Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Chembiochem ; 21(11): 1573-1581, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32180334

RESUMEN

Hydrogenases (H2 ase) catalyze the oxidation of dihydrogen and the reduction of protons with remarkable efficiency, thereby attracting considerable attention in the energy field due to their biotechnological potential. For this simple reaction, [NiFe] H2 ase has developed a sophisticated but intricate mechanism with the heterolytic cleavage of dihydrogen, where its Ni-Fe active site exhibits various redox states. Recently, new spectroscopic and crystal structure studies of [NiFe] H2 ases have been reported, providing significant insights into the catalytic reaction mechanism, hydrophobic gas-access tunnel, proton-transfer pathway, and electron-transfer pathway of [NiFe] H2 ases. In addition, [NiFe] H2 ases have been shown to play an important role in biofuel cell and solar dihydrogen production. This concept provides an overview of the biocatalytic reaction mechanism and biochemical application of [NiFe] H2 ases based on the new findings.


Asunto(s)
Proteínas Arqueales/química , Proteínas Bacterianas/química , Electrones , Hidrógeno/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Fuentes de Energía Bioeléctrica , Dominio Catalítico , Cupriavidus necator/química , Cupriavidus necator/enzimología , Desulfovibrio gigas/química , Desulfovibrio gigas/enzimología , Desulfovibrio vulgaris/química , Desulfovibrio vulgaris/enzimología , Humanos , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Hierro-Azufre/metabolismo , Methanosarcina barkeri/química , Methanosarcina barkeri/enzimología , Oxidación-Reducción , Protones , Energía Solar
2.
Sci Rep ; 8(1): 14935, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297797

RESUMEN

The membrane-embedded quinol:fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/proton-transfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme bL in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structural insights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desulfovibrio gigas/metabolismo , Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Desulfovibrio gigas/química , Infecciones por Desulfovibrionaceae/microbiología , Transporte de Electrón , Humanos , Modelos Moleculares , Oxidorreductasas/química , Unión Proteica , Conformación Proteica , Protones , Especificidad por Sustrato , Vitamina K 2/metabolismo
3.
Methods Enzymol ; 578: 299-326, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27497172

RESUMEN

The diffusion of ligands to actives sites of proteins is essential to enzyme catalysis and many cellular signaling processes. In this contribution we review our recently developed methodology for calculation of rate constants for diffusion and binding of small molecules to buried protein active sites. The diffusive dynamics of the ligand obtained from molecular dynamics simulation is coarse grained and described by a Markov state model. Diffusion and binding rate constants are then obtained either from the reactive flux formalism or by fitting the time-dependent population of the Markov state model to a phenomenological rate law. The method is illustrated by applications to diffusion of substrate and inhibitors in [NiFe] hydrogenase, CO-dehydrogenase, and myoglobin. We also discuss a recently developed sensitivity analysis that allows one to identify hot spots in proteins, where mutations are expected to have the strongest effects on ligand diffusion rates.


Asunto(s)
Aldehído Oxidorreductasas/química , Hidrogenasas/química , Simulación de Dinámica Molecular , Complejos Multienzimáticos/química , Mioglobina/química , Aldehído Oxidorreductasas/genética , Sitios de Unión , Biocatálisis , Dominio Catalítico , Clostridiales/química , Clostridiales/enzimología , Análisis por Conglomerados , Desulfovibrio gigas/química , Desulfovibrio gigas/enzimología , Difusión , Humanos , Hidrogenasas/genética , Cinética , Ligandos , Cadenas de Markov , Complejos Multienzimáticos/genética , Mutación , Mioglobina/genética , Unión Proteica , Termodinámica
4.
Biochim Biophys Acta ; 1857(9): 1422-1429, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27240719

RESUMEN

A linear cluster formulated as [S2MoS2CuS2MoS2](3-), a unique heterometallic cluster found in biological systems, was identified in a small monomeric protein (named as Orange Protein). The gene coding for this protein is part of an operon mainly present in strict anaerobic bacteria, which is composed (in its core) by genes coding for the Orange Protein and two ATPase proposed to contain Fe-S clusters. In Desulfovibrio desulfuricans G20, there is an ORF, Dde_3197 that encodes a small protein containing several cysteine residues in its primary sequence. The heterologously produced Dde_3197 aggregates mostly in inclusion bodies and was isolated by unfolding with a chaotropic agent and refolding by dialysis. The refolded protein contained sub-stoichiometric amounts of iron atoms/protein (0.5±0.2), but after reconstitution with iron and sulfide, high iron load contents were detected (1.8±0.1 or 3.4±0.2) using 2- and 4-fold iron excess. The visible absorption spectral features of the iron-sulfur clusters in refolded and reconstituted Dde_3197 are similar and resemble the ones of [2Fe-2S] cluster containing proteins. The refolded and reconstituted [2Fe-2S] Dde_3197 are EPR silent, but after reduction with dithionite, a rhombic signal is observed with gmax=2.00, gmed=1.95 and gmin=1.92, consistent with a one-electron reduction of a [2Fe-2S](2+) cluster into a [2Fe-2S](1+) state, with an electron spin of S=½. The data suggests that Dde_3197 can harbor one or two [2Fe-2S] clusters, one being stable and the other labile, with quite identical spectroscopic properties, but stable to oxygen.


Asunto(s)
Proteínas Bacterianas/química , Desulfovibrio gigas/química , Proteínas Hierro-Azufre/química , Operón , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/genética , Pliegue de Proteína
5.
J Biol Inorg Chem ; 19(4-5): 605-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24477945

RESUMEN

The orange protein (ORP) isolated from the sulfate-reducing bacterium Desulfovibrio gigas (11.8 kDa) contains a mixed-metal sulfide cluster of the type [S2MoS2CuS2MoS2](3-) noncovalently bound to the polypeptide chain. The D. gigas ORP was heterologously produced in Escherichia coli in the apo form. Different strategies were used to reconstitute the metal cluster into apo-ORP and obtain insights into the metal cluster synthesis: (1) incorporation of a synthesized inorganic analogue of the native metal cluster and (2) the in situ synthesis of the metal cluster on the addition to apo-ORP of copper chloride and tetrathiomolybdate or tetrathiotungstate. This latter procedure was successful, and the visible spectrum of the Mo-Cu reconstituted ORP is identical to the one reported for the native protein with absorption maxima at 340 and 480 nm. The (1)H-(15)N heteronuclear single quantum coherence spectra of the reconstituted ORP obtained by strategy 2, in contrast to strategy 1, exhibited large changes, which required sequential assignment in order to identify, by chemical shift differences, the residues affected by the incorporation of the cluster, which is stabilized inside the protein by both electrostatic and hydrophobic interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Desulfovibrio gigas/metabolismo , Molibdeno/metabolismo , Proteínas Bacterianas/química , Cobre/química , Desulfovibrio gigas/química , Molibdeno/química
6.
Langmuir ; 29(2): 673-82, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23215250

RESUMEN

Understanding the interaction and immobilization of [NiFe] hydrogenases on functionalized surfaces is important in the field of biotechnology and, in particular, for the development of biofuel cells. In this study, we investigated the adsorption behavior of the standard [NiFe] hydrogenase of Desulfovibrio gigas on amino-terminated alkanethiol self-assembled monolayers (SAMs) with different levels of protonation. Classical all-atom molecular dynamics (MD) simulations revealed a strong correlation between the adsorption behavior and the level of ionization of the chemically modified electrode surface. While the hydrogenase undergoes a weak but stable initial adsorption process on SAMs with a low degree of protonation, a stronger immobilization is observable on highly ionized SAMs, affecting protein reorientation and conformation. These results were validated by complementary surface-enhanced infrared absorption (SEIRA) measurements on the comparable [NiFe] standard hydrogenases from Desulfovibrio vulgaris Miyazaki F and allowed in this way for a detailed insight into the adsorption mechanism at the atomic level.


Asunto(s)
Proteínas Bacterianas/química , Desulfovibrio gigas/química , Desulfovibrio vulgaris/química , Hidrogenasas/química , Proteínas Inmovilizadas/química , Protones , Adsorción , Alcanos/química , Desulfovibrio gigas/enzimología , Desulfovibrio vulgaris/enzimología , Electrodos , Oro/química , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Compuestos de Sulfhidrilo/química , Termodinámica
7.
Inorg Chem ; 50(21): 10600-7, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21957905

RESUMEN

Two cyclen-derived Gd probes, [Gd-DOTAM](3+) and [Gd-DOTP](5-) (DOTAM = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetamide; DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonate)), were assessed as paramagnetic relaxation enhancement (PRE)-inducing probes for characterization of protein-protein interactions. Two proteins, Desulfovibrio gigas rubredoxin and Desulfovibrio gigas cytochrome c(3), were used as model partners. In a (1)H NMR titration it was shown that [Gd-DOTP](5-) binds to cytochrome c(3) near heme IV, causing pronounced PREs, characterized by line width broadenings of the heme methyl resonances at ratios as low as 0.08. A K(d) of 23 ± 1 µM was calculated based on chemical shift perturbation of selected heme methyl resonances belonging to three different heme groups, caused by allosteric effects upon [Gd-DOTP](5-) binding to cytochrome c(3) at a molar ratio of 2. The other probe, [Gd-DOTAM](3+), caused PREs on a well-defined patch near the metal center of rubredoxin (especially the patch constituted by residues D19-G23 and W37-S45, which broaden beyond detection). This effect was partially reversed for some resonances (C6-Y11, in particular) when cytochrome c(3) was added to this system. Both probes were successful in causing reversible PREs at the partner binding site, thus showing to be good probes to identify partners' binding sites and since the interaction is reversible to structurally characterize protein complexes by better defining the complex interface.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quelantes/metabolismo , Química Física/métodos , Grupo Citocromo c/metabolismo , Gadolinio/metabolismo , Compuestos Heterocíclicos/metabolismo , Rubredoxinas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Quelantes/química , Ciclamas , Grupo Citocromo c/química , Desulfovibrio gigas/química , Gadolinio/química , Hemo/química , Hemo/metabolismo , Compuestos Heterocíclicos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Rubredoxinas/química
8.
J Am Chem Soc ; 133(32): 12414-7, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21761899

RESUMEN

Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp(2)-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a µ-sulfido,µ-oxo double bridge or a single µ-sulfido bridge. However, this is contrary to the crystallographically observed single µ-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 Å resolution, respectively. We observe µ-sulfido,µ-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.


Asunto(s)
Arsenitos/farmacología , Desulfovibrio gigas/enzimología , Inhibidores Enzimáticos/farmacología , Molibdeno/química , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/química , Dominio Catalítico , Cristalografía por Rayos X , Desulfovibrio gigas/química , Modelos Moleculares , Molibdeno/metabolismo , Xantina Oxidasa/metabolismo
9.
Mol Microbiol ; 78(5): 1101-16, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21059110

RESUMEN

The crystal structures of two active forms of dissimilatory sulphite reductase (Dsr) from Desulfovibrio gigas, Dsr-I and Dsr-II, are compared at 1.76 and 2.05 Å resolution respectively. The dimeric α2ß2γ2 structure of Dsr-I contains eight [4Fe-4S] clusters, two saddle-shaped sirohaems and two flat sirohydrochlorins. In Dsr-II, the [4Fe-4S] cluster associated with the sirohaem in Dsr-I is replaced by a [3Fe-4S] cluster. Electron paramagnetic resonance (EPR) of the active Dsr-I and Dsr-II confirm the co-factor structures, whereas EPR of a third but inactive form, Dsr-III, suggests that the sirohaem has been demetallated in addition to its associated [4Fe-4S] cluster replaced by a [3Fe-4S] centre. In Dsr-I and Dsr-II, the sirohydrochlorin is located in a putative substrate channel connected to the sirohaem. The γ-subunit C-terminus is inserted into a positively charged channel formed between the α- and ß-subunits, with its conserved terminal Cys104 side-chain covalently linked to the CHA atom of the sirohaem in Dsr-I. In Dsr-II, the thioether bond is broken, and the Cys104 side-chain moves closer to the bound sulphite at the sirohaem pocket. These different forms of Dsr offer structural insights into a mechanism of sulphite reduction that can lead to S3O6(2-), S2O3(2-) and S2-.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desulfovibrio gigas/enzimología , Hidrogenosulfito Reductasa/química , Hidrogenosulfito Reductasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Desulfovibrio gigas/química , Desulfovibrio gigas/genética , Hidrogenosulfito Reductasa/genética , Conformación Molecular , Datos de Secuencia Molecular
10.
Artículo en Inglés | MEDLINE | ID: mdl-19574652

RESUMEN

The orange-coloured protein (ORP) from Desulfovibrio gigas is a 12 kDa protein that contains a novel mixed-metal sulfide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)]. Diffracting crystals of the apo form of ORP have been obtained. Data have been collected for the apo form of ORP to 2.25 A resolution in-house and to beyond 2.0 A resolution at ESRF, Grenoble. The crystals belonged to a trigonal space group, with unit-cell parameters a = 43, b = 43, c = 106 A.


Asunto(s)
Apoproteínas/química , Proteínas Bacterianas/química , Desulfovibrio gigas/química , Cristalización , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida
11.
Proteins ; 72(2): 580-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18247348

RESUMEN

Molecular dynamics simulation studies of rubredoxin from Desulfovibrio gigas (RDG) were used to characterize the molecular mechanism of thermal stabilization by the compatible solute (CS) diglycerol-phospate (DGP). DGP is a negatively charged CS that accumulates under salt stress in Archaeoglobus fulgidus. Experimental results show that a 100 mM DGP solution exerts a strong protection effect in the half-life of RDG at 363 K (Lamosa et al., Appl Environ Microbiol 2000;66:1974-1979). RDG was simulated in four aqueous solutions at 300 and 363 K: pure aqueous media, 100 mM DGP, 100 mM NaCl, and 500 mM DGP. Our work shows that the 100 mM DGP solution is able to maintain the average protein structure when the temperature is increased, preventing the occurrence of large-scale deviation of a mobile loop involved in the first steps of RDG unfolding. The molecular mechanism of thermal denaturation protection by DGP seems to involve the direct interaction between the protein and the CS by hydrogen bond interactions near the mobile loop. Several clusters of DGP molecules are formed and preferentially localized at neutral electrostatic regions of the surface. The increase of DGP concentration to 500 mM did not yield better stabilization of the protein suggesting that the thermal protective role of this charged CS is achieved at low concentrations, as shown experimentally.


Asunto(s)
Desulfovibrio gigas/química , Rubredoxinas/química , Modelos Moleculares , Conformación Proteica , Electricidad Estática
12.
J Mol Biol ; 370(4): 659-73, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17531266

RESUMEN

Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 A resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane.


Asunto(s)
Citocromos/química , Citocromos/metabolismo , Desulfovibrio gigas/química , Desulfovibrio gigas/metabolismo , Hemo/química , Hemo/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Citocromos/aislamiento & purificación , Glicosilación , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Electricidad Estática , Homología Estructural de Proteína
13.
Biomol NMR Assign ; 1(1): 81-3, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19636833

RESUMEN

We report the 98% assignment of the apo-form of an orange protein, containing a novel Mo-Cu cluster isolated from Desulfovibrio gigas. This protein presents a region where backbone amide protons exchange fast with bulk solvent becoming undetectable. These residues were assigned using 13C-detection experiments.


Asunto(s)
Proteínas Bacterianas/química , Desulfovibrio gigas/química , Apoproteínas/química , Apoproteínas/genética , Proteínas Bacterianas/genética , Sitios de Unión , Isótopos de Carbono , Cobre/química , Desulfovibrio gigas/genética , Estructura Molecular , Molibdeno/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
J Biol Inorg Chem ; 11(3): 307-15, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16453120

RESUMEN

Desulfovibrio gigas ferredoxin II (DgFdII) is a small protein with a polypeptide chain composed of 58 amino acids, containing one Fe3S4 cluster per monomer. Upon studying the redox cycle of this protein, we detected a stable intermediate (FdIIint) with four 1H resonances at 24.1, 20.5, 20.8 and 13.7 ppm. The differences between FdIIox and FdIIint were attributed to conformational changes resulting from the breaking/formation of an internal disulfide bridge. The same 1H NMR methodology used to fully assign the three cysteinyl ligands of the [3Fe-4S] core in the oxidized state (DgFdIIox) was used here for the assignment of the same three ligands in the intermediate state (DgFdIIint). The spin-coupling model used for the oxidized form of DgFdII where magnetic exchange coupling constants of around 300 cm-1 and hyperfine coupling constants equal to 1 MHz for all the three iron centres were found, does not explain the isotropic shift temperature dependence for the three cysteinyl cluster ligands in DgFdIIint. This study, together with the spin delocalization mechanism proposed here for DgFdIIint, allows the detection of structural modifications at the [3Fe-4S] cluster in DgFdIIox and DgFdIIint.


Asunto(s)
Desulfovibrio gigas/química , Ferredoxinas/química , Proteínas Hierro-Azufre/química , Cromatografía Líquida de Alta Presión , Proteínas Hierro-Azufre/aislamiento & purificación , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Conformación Proteica
15.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 780-3, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15930639

RESUMEN

Sulfate-reducing bacteria (SRB), which are strict anaerobes, contain an electron-transfer chain from pyridine nucleotides to molecular oxygen. This unique enzymatic equipment allows the bacterium to produce ATP when exposed to air from the degradation of internal reserves of polyglucose. Ferredoxin II (Fd II) is a small electron-transfer protein isolated from the strict anaerobic sulfate-reducing bacterium Desulfovibrio gigas. The protein contains 58 amino acids and an iron-sulfur cluster. The cluster [3Fe-4S] spontaneously undergoes conversion to [4Fe-4S] when it is used as an electron mediator in the phosphoroclastic reaction. The iron-sulfur geometries and interconversion mechanism appear to have physiological significance between the oxidized and reduced states. Crystallization of Fd II in an anaerobic environment was achieved at a higher resolution of 1.37 A and the differences between the anaerobic and aerobic structures will reveal the unique iron-storage function and electron-transfer mechanism of ferredoxin II from D. gigas.


Asunto(s)
Desulfovibrio gigas/química , Ferredoxinas/química , Ferredoxinas/aislamiento & purificación , Cristalización/métodos , Cristalografía por Rayos X/métodos
16.
Biophys J ; 88(6): 4188-99, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15764652

RESUMEN

The tetraheme protein cytochrome c(3) (Cyt-c(3)) from Desulfovibrio gigas, immobilized on a self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid, is studied by theoretical and spectroscopic methods. Molecular dynamics simulations indicate that the protein docks to the negatively charged SAM via its lysine-rich domain around the exposed heme IV. Complex formation is associated with only little protein structural perturbations. This finding is in line with the resonance Raman and surface-enhanced resonance Raman (SERR) spectroscopic results that indicate essentially the same heme pocket structures for the protein in solution and adsorbed on SAM-coated Ag electrodes. Electron- and proton-binding equilibrium calculations reveal substantial negative shifts of the redox potentials compared to the protein in solution. The magnitude of these shifts decreases in the order heme IV (-161 mV) > heme III (-73 mV) > heme II (-57 mV) > heme I (-26 mV), resulting in a change of the order of reduction. These shifts originate from the distance-dependent electrostatic interactions between the SAM headgroups and the individual hemes, leading to a stabilization of the oxidized forms. The results of the potential-dependent SERR spectroscopic analyses are consistent with the theoretical predictions and afford redox potential shifts of -160 mV (heme IV), -90 mV (heme III), -70 mV (heme II), and +20 mV (heme I) relative to the experimental redox potentials for Cyt-c(3) in solution. SERR spectroscopic experiments reveal electric-field-induced changes of the redox potentials also for the structurally very similar Cyt-c(3) from Desulfovibrio vulgaris, although the shifts are somewhat smaller compared to Cyt-c(3) from D. gigas. This study suggests that electric-field-induced redox potential shifts may also occur upon binding to biomembranes or partner proteins and thus may affect biological electron transfer processes.


Asunto(s)
Grupo Citocromo c/química , Fenómenos Biofísicos , Biofisica , Desulfovibrio gigas/química , Desulfovibrio vulgaris/química , Ácidos Grasos/química , Hemo/química , Membranas Artificiales , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Espectrometría Raman , Electricidad Estática , Propiedades de Superficie , Termodinámica
17.
J Inorg Biochem ; 98(5): 833-40, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15134929

RESUMEN

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS(4)(2-) moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed.


Asunto(s)
Proteínas Bacterianas/química , Cobre/química , Desulfovibrio gigas/química , Metaloproteínas/química , Molibdeno/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Clonación Molecular , ADN Bacteriano/genética , Desulfovibrio gigas/genética , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Datos de Secuencia Molecular , Estructura Molecular , Homología de Secuencia de Aminoácido , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA