or severe infections, organ dysfunction, MDS with cytogenetic abnormalities, high-risk somatic mutations or transfusion dependence, or myeloid progression. Improved genotype/phenotype correlations are needed to allow for greater predictive capabilities.
Asunto(s)
Deficiencia GATA2 , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Neoplasias , Humanos , Aberraciones Cromosómicas , Susceptibilidad a Enfermedades , Deficiencia GATA2/diagnóstico , Deficiencia GATA2/genética , Deficiencia GATA2/terapia , Factor de Transcripción GATA2/genética , Genotipo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/patologíaRESUMEN
Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations.
Asunto(s)
Deficiencia GATA2 , Trastornos Mieloproliferativos , Humanos , Deficiencia GATA2/diagnóstico , Deficiencia GATA2/genética , Trastornos Mieloproliferativos/genética , Mutación , Médula Ósea , Mutación de Línea Germinal , Factor de Transcripción GATA2/genéticaRESUMEN
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Asunto(s)
Deficiencia GATA2 , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Deficiencia GATA2/genética , Interleucina-6/genética , Hematopoyesis/genética , Expresión Génica , Dedos de Zinc/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismoRESUMEN
Inherited or de novo germ line heterozygous mutations in the gene encoding the transcription factor GATA2 lead to its deficiency. This results in a constellation of clinical features including nontuberculous mycobacterial, bacterial, fungal, and human papillomavirus infections, lymphedema, pulmonary alveolar proteinosis, and myelodysplasia. The onset, or even the presence, of disease is highly variable, even in kindreds with the identical mutation in GATA2. The clinical manifestations result from the loss of a multilineage progenitor that gives rise to B lymphocytes, monocytes, natural killer cells, and dendritic cells, leading to cytopenias of these lineages and subsequent infections. The bone marrow failure is typically characterized by hypocellularity. Dysplasia may either be absent or subtle but typically evolves into multilineage dysplasia with prominent dysmegakaryopoiesis, followed in some instances by progression to myeloid malignancies, specifically myelodysplastic syndrome, acute myelogenous leukemia, and chronic myelomonocytic leukemia. The latter 3 malignancies often occur in the setting of monosomy 7, trisomy 8, and acquired mutations in ASXL1 or in STAG2. Importantly, myeloid malignancy may represent the primary presentation of disease without recognition of other syndromic features. Allogeneic hematopoietic stem cell transplantation (HSCT) results in reversal of the phenotype. There remain important unanswered questions in GATA2 deficiency, including the following: (1) Why do some family members remain asymptomatic despite harboring deleterious mutations in GATA2? (2) What are the genetic changes that lead to myeloid progression? (3) What causes the apparent genetic anticipation? (4) What is the role of preemptive HSCT?
Asunto(s)
Deficiencia GATA2 , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Deficiencia GATA2/complicaciones , Deficiencia GATA2/genética , Deficiencia GATA2/terapia , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/patología , Mutación , Mutación de Línea Germinal , Factor de Transcripción GATA2/genéticaRESUMEN
Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.
Asunto(s)
Deficiencia GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Niño , Humanos , Ratones , Animales , Deficiencia GATA2/genética , Síndromes Mielodisplásicos/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/patología , Células Madre Hematopoyéticas/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismoRESUMEN
The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.
Asunto(s)
Deficiencia GATA2 , Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Susceptibilidad a Enfermedades , Deficiencia GATA2/genética , Deficiencia GATA2/terapia , Factor de Transcripción GATA2/genética , Síndromes de Inmunodeficiencia/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Trastornos Mieloproliferativos/complicacionesRESUMEN
GATA2 deficiency is a disease with a broad spectrum of clinical presentation, ranging from lymphedema, deafness, pulmonary dysfunction to miscarriage and urogenital anomalies, but it is mainly recognized as an immune system and bone marrow disorder. It is caused by various heterozygous mutations in the GATA2 gene, encoding for a zinc finger transcription factor with a key role for the development and maintenance of a pool of hematopoietic stem cells; notably, most of these mutations arise de novo. Patients carrying a mutated allele usually develop a loss of some cell populations, such as B-cell, dendritic cell, natural killer cell, and monocytes, and are predisposed to disseminated human papilloma virus and mycobacterial infections. Also, these patients have a predisposition to myeloid neoplasms, including myelodysplastic syndromes, myeloproliferative neoplasms, chronic myelomonocytic leukaemia. The age of symptoms onset can vary greatly even also within the same family, ranging from early childhood to late adulthood; incidence increases by age and most frequently clinical presentation is between the second and third decade of life. Currently, haematopoietic stem cell transplantation represents the only curative treatment, restoring both the hematopoietic and immune system function.
Asunto(s)
Deficiencia GATA2 , Factor de Transcripción GATA2 , Susceptibilidad a Enfermedades , Deficiencia GATA2/genética , Deficiencia GATA2/inmunología , Factor de Transcripción GATA2/inmunología , Humanos , Sistema InmunológicoRESUMEN
The transcription factor GATA2 plays a key role in the survival and self-renewal of hematopoietic stem and progenitor cells. Autosomal dominant variants in GATA2 cause a broad spectrum of heterogeneous phenotypes. Here, we present our experience with GATA2 deficiency in a retrospective multicenter analysis of computerized medical records of adult patients (age ≥18 years) treated between 2018 and 2022 at Shaare Zedek Medical Center in Jerusalem and Sheba Tel-Hashomer Medical Center in Ramat Gan, Israel. Two male and two female patients with GATA2 deficiency were identified. Three of the patients presented with symptoms in adult life and all patients were diagnosed as adults. Age at presentation was 10.5-36 years and age at diagnosis 24-47 years. Diagnosis was delayed in all patients by 1-24.5 years. The phenotypic diversity was notable. Patients presented with myelodysplastic syndrome (n=2), pulmonary alveolar proteinosis (n=1), and recurrent viral (n=1), bacterial (n=3), and mycobacterial (n=1) infections. Bone marrow biopsy revealed cytogenetic abnormalities in one patient (monosomy 7). Patients were diagnosed by exome sequencing (n=3) and Sanger sequencing of the coding exons in GATA2 (n=1). Novel heterozygous GATA2 variants (c.177C>A, p.Y59* and c.610dup, p.R204Pfs*78) were identified in two patients. Immune workup revealed B cell lymphopenia and monocytopenia in all tested patients. One patient died from overwhelming sepsis despite all patients being treated with antibiotics and anti-mycobacterials. Our cohort highlights the phenotypic diversity, late presentation, and delayed diagnosis of GATA2 deficiency. Increased awareness of this primary immune deficiency presenting in adult life is needed and should involve a high index of suspicion.