Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 98-106, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699971

RESUMEN

Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.


Asunto(s)
Desulfovibrio vulgaris , Formiato Deshidrogenasas , Desulfovibrio vulgaris/enzimología , Desulfovibrio vulgaris/genética , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Oxidación-Reducción , Modelos Moleculares , Formiatos/metabolismo , Formiatos/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
ACS Appl Mater Interfaces ; 13(10): 11891-11900, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33656858

RESUMEN

The decrease of greenhouse gases such as CO2 has become a key challenge for the human kind and the study of the electrocatalytic properties of CO2-reducing enzymes such as formate dehydrogenases is of importance for this goal. In this work, we study the covalent bonding of Desulfovibrio vulgaris Hildenborough FdhAB formate dehydrogenase to chemically modified gold and low-density graphite electrodes, using electrostatic interactions for favoring oriented immobilization of the enzyme. Electrochemical measurements show both bioelectrocatalytic oxidation of formate and reduction of CO2 by direct electron transfer (DET). Atomic force microscopy and quartz crystal microbalance characterization, as well as a comparison of direct and mediated electrocatalysis, suggest that a compact layer of formate dehydrogenase was anchored to the electrode surface with some crosslinked aggregates. Furthermore, the operational stability for CO2 electroreduction to formate by DET is shown with approximately 100% Faradaic yield.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Enzimas Inmovilizadas/química , Formiato Deshidrogenasas/química , Oro/química , Grafito/química , Dióxido de Carbono/química , Electrodos , Modelos Moleculares , Oxidación-Reducción
3.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 946-953, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021496

RESUMEN

A membrane-bound hydrogenase from Desulfovibrio vulgaris Miyazaki F is a metalloenzyme that contains a binuclear Ni-Fe complex in its active site and mainly catalyzes the oxidation of molecular hydrogen to generate a proton gradient in the bacterium. The active-site Ni-Fe complex of the aerobically purified enzyme shows its inactive oxidized form, which can be reactivated through reduction by hydrogen. Here, in order to understand how the oxidized form is reactivated by hydrogen and further to directly evaluate the bridging of a hydride ligand in the reduced form of the Ni-Fe complex, a neutron structure determination was undertaken on single crystals grown in a hydrogen atmosphere. Cryogenic crystallography is being introduced into the neutron diffraction research field as it enables the trapping of short-lived intermediates and the collection of diffraction data to higher resolution. To optimize the cooling of large crystals under anaerobic conditions, the effects on crystal quality were evaluated by X-rays using two typical methods, the use of a cold nitrogen-gas stream and plunge-cooling into liquid nitrogen, and the former was found to be more effective in cooling the crystals uniformly than the latter. Neutron diffraction data for the reactivated enzyme were collected at the Japan Photon Accelerator Research Complex under cryogenic conditions, where the crystal diffracted to a resolution of 2.0 Å. A neutron diffraction experiment on the reduced form was carried out at Oak Ridge National Laboratory under cryogenic conditions and showed diffraction peaks to a resolution of 2.4 Å.


Asunto(s)
Cristalografía/métodos , Hidrogenasas/química , Difracción de Neutrones/métodos , Desulfovibrio vulgaris/enzimología , Congelación , Modelos Moleculares
4.
J Biol Inorg Chem ; 25(6): 863-874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32865640

RESUMEN

Hydrogenases are metalloenzymes that catalyse both H2 evolution and uptake. They are gas-processing enzymes with deeply buried active sites, so the gases diffuse through channels that connect the active site to the protein surface. The [NiFeSe] hydrogenases are a special class of hydrogenases containing a selenocysteine as a nickel ligand; they are more catalytically active and less O2-sensitive than standard [NiFe] hydrogenases. Characterisation of the channel system of hydrogenases is important to understand how the inhibitor oxygen reaches the active site to cause oxidative damage. To this end, crystals of Desulfovibrio vulgaris Hildenborough [NiFeSe] hydrogenase were pressurized with krypton and oxygen, and a method for tracking labile O2 molecules was developed, for mapping a hydrophobic channel system similar to that of the [NiFe] enzymes as the major route for gas diffusion.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Hidrogenasas/química , Criptón/química , Oxígeno/química , Dominio Catalítico , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Conformación Proteica
5.
Chembiochem ; 21(11): 1573-1581, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32180334

RESUMEN

Hydrogenases (H2 ase) catalyze the oxidation of dihydrogen and the reduction of protons with remarkable efficiency, thereby attracting considerable attention in the energy field due to their biotechnological potential. For this simple reaction, [NiFe] H2 ase has developed a sophisticated but intricate mechanism with the heterolytic cleavage of dihydrogen, where its Ni-Fe active site exhibits various redox states. Recently, new spectroscopic and crystal structure studies of [NiFe] H2 ases have been reported, providing significant insights into the catalytic reaction mechanism, hydrophobic gas-access tunnel, proton-transfer pathway, and electron-transfer pathway of [NiFe] H2 ases. In addition, [NiFe] H2 ases have been shown to play an important role in biofuel cell and solar dihydrogen production. This concept provides an overview of the biocatalytic reaction mechanism and biochemical application of [NiFe] H2 ases based on the new findings.


Asunto(s)
Proteínas Arqueales/química , Proteínas Bacterianas/química , Electrones , Hidrógeno/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Fuentes de Energía Bioeléctrica , Dominio Catalítico , Cupriavidus necator/química , Cupriavidus necator/enzimología , Desulfovibrio gigas/química , Desulfovibrio gigas/enzimología , Desulfovibrio vulgaris/química , Desulfovibrio vulgaris/enzimología , Humanos , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Hierro-Azufre/metabolismo , Methanosarcina barkeri/química , Methanosarcina barkeri/enzimología , Oxidación-Reducción , Protones , Energía Solar
6.
FEMS Microbiol Lett ; 367(6)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32166312

RESUMEN

Short and branched chain fatty acid kinases participate in both bacterial anabolic and catabolic processes, including fermentation, through the reversible, ATP-dependent synthesis of acyl phosphates. This study reports biochemical properties of a predicted butyrate kinase from Desulfovibrio vulgaris str. Hildenborough (DvBuk) expressed heterologously and purified from Escherichia coli. Gel filtration chromatography indicates purified DvBuk is active as a dimer. The optimum temperature and pH for DvBuk activity is 44°C and 7.5, respectively. The enzyme displays enhanced thermal stability in the presence of substrates as observed for similar enzymes. Measurement of kcat and KM for various substrates reveals DvBuk exhibits the highest catalytic efficiencies for butyrate, valerate and isobutyrate. In particular, these measurements reveal this enzyme's apparent high affinity for C4 fatty acids relative to other butyrate kinases. These results have implications on structure and function relationships within the ASKHA superfamily of phosphotransferases, particularly regarding the acyl binding pocket, as well as potential physiological roles for this enzyme in Desulfovibrio vulgaris str. Hildenborough.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Proteínas Recombinantes/metabolismo , Cromatografía en Gel , Desulfovibrio vulgaris/genética , Estabilidad de Enzimas , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/aislamiento & purificación , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Temperatura
7.
Nat Commun ; 11(1): 920, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060304

RESUMEN

Redox-active films were proposed as protective matrices for preventing oxidative deactivation of oxygen-sensitive catalysts such as hydrogenases for their use in fuel cells. However, the theoretical models predict quasi-infinite protection from oxygen and the aerobic half-life for hydrogenase-catalyzed hydrogen oxidation within redox films lasts only about a day. Here, we employ operando confocal microscopy to elucidate the deactivation processes. The hydrogen peroxide generated from incomplete reduction of oxygen induces the decomposition of the redox matrix rather than deactivation of the biocatalyst. We show that efficient dismutation of hydrogen peroxide by iodide extends the aerobic half-life of the catalytic film containing an oxygen-sensitive [NiFe] hydrogenase to over one week, approaching the experimental anaerobic half-life. Altogether, our data support the theory that redox films make the hydrogenases immune against the direct deactivation by oxygen and highlight the importance of suppressing hydrogen peroxide production in order to reach complete protection from oxidative stress.


Asunto(s)
Proteínas Bacterianas/química , Desulfovibrio vulgaris/enzimología , Peróxido de Hidrógeno/química , Hidrogenasas/química , Oxígeno/química , Proteínas Bacterianas/metabolismo , Desulfovibrio vulgaris/química , Peróxido de Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Cinética , Oxidación-Reducción , Oxígeno/metabolismo
9.
Phys Chem Chem Phys ; 21(34): 18595-18604, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31414082

RESUMEN

With application to the nitrite reductase hexameric protein complex of Desulfovibrio vulgaris, NrfH2A4, we suggest a strategy to compute the energy landscape of electron transfer in large systems of biochemical interest. For small complexes, the energy of all electronic configurations can be scanned completely on the level of a numerical solution of the Poisson-Boltzmann equation. In contrast, larger systems have to be treated using a pair approximation, which is verified here. Effective Coulomb interactions between neighbouring sites of excess electron localization may become as large as 200 meV, and they depend in a nontrivial manner on the intersite distance. We discuss the implications of strong Coulomb interactions on the thermodynamics and kinetics of charging and decharging a protein complex. Finally, we turn to the effect of embedding the system into a biomembrane.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Modelos Moleculares , Nitrito Reductasas/química , Dimiristoilfosfatidilcolina/química , Transporte de Electrón , Cinética , Membranas Artificiales , Conformación Proteica , Multimerización de Proteína , Termodinámica
10.
J Biol Chem ; 294(35): 13017-13026, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31296570

RESUMEN

The nickel-dependent carbon monoxide dehydrogenase (CODH) employs a unique heterometallic nickel-iron-sulfur cluster, termed the C-cluster, to catalyze the interconversion of CO and CO2 Like other complex metalloenzymes, CODH requires dedicated assembly machinery to form the fully intact and functional C-cluster. In particular, nickel incorporation into the C-cluster depends on the maturation factor CooC; however, the mechanism of nickel insertion remains poorly understood. Here, we compare X-ray structures (1.50-2.48 Å resolution) of CODH from Desulfovibrio vulgaris (DvCODH) heterologously expressed in either the absence (DvCODH-CooC) or presence (DvCODH+CooC) of co-expressed CooC. We find that the C-cluster of DvCODH-CooC is fully loaded with iron but does not contain any nickel. Interestingly, the so-called unique iron ion (Feu) occupies both its canonical site (80% occupancy) and the nickel site (20% occupancy), with addition of reductant causing further mismetallation of the nickel site (60% iron occupancy). We also demonstrate that a DvCODH variant that lacks a surface-accessible iron-sulfur cluster (the D-cluster) has a C-cluster that is also replete in iron but lacks nickel, despite co-expression with CooC. In this variant, all Feu is in its canonical location, and the nickel site is empty. This D-cluster-deficient CODH is inactive despite attempts to reconstitute it with nickel. Taken together, these results suggest that an empty nickel site is not sufficient for nickel incorporation. Based on our findings, we propose a model for C-cluster assembly that requires both CooC and a functioning D-cluster, involves precise redox-state control, and includes a two-step nickel-binding process.


Asunto(s)
Aldehído Oxidorreductasas/química , Desulfovibrio vulgaris/enzimología , Metaloproteínas/química , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/metabolismo , Cristalografía por Rayos X , Metaloproteínas/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Conformación Proteica
11.
Inorg Chem ; 58(12): 7931-7938, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31141352

RESUMEN

Nickel-containing carbon monoxide (CO) dehydrogenase is an enzyme that catalyzes the important reversible carbon dioxide reduction. Several high-resolution structures have been determined at various stages of the reduction, which can be used as good starting points for the present computational study. The cluster model is used in combination with a systematic application of the density functional theory as recently described. The results are in very good agreement with experimental evidence. There are a few important results. To explain why the X-ray structure for the reduced Cred1 state has an empty site on nickel, it is here suggested that the cluster has been over-reduced by X-rays and is therefore not the desired reduced state, which instead contains a bound CO on nickel. After an additional reduction, a hydride bound to nickel is suggested to play a role. In order to obtain energetics in agreement with experiments, it is concluded that one sulfide bridge in the Ni-Fe cluster should be protonated. The best test of the accuracy obtained is to compare the computed rate for reduction using -0.6 V with that for oxidation using -0.3 V, where good agreement was obtained. Obtaining a mechanism that is easily reversible is another demanding aspect of the modeling. Nickel oscillates between nickel(II) and nickel(I), while nickel(0) never comes in.


Asunto(s)
Aldehído Oxidorreductasas/química , Monóxido de Carbono/química , Proteínas Hierro-Azufre/química , Complejos Multienzimáticos/química , Níquel/química , Dominio Catalítico , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Desulfovibrio vulgaris/enzimología , Methanosarcina barkeri/enzimología , Modelos Químicos , Moorella/enzimología , Oxidación-Reducción , Rhodospirillum rubrum/enzimología , Termodinámica
12.
Protein Sci ; 28(3): 663-670, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609080

RESUMEN

Enzyme activity is typically assayed by quantitatively measuring the initial and final concentrations of the substrates and/or products over a defined time period. For enzymatic reactions involving gaseous substrates, the substrate concentrations can be estimated either directly by gas chromatography or mass spectrometry, or indirectly by absorption spectroscopy, if the catalytic reactions involve electron transfer with electron mediators that exhibit redox-dependent spectral changes. We have developed a new assay system for measuring the time course of enzymatic reactions involving gaseous substrates based on Raman spectroscopy. This system permits continuous monitoring of the gas composition in the reaction cuvette in a non-invasive manner over a prolonged time period. We have applied this system to the kinetic study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. This enzyme physiologically catalyzes the reversible oxidation of H2 and also possesses the nonphysiological functions of H/D exchange and nuclear spin isomer conversion reactions. The proposed system has the additional advantage of enabling us to measure all of the hydrogenase-mediated reactions simultaneously. Using the proposed system, we confirmed that H2 (the fully exchanged product) is concomitantly produced alongside HD by the H/D exchange reaction in the D2 /H2 O system. Based on a kinetic model, the ratio of the rate constants of the H/D exchange reaction (k) at the active site and product release rate (kout ) was estimated to be 1.9 ± 0.2. The proposed assay method based on Raman spectroscopy can be applied to the investigation of other enzymes involving gaseous substrates.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Pruebas de Enzimas/métodos , Hidrógeno/química , Hidrogenasas/metabolismo , Espectrometría Raman/métodos , Catálisis , Dominio Catalítico , Gases/química , Gases/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/química
13.
Inorg Chem ; 57(24): 15289-15298, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30500163

RESUMEN

[NiFe] hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied the full reaction mechanism of this enzyme with various computational methods. Geometries were obtained with combined quantum mechanical and molecular mechanics (QM/MM) calculations. To get more accurate energies and obtain a detailed account of the surroundings, we performed big-QM calculations with 819 atoms in the QM region. Moreover, QM/MM thermodynamic cycle perturbation calculations were performed to obtain free energies. Finally, density matrix renormalisation group complete active space self-consistent field calculations were carried out to study the electronic structures of the various states in the reaction mechanism. Our calculations indicate that the Ni-L state is not involved in the reaction mechanism. Instead, the Ni-C state is reduced by one electron and then the bridging hydride ion is transferred to the sulfur atom of Cys546 as a proton and the two electrons transfer to the Ni ion. This step turned out to be rate-determining with an energy barrier of 58 kJ/mol, which is consistent with the experimental rate of 750 ± 90 s-1 (corresponding to ∼52 kJ/mol). The cleavage of the H-H bond is facile with an energy barrier of 33 kJ/mol, according to our calculations. We also find that the reaction energies are sensitive to the size of the QM system, the basis set, and the density functional theory method, in agreement with previous studies.


Asunto(s)
Teoría Funcional de la Densidad , Hidrogenasas/metabolismo , Teoría Cuántica , Biocatálisis , Desulfovibrio vulgaris/enzimología , Electrones , Hidrógeno/química , Hidrógeno/metabolismo , Hidrogenasas/química , Modelos Moleculares , Estructura Molecular , Protones
14.
Methods Enzymol ; 613: 169-201, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30509465

RESUMEN

The [NiFeSe] hydrogenases are a subgroup of the well-characterized family of [NiFe] hydrogenases, in which a selenocysteine is a ligand to the nickel atom in the binuclear NiFe active site instead of cysteine. These enzymes display very interesting catalytic properties for biological hydrogen production and bioelectrochemical applications: high H2 production activity, bias for H2 evolution, low H2 inhibition, and some degree of O2 tolerance. Here we describe the methodologies employed to study the [NiFeSe] hydrogenase isolated from the sulfate-reducing bacteria D. vulgaris Hildenborough and the creation of a homologous expression system for production of variant forms of the enzyme.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Hidrogenasas/química , Hidrogenasas/metabolismo , Cristalografía por Rayos X , Hidrogenasas/genética , Mutagénesis Sitio-Dirigida
15.
J Am Chem Soc ; 140(48): 16418-16422, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30452863

RESUMEN

Solar-driven coupling of water oxidation with CO2 reduction sustains life on our planet and is of high priority in contemporary energy research. Here, we report a photoelectrochemical tandem device that performs photocatalytic reduction of CO2 to formate. We employ a semi-artificial design, which wires a W-dependent formate dehydrogenase (FDH) cathode to a photoanode containing the photosynthetic water oxidation enzyme, Photosystem II, via a synthetic dye with complementary light absorption. From a biological perspective, the system achieves a metabolically inaccessible pathway of light-driven CO2 fixation to formate. From a synthetic point of view, it represents a proof-of-principle system utilizing precious-metal-free catalysts for selective CO2-to-formate conversion using water as an electron donor. This hybrid platform demonstrates the translatability and versatility of coupling abiotic and biotic components to create challenging models for solar fuel and chemical synthesis.


Asunto(s)
Dióxido de Carbono/química , Formiato Deshidrogenasas/química , Complejo de Proteína del Fotosistema II/química , Biocatálisis/efectos de la radiación , Colorantes/química , Colorantes/efectos de la radiación , Cianobacterias/enzimología , Desulfovibrio vulgaris/enzimología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Cetonas/química , Cetonas/efectos de la radiación , Luz , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/efectos de la radiación , Plastoquinona/química , Prueba de Estudio Conceptual , Pirroles/química , Pirroles/efectos de la radiación , Titanio/química , Agua/química
16.
Elife ; 72018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277213

RESUMEN

The C-cluster of the enzyme carbon monoxide dehydrogenase (CODH) is a structurally distinctive Ni-Fe-S cluster employed to catalyze the reduction of CO2 to CO as part of the Wood-Ljungdahl carbon fixation pathway. Using X-ray crystallography, we have observed unprecedented conformational dynamics in the C-cluster of the CODH from Desulfovibrio vulgaris, providing the first view of an oxidized state of the cluster. Combined with supporting spectroscopic data, our structures reveal that this novel, oxidized cluster arrangement plays a role in avoiding irreversible oxidative degradation at the C-cluster. Furthermore, mutagenesis of a conserved cysteine residue that binds the C-cluster in the oxidized state but not in the reduced state suggests that the oxidized conformation could be important for proper cluster assembly, in particular Ni incorporation. Together, these results lay a foundation for future investigations of C-cluster activation and assembly, and contribute to an emerging paradigm of metallocluster plasticity.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/metabolismo , Desulfovibrio vulgaris/enzimología , Proteínas Hierro-Azufre/metabolismo , Complejos Multienzimáticos/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Monóxido de Carbono/metabolismo , Cristalografía por Rayos X , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Hierro/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutación , Níquel/química , Oxidación-Reducción , Conformación Proteica , Azufre/química
17.
Bioelectrochemistry ; 124: 185-194, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30086423

RESUMEN

An electroactive artificial biofilm has been optimized for the cathodic reduction of fumarate by Shewanella oneidensis. The system is based on the self-assembly of multi-walled carbon nanotubes with bacterial cells in the presence of a c-type cytochrome. The aggregates are then deposited on an electrode to form the electroactive artificial biofilm. Six c-type cytochromes have been studied, from bovine heart or Desulfuromonas and Desulfuvibrio strains. The isoelectric point of the cytochrome controls the self-assembly process that occurs only with positively-charged cytochromes. The redox potential of the cytochrome is critical for electron transfer reactions with membrane cytochromes of the Mtr pathway. Optimal results have been obtained with c3 from Desulfovibrio vulgaris Hildenborough having an isoelectric point of 10.2 and redox potentials of the four hemes ranging between -290 and -375 mV vs SHE. A current density of 170 µA cm-2 could be achieved in the presence of 50 mM fumarate. The stability of the electrochemical response was evaluated, showing a regular decrease of the current within 13 h, possibly due to the inactivation or leaching of loosely-bound cytochromes from the biofilm.


Asunto(s)
Biopelículas , Citocromos c/metabolismo , Desulfovibrio vulgaris/enzimología , Electrodos , Catálisis , Citocromos c/química , Desulfovibrio vulgaris/metabolismo , Transporte de Electrón , Fumaratos/química , Punto Isoeléctrico , Oxidación-Reducción , Electricidad Estática , Ácido Succínico/química
18.
Bioelectrochemistry ; 123: 156-161, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29753939

RESUMEN

Standard [NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF-H2ase) catalyzes the uptake and production of hydrogen (H2) and is a promising biocatalyst for future energy devices. However, DvMF-H2ase experiences oxidative inactivation under oxidative stress to generate Ni-A and Ni-B states. It takes a long time to reactivate the Ni-A state by chemical reduction, whereas the Ni-B state is quickly reactivated under reducing conditions. Oxidative inhibition limits the application of DvMF-H2ase in practical devices. In this research, we constructed a mediated-electron-transfer system by co-immobilizing DvMF-H2ase and a viologen redox polymer (VP) on electrodes. The system can avoid oxidative inactivation into the Ni-B state at high electrode potentials and rapidly reactivate the Ni-A state by electrochemical reduction of VP. H2 oxidation and H+ reduction were realized by adjusting the pH from a thermodynamic viewpoint. Using carbon felt as a working-electrode material, high current densities-up to (200 ±â€¯70) and -(100 ±â€¯9) mA cm-3 for the H2-oxidation and H+-reduction reactions, respectively-were attained.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Enzimas Inmovilizadas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Biocatálisis , Técnicas Biosensibles , Desulfovibrio vulgaris/química , Desulfovibrio vulgaris/metabolismo , Transporte de Electrón , Activación Enzimática , Enzimas Inmovilizadas/química , Hidrogenasas/química , Modelos Moleculares , Oxidación-Reducción , Protones , Termodinámica , Viológenos/química
19.
Environ Microbiol ; 20(6): 2026-2037, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29411481

RESUMEN

Biofilms of sulfate-reducing bacteria (SRB) produce H2 S, which contributes to corrosion. Although bacterial cells in biofilms are cemented together, they often dissolve their own biofilm to allow the cells to disperse. Using Desulfovibrio vulgaris as a model SRB, we sought polysaccharide-degrading enzymes that disperse its biofilm. Using a whole-genome approach, we identified eight enzymes as putative extracellular glycoside hydrolases including DisH (DVU2239, dispersal hexosaminidase), an enzyme that we demonstrated here, by utilizing various p-nitrooligosaccharide substrates, to be an N-acetyl-ß-D-hexosaminidase. For N-acetyl-ß-D-galactosamine (GalNAc), Vmax was 3.6 µmol of p-nitrophenyl/min (mg protein)-1 and Km was 0.8 mM; the specific activity for N-acetyl ß-D-glucosamine (GlcNAc) was 7.8 µmol of p-nitrophenyl/min (mg protein)-1 . Since GalNAc is one of the three exopolysaccharide matrix components of D. vulgaris, purified DisH was found to disperse 63 ± 2% biofilm as well as inhibit biofilm formation up to 47 ± 4%. The temperature and pH optima are 60°C and pH 6, respectively; DisH is also inhibited by copper and is secreted. In addition, since polymers of GalNAc and GlcNAc are found in the matrix of diverse bacteria, DisH dispersed biofilms of Pseudomonas aeruginosa, Escherichia coli and Bacillus subtilis. Therefore, DisH has the potential to inhibit and disperse a wide-range of biofilms.


Asunto(s)
Bacterias/metabolismo , Biopelículas , Desulfovibrio vulgaris/enzimología , Glicósido Hidrolasas/metabolismo , Acetilgalactosamina , Fenómenos Fisiológicos Bacterianos , Desulfovibrio vulgaris/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Nitrógeno/metabolismo
20.
J Biol Chem ; 292(34): 14039-14049, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28615449

RESUMEN

Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavina-Adenina Dinucleótido/análogos & derivados , Flavodoxina/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Nitrorreductasas/metabolismo , Oxidorreductasas/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Biocatálisis , Desulfovibrio vulgaris/enzimología , Transporte de Electrón , Enterobacter cloacae/enzimología , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavodoxina/química , Flavodoxina/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , Nitrorreductasas/química , Nitrorreductasas/genética , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Pyrococcus furiosus/enzimología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mutación Silenciosa , Thermus thermophilus/enzimología , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA