Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.379
Filtrar
1.
ACS Synth Biol ; 13(8): 2492-2504, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39083642

RESUMEN

Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme's properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay's capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.


Asunto(s)
ADN Nucleotidilexotransferasa , ADN Polimerasa Dirigida por ADN , Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/química , ADN Nucleotidilexotransferasa/genética , Ensayos Analíticos de Alto Rendimiento/métodos , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desoxirribonucleótidos/metabolismo , Mutación
2.
Yeast ; 41(8): 513-524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961653

RESUMEN

Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.


Asunto(s)
S-Adenosilmetionina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Inestabilidad Genómica , Desoxirribonucleótidos/metabolismo , Nucleótidos/metabolismo , Metionina/metabolismo
3.
Biomolecules ; 13(12)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136671

RESUMEN

Cells maintain a fine-tuned balance of deoxyribonucleoside 5'-triphosphates (dNTPs), a crucial factor in preserving genomic integrity. Any alterations in the nucleotide pool's composition or chemical modifications to nucleotides before their incorporation into DNA can lead to increased mutation frequency and DNA damage. In addition to the chemical modification of canonical dNTPs, the cellular de novo dNTP metabolism pathways also produce noncanonical dNTPs. To keep their levels low and prevent them from incorporating into the DNA, these noncanonical dNTPs are removed from the dNTP pool by sanitizing enzymes. In this study, we introduce innovative protocols for the high-throughput fluorescence-based quantification of dUTP, 5-methyl-dCTP, and 5-hydroxymethyl-dCTP. To distinguish between noncanonical dNTPs and their canonical counterparts, specific enzymes capable of hydrolyzing either the canonical or noncanonical dNTP analogs are employed. This approach provides a more precise understanding of the composition and noncanonical constituents of dNTP pools, facilitating a deeper comprehension of DNA metabolism and repair. It is also crucial for accurately interpreting mutational patterns generated through the next-generation sequencing of biological samples.


Asunto(s)
Nucleótidos de Desoxicitosina , Desoxirribonucleótidos , Desoxirribonucleótidos/metabolismo , ADN
4.
Nucleic Acids Res ; 51(20): 11225-11238, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819038

RESUMEN

The cellular imbalance between high concentrations of ribonucleotides (NTPs) and low concentrations of deoxyribonucleotides (dNTPs), is challenging for DNA polymerases when building DNA from dNTPs. It is currently believed that DNA polymerases discriminate against NTPs through a steric gate model involving a clash between a tyrosine and the 2'-hydroxyl of the ribonucleotide in the polymerase active site in B-family DNA polymerases. With the help of crystal structures of a B-family polymerase with a UTP or CTP in the active site, molecular dynamics simulations, biochemical assays and yeast genetics, we have identified a mechanism by which the finger domain of the polymerase sense NTPs in the polymerase active site. In contrast to the previously proposed polar filter, our experiments suggest that the amino acid residue in the finger domain senses ribonucleotides by steric hindrance. Furthermore, our results demonstrate that the steric gate in the palm domain and the sensor in the finger domain are both important when discriminating NTPs. Structural comparisons reveal that the sensor residue is conserved among B-family polymerases and we hypothesize that a sensor in the finger domain should be considered in all types of DNA polymerases.


Asunto(s)
ADN Polimerasa II , Ribonucleótidos , Saccharomyces cerevisiae , Dominio Catalítico , Cristalografía por Rayos X , Desoxirribonucleótidos/metabolismo , ADN/genética , ADN/química , ADN Polimerasa II/química , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/enzimología
5.
Front Cell Infect Microbiol ; 13: 1241305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674581

RESUMEN

Maintenance of dNTPs pools in Trypanosoma brucei is dependent on both biosynthetic and degradation pathways that together ensure correct cellular homeostasis throughout the cell cycle which is essential for the preservation of genomic stability. Both the salvage and de novo pathways participate in the provision of pyrimidine dNTPs while purine dNTPs are made available solely through salvage. In order to identify enzymes involved in degradation here we have characterized the role of a trypanosomal SAMHD1 orthologue denominated TbHD82. Our results show that TbHD82 is a nuclear enzyme in both procyclic and bloodstream forms of T. brucei. Knockout forms exhibit a hypermutator phenotype, cell cycle perturbations and an activation of the DNA repair response. Furthermore, dNTP quantification of TbHD82 null mutant cells revealed perturbations in nucleotide metabolism with a substantial accumulation of dATP, dCTP and dTTP. We propose that this HD domain-containing protein present in kinetoplastids plays an essential role acting as a sentinel of genomic fidelity by modulating the unnecessary and detrimental accumulation of dNTPs.


Asunto(s)
Proteína 1 que Contiene Dominios SAM y HD , Trypanosoma brucei brucei , Desoxirribonucleótidos/metabolismo , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Inestabilidad Genómica , Genoma de Protozoos , Daño del ADN , Ciclo Celular
6.
Elife ; 122023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022136

RESUMEN

Life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. As ribonucleotide reduction has on occasion been lost in parasites and endosymbionts, which are instead dependent on their host for deoxyribonucleotide synthesis, it should in principle be possible to knock this process out if growth media are supplemented with deoxyribonucleosides. We report the creation of a strain of Escherichia coli where all three ribonucleotide reductase operons have been deleted following introduction of a broad spectrum deoxyribonucleoside kinase from Mycoplasma mycoides. Our strain shows slowed but substantial growth in the presence of deoxyribonucleosides. Under limiting deoxyribonucleoside levels, we observe a distinctive filamentous cell morphology, where cells grow but do not appear to divide regularly. Finally, we examined whether our lines can adapt to limited supplies of deoxyribonucleosides, as might occur in the switch from de novo synthesis to dependence on host production during the evolution of parasitism or endosymbiosis. Over the course of an evolution experiment, we observe a 25-fold reduction in the minimum concentration of exogenous deoxyribonucleosides necessary for growth. Genome analysis reveals that several replicate lines carry mutations in deoB and cdd. deoB codes for phosphopentomutase, a key part of the deoxyriboaldolase pathway, which has been hypothesised as an alternative to ribonucleotide reduction for deoxyribonucleotide synthesis. Rather than complementing the loss of ribonucleotide reduction, our experiments reveal that mutations appear that reduce or eliminate the capacity for this pathway to catabolise deoxyribonucleotides, thus preventing their loss via central metabolism. Mutational inactivation of both deoB and cdd is also observed in a number of obligate intracellular bacteria that have lost ribonucleotide reduction. We conclude that our experiments recapitulate key evolutionary steps in the adaptation to life without ribonucleotide reduction.


Asunto(s)
Ribonucleótido Reductasas , Ribonucleótidos , Ribonucleótidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Simbiosis , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Desoxirribonucleótidos/metabolismo , Desoxirribonucleósidos/metabolismo
7.
Plant Cell ; 34(10): 3790-3813, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35861422

RESUMEN

Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , ADN de Cloroplastos/metabolismo , Desoxirribonucleótidos/metabolismo , Desoxiuridina/metabolismo , Germinación , Metaboloma , Nucleótidos/metabolismo , Fosforilación , Pirofosfatasas/metabolismo , Plantones , Semillas/genética , Semillas/metabolismo , Timidina/metabolismo , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
8.
Yi Chuan ; 44(2): 96-106, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35210212

RESUMEN

As an important precursor for DNA synthesis, the four deoxyribonucleoside triphosphates (dATP, dTTP, dGTP, and dCTP) are necessary raw materials for DNA replication, recombination, and repair in cells. The correct synthesis and integrity of DNA are important manifestations of the genome stability, so the stability of the dNTP library state is essential to maintain the stability of the genome and the cell. In terms of the quality of the dNTP library, the incorporation of some heterogeneous dNTPs, such as oxidized dNTPs, into DNA can easily cause base substitutions and even DNA breaks and rearrangements, which will greatly damage the stability of the genome. At the same time, the cell has also evolved the corresponding NTP pyrophosphatase to remove it, and to correct the damaged DNA and repair the DNA gap by forming a DNA damage repair network. In terms of the number of dNTP libraries, the imbalance of the dNTP concentration and ratio will also cause base and frameshift mutations, which will also cause genome instability. As a result, cells have evolved a huge enzyme-controlled network to carry them out under precise control. This article mainly reviews the potential harm of damage to dNTP library components in cells, the clearance of damaged dNTPs, the regulation on the balance between dNTP library components, and finally discusses clinical diseases related to dNTP library homeostasis. It provides insights on the research of the correlation between the stability of the cellular dNTP library and the genome, and finally provides some theoretical basis for the treatment of related diseases.


Asunto(s)
Replicación del ADN , Desoxirribonucleótidos , Desoxirribonucleótidos/genética , Desoxirribonucleótidos/metabolismo , Genoma , Inestabilidad Genómica , Homeostasis , Humanos
9.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35017203

RESUMEN

Eukaryotic cells have evolved a replication stress response that helps to overcome stalled/collapsed replication forks and ensure proper DNA replication. The replication checkpoint protein Mrc1 plays important roles in these processes, although its functional interactions are not fully understood. Here, we show that MRC1 negatively interacts with CHL1, which encodes the helicase protein Chl1, suggesting distinct roles for these factors during the replication stress response. Indeed, whereas Mrc1 is known to facilitate the restart of stalled replication forks, we uncovered that Chl1 controls replication fork rate under replication stress conditions. Chl1 loss leads to increased RNR1 gene expression and dNTP levels at the onset of S phase likely without activating the DNA damage response. This in turn impairs the formation of RPA-coated ssDNA and subsequent checkpoint activation. Thus, the Chl1 helicase affects RPA-dependent checkpoint activation in response to replication fork arrest by ensuring proper intracellular dNTP levels, thereby controlling replication fork progression under replication stress conditions.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Replicación del ADN/genética , Desoxirribonucleótidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Cultivadas , ARN Helicasas DEAD-box , ADN Helicasas , Desoxirribonucleótidos/metabolismo , Humanos
10.
Biomolecules ; 11(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572607

RESUMEN

In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.


Asunto(s)
Desoxirribonucleótidos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas HMGB/metabolismo , Kluyveromyces/crecimiento & desarrollo , Kluyveromyces/genética , Secuencia de Bases , Cadmio/toxicidad , Carbono/farmacología , Ciclo Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Proteínas Fúngicas/química , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas HMGB/química , Hemo/biosíntesis , Peróxido de Hidrógeno/toxicidad , Kluyveromyces/efectos de los fármacos , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico/genética , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Sci Rep ; 11(1): 13195, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162976

RESUMEN

Chromatin organization within the nuclear volume is essential to regulate many aspects of its function and to safeguard its integrity. A key player in this spatial scattering of chromosomes is the nuclear envelope (NE). The NE tethers large chromatin domains through interaction with the nuclear lamina and other associated proteins. This organization is perturbed in cells from Hutchinson-Gilford progeria syndrome (HGPS), a genetic disorder characterized by premature aging features. Here, we show that HGPS-related lamina defects trigger an altered 3D telomere organization with increased contact sites between telomeres and the nuclear lamina, and an altered telomeric chromatin state. The genome-wide replication timing signature of these cells is perturbed, with a shift to earlier replication for regions that normally replicate late. As a consequence, we detected a higher density of replication forks traveling simultaneously on DNA fibers, which relies on limiting cellular dNTP pools to support processive DNA synthesis. Remarkably, increasing dNTP levels in HGPS cells rescued fragile telomeres, and improved the replicative capacity of the cells. Our work highlights a functional connection between NE dysfunction and telomere homeostasis in the context of premature aging.


Asunto(s)
Cromatina/ultraestructura , Desoxirribonucleótidos/metabolismo , Lamina Tipo A/fisiología , Lámina Nuclear/patología , Progeria/genética , Homeostasis del Telómero/genética , Telómero/patología , Adulto , Animales , Células Cultivadas , Senescencia Celular/genética , Daño del ADN , Replicación del ADN , Fibroblastos , Genes Reporteros , Proteínas Fluorescentes Verdes , Código de Histonas , Humanos , Recién Nacido , Lamina Tipo A/análisis , Lamina Tipo A/deficiencia , Lamina Tipo A/genética , Lamina Tipo B/análisis , Ratones , Ratones Noqueados , Progeria/patología , Proteínas Recombinantes de Fusión/metabolismo , Piel/patología
12.
Sci Rep ; 11(1): 11991, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099824

RESUMEN

L-Rhamnose is an important monosaccharide both as nutrient source and as building block in prokaryotic glycoproteins and glycolipids. Generation of those composite molecules requires activated precursors being provided e. g. in form of nucleotide sugars such as dTDP-ß-L-rhamnose (dTDP-L-Rha). dTDP-L-Rha is synthesized in a conserved 4-step reaction which is canonically catalyzed by the enzymes RmlABCD. An intact pathway is especially important for the fitness of pseudomonads, as dTDP-L-Rha is essential for the activation of the polyproline specific translation elongation factor EF-P in these bacteria. Within the scope of this study, we investigated the dTDP-L-Rha-biosynthesis route of Pseudomonas putida KT2440 with a focus on the last two steps. Bioinformatic analysis in combination with a screening approach revealed that epimerization of dTDP-4-keto-6-deoxy-D-glucose to dTDP-4-keto-6-deoxy-L-mannose is catalyzed by the two paralogous proteins PP_1782 (RmlC1) and PP_0265 (RmlC2), whereas the reduction to the final product is solely mediated by PP_1784 (RmlD). Thus, we also exclude the distinct RmlD homolog PP_0500 and the genetically linked nucleoside diphosphate-sugar epimerase PP_0501 to be involved in dTDP-L-Rha formation, other than suggested by certain databases. Together our analysis contributes to the molecular understanding how this important nucleotide-sugar is synthesized in pseudomonads.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Desoxiglucosa/análogos & derivados , Escherichia coli/enzimología , Pseudomonas putida/metabolismo , Carbohidrato Epimerasas/genética , Catálisis , Bases de Datos Factuales , Desoxiglucosa/metabolismo , Desoxirribonucleótidos/metabolismo , Biblioteca de Genes , Azúcares de Nucleósido Difosfato/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Nucleótidos de Timina/metabolismo
13.
Methods Mol Biol ; 2276: 143-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34060038

RESUMEN

Deoxynucleoside 5'-triphosphates (dNTPs) are the molecular building blocks for DNA synthesis, and their balanced concentration in the cell is fundamental for health. dNTP imbalance can lead to genomic instability and other metabolic disturbances, resulting in devastating mitochondrial diseases.The accurate and efficient measurement of dNTPs from different biological samples and cellular compartments is vital to understand the mechanisms behind these diseases and develop and scrutinize their possible treatments. This chapter describes an update on the most recent development of the traditional radiolabeled polymerase extension method and its adaptation for the measurement of whole-cell and mitochondrial dNTP pools from cultured cells and tissue samples. The solid-phase reaction setting enables an increase in efficiency, accuracy, and measurement scale.


Asunto(s)
Bioensayo/métodos , Fraccionamiento Celular/métodos , Células/metabolismo , Desoxirribonucleótidos/metabolismo , Mitocondrias/metabolismo , Animales , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Ratones , Mitocondrias/genética
14.
Biochemistry ; 60(21): 1682-1698, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33988981

RESUMEN

SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hydrolysis of Rp-dNTPαS nucleotides and for a mode of competitive inhibition by Sp-dNTPαS nucleotides that competes with formation of the enzyme-substrate complex.


Asunto(s)
Desoxirribonucleótidos/química , Proteína 1 que Contiene Dominios SAM y HD/antagonistas & inhibidores , Proteína 1 que Contiene Dominios SAM y HD/química , Regulación Alostérica , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Nucleótidos de Desoxiguanina/química , Desoxirribonucleótidos/metabolismo , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Replicación Viral/fisiología
15.
Nucleic Acids Res ; 49(5): 2598-2608, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33591315

RESUMEN

Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína 1 que Contiene Dominios SAM y HD/fisiología , Proteína 9 Asociada a CRISPR/metabolismo , Rotura Cromosómica , Desoxirribonucleótidos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo
16.
Nucleic Acids Res ; 49(4): 2179-2191, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33533925

RESUMEN

Replication forks often stall at damaged DNA. To overcome these obstructions and complete the DNA duplication in a timely fashion, replication can be restarted downstream of the DNA lesion. In mammalian cells, this repriming of replication can be achieved through the activities of primase and polymerase PrimPol. PrimPol is stimulated in DNA synthesis through interaction with PolDIP2, however the exact mechanism of this PolDIP2-dependent stimulation is still unclear. Here, we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol's enhanced processivity. PolDIP2 increases primer-template and dNTP binding affinities of PrimPol, which concomitantly enhances its nucleotide incorporation efficiency. This stimulation is dependent on a unique arginine cluster in PolDIP2. Since the polymerase activity of PrimPol alone is very limited, this mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, might be critical for the in vivo function of PrimPol in tolerating DNA lesions at physiological nucleotide concentrations.


Asunto(s)
Arginina/química , ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , ADN/biosíntesis , Enzimas Multifuncionales/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Unión Proteica
17.
Nat Commun ; 12(1): 796, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542236

RESUMEN

RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Desoxirribosa/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Simulación del Acoplamiento Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato , Thermus thermophilus/enzimología , Thermus thermophilus/genética
18.
Cold Spring Harb Protoc ; 2020(7): 100602, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611783

RESUMEN

In this method, E. coli DNA Pol I binds to a nick or short gap in duplex DNA. The 5' → 3' exonuclease activity of Pol I then removes nucleotides from one strand of the DNA, creating a template for the synthesis of DNA by the 5' → 3' polymerase activity of Pol I. The simultaneous elimination of nucleotides from the 5' side and the addition of nucleotides to the 3' side result in movement of the nick (nick translation) along the DNA, which becomes labeled to high specific activity.


Asunto(s)
Roturas del ADN de Cadena Simple , Sondas de ADN/genética , ADN Bacteriano/genética , Escherichia coli/genética , Etiquetado Corte-Fin in Situ/métodos , Sondas de ADN/metabolismo , ADN Bacteriano/metabolismo , Desoxirribonucleasa I/metabolismo , Desoxirribonucleótidos/genética , Desoxirribonucleótidos/metabolismo , Escherichia coli/metabolismo
19.
EMBO J ; 39(15): e102931, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32511795

RESUMEN

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.


Asunto(s)
Reparación del ADN , Desoxirribonucleótidos/metabolismo , Cambio de Clase de Inmunoglobulina , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Línea Celular , Desoxirribonucleótidos/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/genética
20.
Cold Spring Harb Protoc ; 2020(5): 100651, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358054

RESUMEN

The Klenow fragment, which retains the template-dependent deoxynucleotide polymerizing activity and the 3' → 5' exonuclease of the holo-enzyme but lacks its powerful 5' → 3' exonuclease activity, is used to fill recessed 3' termini of dsDNA. In this protocol, fragments suitable as templates for the end-filling reaction are produced by digestion of DNA with an appropriate restriction enzyme. The Klenow enzyme is then used to catalyze the attachment of dNTPs to the recessed 3'-hydroxyl groups.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Marcaje Isotópico/métodos , Radioisótopos de Fósforo/metabolismo , ADN/genética , Modelos Genéticos , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA