Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.563
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273660

RESUMEN

Better mechanistic understanding of desmosome disruption and acantholysis in Grover's disease (GD) may improve management of this disease. Recent molecular studies highlighted promising pathways to be explored by directly comparing GD and selected features of associated skin diseases. The association between GD and cutaneous keratinocyte carcinomas, the most prevalent non-melanoma skin cancers (NMSC), is not completely characterized. To review the medical literature regarding GD-associated cutaneous keratinocyte cancers, focusing on molecular features, pathophysiological mechanisms, and disease associations, to help guide future research and patient management. GD has been associated with a variety of skin conditions, but its association with skin cancers has been rarely reported. Between 1983 and 2024, only nine scientific papers presented data supporting this association. Interestingly, we found that GD may mimic multiple NMSCs, as few authors reported GD cases misdiagnosed as multiple cutaneous squamous cell carcinomas for more than 4 years or the presence of superficial basal cell carcinoma-like areas associated with focal acantholysis. In conclusion: (a) GD may be an imitator of multiple NMSCs, and (b) the relationship between GD and NMSCs may reveal promising pathways for the mechanistic understanding of desmosome disruption and acantholysis in GD and may even lead to its reclassification as a distinctive syndrome.


Asunto(s)
Acantólisis , Queratinocitos , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/patología , Acantólisis/patología , Acantólisis/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Carcinoma de Células Escamosas/patología , Ictiosis/patología , Carcinoma Basocelular/patología , Desmosomas/metabolismo
2.
J Cell Sci ; 137(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39258310

RESUMEN

Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.


Asunto(s)
Desmoplaquinas , Desmosomas , Proteínas Activadoras de GTPasa , Desmosomas/metabolismo , Humanos , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Animales , Actinas/metabolismo , Unión Proteica , Proteína de Unión al GTP rhoA/metabolismo , Perros , Fosforilación , Células de Riñón Canino Madin Darby , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Cadenas Ligeras de Miosina/metabolismo , Cadenas Ligeras de Miosina/genética
3.
Nat Commun ; 15(1): 8044, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271654

RESUMEN

Cell-cell junctions, and specifically desmosomes, are crucial for robust intercellular adhesion. Desmosomal function is compromised in the autoimmune blistering skin disease pemphigus vulgaris. We combine whole-genome knockout screening and a promotor screen of the desmosomal gene desmoglein 3 in human keratinocytes to identify novel regulators of intercellular adhesion. Kruppel-like-factor 5 (KLF5) directly binds to the desmoglein 3 regulatory region and promotes adhesion. Reduced levels of KLF5 in patient tissue indicate a role in pemphigus vulgaris. Autoantibody fractions from patients impair intercellular adhesion and reduce KLF5 levels in in vitro and in vivo disease models. These effects were dependent on increased activity of histone deacetylase 3, leading to transcriptional repression of KLF5. Inhibiting histone deacetylase 3 increases KLF5 levels and protects against the deleterious effects of autoantibodies in murine and human pemphigus vulgaris models. Together, KLF5 and histone deacetylase 3 are regulators of desmoglein 3 gene expression and intercellular adhesion and represent potential therapeutic targets in pemphigus vulgaris.


Asunto(s)
Adhesión Celular , Desmogleína 3 , Queratinocitos , Factores de Transcripción de Tipo Kruppel , Pénfigo , Humanos , Pénfigo/metabolismo , Pénfigo/patología , Pénfigo/inmunología , Desmogleína 3/metabolismo , Desmogleína 3/genética , Animales , Queratinocitos/metabolismo , Ratones , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Autoanticuerpos/inmunología , Desmosomas/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Masculino
4.
Sci Rep ; 14(1): 18189, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107343

RESUMEN

Desmosomes are intercellular adhesion complexes providing mechanical coupling and tissue integrity. Previously, a correlation of desmosomal molecule expression with invasion and metastasis formation in several tumor entities was described together with a relevance for circulating tumor cell cluster formation. Here, we investigated the contribution of the desmosomal core adhesion molecule desmoglein-2 (DSG2) to the initial steps of liver metastasis formation by pancreatic cancer cells using a novel ex vivo liver perfusion mouse model. We applied the pancreatic ductal adenocarcinoma cell line AsPC-1 with and without a knockout (KO) of DSG2 and generated mouse lines with a hepatocyte-specific KO of the known interacting partners of DSG2 (DSG2 and desmocollin-2). Liver perfusion with DSG2 KO AsPC-1 cells led to smaller circulating cell clusters and a reduced number of cells adhering to murine livers compared to control cells. While this was independent of the expression levels of desmosomal adhesion molecules in hepatocytes, we show that increased cluster size of cancer cells, which correlates with stronger cell-cell adhesion and expression of desmosomal molecules, is a major factor contributing to the early phase of metastatic spreading. In conclusion, impaired desmosomal adhesion results in reduced circulating cell cluster size, which is relevant for seeding and attachment of metastatic cells to the liver.


Asunto(s)
Adhesión Celular , Desmogleína 2 , Desmosomas , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Desmosomas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Ratones , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Humanos , Desmogleína 2/metabolismo , Desmogleína 2/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones Noqueados , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología
5.
Curr Biol ; 34(17): 4081-4090.e5, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39153481

RESUMEN

Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.


Asunto(s)
Uniones Adherentes , Desmosomas , Homeostasis , Filamentos Intermedios , Mecanotransducción Celular , Desmosomas/metabolismo , Uniones Adherentes/metabolismo , Uniones Adherentes/fisiología , Animales , Filamentos Intermedios/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Perros , Células de Riñón Canino Madin Darby , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Proteína de Unión al GTP rhoA/metabolismo , Humanos , Cadherinas/metabolismo , Cadherinas/genética
6.
Cancer Lett ; 600: 217179, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39154704

RESUMEN

Acquired resistance to endocrine treatments remains a major clinical challenge. In this study, we found that desmoglein-2 (DSG2) plays a major role in acquired endocrine resistance and cellular plasticity in ER+ breast cancer (BC). By analysing the well-established fulvestrant-resistant ER+ BC model using single-cell RNA-seq, we revealed that ER inhibition leads to a specific increase in DSG2 in cancer cell populations, which in turn enhances desmosome formation in vitro and in vivo and cell phenotypic plasticity that promotes resistance to treatment. DSG2 depletion reduced tumorigenesis and metastasis in fulvestrant-resistant xenograft models and promoted fulvestrant efficiency. Mechanistically, DSG2 forms a desmosome complex with JUP and Vimentin and triggers Wnt/PCP signalling. We showed that elevated DSG2 levels, along with reduced ER levels and an activated Wnt/PCP pathway, predicted poor survival, suggesting that a DSG2high signature could be exploited for therapeutic interventions. Our analysis highlighted the critical role of DSG2-mediated desmosomal junctions following antiestrogen treatment.


Asunto(s)
Neoplasias de la Mama , Desmogleína 2 , Desmosomas , Resistencia a Antineoplásicos , Vía de Señalización Wnt , Desmogleína 2/metabolismo , Desmogleína 2/genética , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Animales , Desmosomas/metabolismo , Ratones , Fulvestrant/farmacología , Antineoplásicos Hormonales/farmacología , Receptores de Estrógenos/metabolismo , Línea Celular Tumoral , Fenotipo , Placofilinas/metabolismo , Placofilinas/genética , Plasticidad de la Célula/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Células MCF-7 , Regulación Neoplásica de la Expresión Génica , gamma Catenina
7.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39120608

RESUMEN

The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Desmosomas/ultraestructura , Humanos , Animales , Adhesión Celular , Transducción de Señal
8.
Int J Cosmet Sci ; 46(4): 494-505, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113319

RESUMEN

Objective: Desmosomes are the most prominent interkeratinocyte junctions. The correct barrier function of stratified epithelia such as epidermis depends on their expression. During epidermal differentiation, the molecular composition of desmosomes evolves and so do their physical and chemical properties. Desquamation of corneocytes at the surface of the stratum corneum depends on an orderly degradation of desmosomes by endogenous enzymes. This process may be regulated by glycosylated molecules. We focused on the detection and characterization of potentially implicated players bearing 'sugar' characteristics. Methods: Using an original monoclonal antibody and biochemical methods, we partially characterized a proteoglycan of the exclusively chondroitin/dermatan sulphate type, secreted into the interkeratinocyte spaces, that is incorporated into the extracellular parts of desmosomes in quantities proportional to the degree of cell differentiation, as visualized with immuno-electron microscopy. Results: This antigen, that we named desmosealin, displays biochemical and immunocytochemical characteristics that clearly differentiate it from known desmosomal elements. Unlike so far described epidermal proteoglycans, which belong to the heparan sulphate family, desmosealin displays chondroitin/dermatan sulphate glycosaminoglycan chains. It can be detected within the extracellular 'cores' of desmosomes in the upper viable epidermal layers and in corneodesmosomes from the lowermost part of the stratum corneum. Conclusion: Extensive integration of proteoglycans into the extracellular parts of desmosomes at the late stages of keratinocyte maturation is likely of functional importance. Given its biochemical profile, its pattern of expression in the epidermis and its desmosomal localization, desmosealin may emerge as a key element in the regulation of desmosome processing, epidermal cohesion and formation of a functional epidermal barrier.


OBJECTIF: Les desmosomes sont les jonctions inter­kératinocytaires les plus proéminentes. Le fonctionnement appropriée des épithéliums stratifiés comme épiderme dépend de leur expression. La composition moléculaire et les propriétés physico­chimiques des desmosomes évoluent au cours de la différenciation épidermique. La desquamation de cornéocytes la surface du stratum corneum depend de la dégradation ordonnée des desmosomes par les enzymes endogènes. Ce processus peut être régulé par les molécules glycosylées. Notre travail consistait en détection et caractérisation de l'un des acteurs potentiellement impliqués, portant des chaînes carbohydrate. METHODES: Les approches d'analyse biochimique s'appuyant sur un anticorps monoclonal original (immunotransfert mono­et bi­dimensionnel, immunoprécipitation­immunodétection croisées, digestions enzymatiques, tests de déglycosylation et d'inhibition de synthèse) nous ont permis la caractérisation partielle d'un protéoglycanne sécrété dans les espaces inter­kératinocytaires. Cette molécule s'intègre aux desmosomes en quantités proportionnelles au stade de différenciation des kératinocytes, comme le démontrent les marquages ultrastructuraux à l'or colloïdal sur des cryocoupes et tissus enrobés en résines acryliques. RESULTATS: Cet antigène, que nous avons appelé desmosealine, est clairement distinct des éléments constitutifs de desmosomes décrits jusqu'alors. Contrairement aux protéoglycannes épidermiques connus, il porte exclusivement les chaînes glycosaminoglycannes de type chondroïtine/dermatane sulfate. La desmosealine est présente dans les parties extracellulaires de desmosomes, dans la portion supérieure de l'épiderme vivant et le début du stratum corneum. CONCLUSION: L'intégration massive d'un protéoglycanne dans des parties intercellulaires de desmosomes revêt vraisemblablement une importance fonctionnelle. De par son profile biochimique, sa distribution dans l'épiderme et son affinité pour les desmosomes, le desmosealine peut s'avérer être un élément clé dans la régulation de la cohésion interkératinocytaire et la formation de la barrière de perméabilité épidermique.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Condroitín , Desmosomas , Humanos , Condroitín/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Desmosomas/metabolismo
9.
Curr Opin Cell Biol ; 90: 102403, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079221

RESUMEN

Cell junctions integrate extracellular signals with intracellular responses to polarize tissues, pattern organs, and maintain tissue architecture by promoting cell-cell adhesion and communication. In this review, we explore the mechanisms whereby the adhesive junctions, adherens junctions and desmosomes, co-assemble and then segregate into unique plasma membrane domains. In addition, we highlight emerging evidence that these junctions are spatially and functionally integrated with the endoplasmic reticulum to mediate stress sensing and calcium homeostasis. We conclude with a discussion of the role of the endoplasmic reticulum in the mechanical stress response and how disruption of these connections may cause disease.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Desmosomas/química , Humanos , Animales , Retículo Endoplásmico/metabolismo , Adhesión Celular , Uniones Adherentes/metabolismo , Membrana Celular/metabolismo , Calcio/metabolismo
10.
J Mol Cell Cardiol ; 195: 36-44, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079569

RESUMEN

Cadherins are calcium dependent adhesion proteins that establish and maintain the intercellular mechanical contact by bridging the gap between adjacent cells. Desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) are tissue specific cadherin isoforms of the cell-cell contact in cardiac desmosomes. Mutations in the DSG2-gene and in the DSC2-gene are related to arrhythmogenic right ventricular cardiomyopathy (ARVC) a rare but severe heart muscle disease. Here, several possible homophilic and heterophilic binding interactions of wild-type Dsg2, wild-type Dsc2, as well as one Dsg2- and two Dsc2-variants, each associated with ARVC, are investigated. Using single molecule force spectroscopy (SMFS) with atomic force microscopy (AFM) and applying Jarzynski's equality the kinetics and thermodynamics of Dsg2/Dsc2 interaction can be determined. The free energy landscape of Dsg2/Dsc2 dimerization exposes a high activation energy barrier, which is in line with the proposed strand-swapping binding motif. Although the binding motif is not affected by any of the mutations, the binding kinetics of the interactions differ significantly from the wild-type. While wild-type cadherins exhibit an average complex lifetime of approx. 0.3 s interactions involving a variant consistently show - lifetimes that are substantially larger. The lifetimes of the wild-type interactions give rise to the picture of a dynamic adhesion interface consisting of continuously dissociating and (re)associating molecular bonds, while the delayed binding kinetics of interactions involving an ARVC-associated variant might be part of the pathogenesis. Our data provide a comprehensive and consistent thermodynamic and kinetic description of cardiac cadherin binding, allowing detailed insight into the molecular mechanisms of cell adhesion.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cadherinas , Desmocolinas , Desmogleína 2 , Desmosomas , Unión Proteica , Desmosomas/metabolismo , Humanos , Cinética , Desmogleína 2/metabolismo , Desmogleína 2/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Desmocolinas/metabolismo , Desmocolinas/genética , Cadherinas/metabolismo , Cadherinas/genética , Mutación , Microscopía de Fuerza Atómica , Termodinámica
11.
Mol Carcinog ; 63(10): 1855-1865, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38888207

RESUMEN

Plakophilin 1 (PKP1) belongs to the desmosome family as an anchoring junction protein in cellular junctions. It localizes at the interface of the cell membrane and cytoplasm. Although PKP1 is a non-transmembrane protein, it may become associated with the cell membrane via transmembrane proteins such as desmocollins and desmogleins. Homozygous deletion of PKP1 results in ectodermal dysplasia-skin fragility syndrome (EDSF) and complete knockout of PKP1 in mice produces comparable symptoms to EDSF in humans, although mice do not survive more than 24 h. PKP1 is not limited to expression in desmosomal structures, but is rather widely expressed in cytoplasm and nucleus, where it assumes important cellular functions. This review will summarize distinct roles of PKP1 in the cell membrane, cytoplasm, and nucleus with an overview of relevant studies on its function in diverse types of cancer.


Asunto(s)
Carcinogénesis , Neoplasias , Placofilinas , Humanos , Placofilinas/genética , Placofilinas/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Citoplasma/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Desmosomas/metabolismo , Desmosomas/genética
12.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892395

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/ß-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Modelos Animales de Enfermedad , Animales , Humanos , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/patología , Placofilinas/genética , Placofilinas/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Vía de Señalización Wnt/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Desmosomas/genética , Ratones
13.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892455

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Humanos , Displasia Ventricular Derecha Arritmogénica/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Proteínas de la Membrana/genética , Cadherinas/genética , Desmosomas/genética , Desmosomas/metabolismo , Predisposición Genética a la Enfermedad , Variación Genética , Filaminas/genética , Estudios Retrospectivos , Italia , Proteínas de Unión al Calcio/genética , Antígenos CD/genética
14.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840221

RESUMEN

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Cadherinas , Endocitosis , Epidermis , Diana Mecanicista del Complejo 1 de la Rapamicina , Óxido de Zinc , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Endocitosis/efectos de los fármacos , Ratones , Cadherinas/metabolismo , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Desmosomas/metabolismo , Nanopartículas/química , Estrés Mecánico
15.
J Cell Sci ; 137(12)2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940346

RESUMEN

Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Humanos , Animales , Epidermis/metabolismo
17.
Cell Adh Migr ; 18(1): 1-13, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38566311

RESUMEN

Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.


Asunto(s)
Desmogleína 2 , Desmosomas , Cadherinas , Uniones Intercelulares , Adhesión Celular
18.
Kidney Int ; 105(5): 1035-1048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395410

RESUMEN

Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.


Asunto(s)
Desmosomas , Enfermedades Renales , Animales , Humanos , Ratones , Adhesión Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Corazón , Enfermedades Renales/genética , Enfermedades Renales/metabolismo
19.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342409

RESUMEN

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Asunto(s)
Desmosomas , Placofilinas , Animales , Perros , Desmosomas/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células de Riñón Canino Madin Darby , Transducción de Señal , Adhesión Celular , Desmoplaquinas/metabolismo
20.
J Invest Dermatol ; 144(2): 284-295.e16, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37716648

RESUMEN

Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.


Asunto(s)
Enfermedades del Cabello , Queratodermia Palmoplantar , Anomalías Cutáneas , Animales , Humanos , Ratones , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmosomas/metabolismo , Cabello/metabolismo , Enfermedades del Cabello/genética , Enfermedades del Cabello/metabolismo , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/metabolismo , Piel/metabolismo , Anomalías Cutáneas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA