Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.821
Filtrar
1.
JCI Insight ; 9(10)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38775158

RESUMEN

Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and glandular subtypes, which are similarly associated with increased aggressiveness and metastases. Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of tumor progression, and informs pathologic classification and diagnostics.


Asunto(s)
Carcinoma de Células Renales , Desdiferenciación Celular , Neoplasias Renales , Mutación , Proteína p53 Supresora de Tumor , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Desdiferenciación Celular/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfohidrolasa PTEN/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino
2.
Sci Adv ; 10(22): eadk9681, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820148

RESUMEN

In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.


Asunto(s)
Ácidos y Sales Biliares , Colesterol , Homeostasis , Animales , Colesterol/metabolismo , Ácidos y Sales Biliares/metabolismo , Ratones , Ayuno/metabolismo , Hígado/metabolismo , Humanos , Mitocondrias/metabolismo , Transducción de Señal , Hepatocitos/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
3.
Elife ; 122024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738857

RESUMEN

Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.


Asunto(s)
Factor 4A Eucariótico de Iniciación , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Ubiquitinación , Humanos , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Animales , Biosíntesis de Proteínas , Línea Celular Tumoral , Ratones , Receptores de Interleucina-17
4.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740431

RESUMEN

Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina , ARN Polimerasa III , Transducción de Señal , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Longevidad/genética , ARN Polimerasa III/metabolismo , ARN Polimerasa III/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Serina-Treonina Quinasas TOR/metabolismo , Envejecimiento/metabolismo , Envejecimiento/genética , Envejecimiento/fisiología
5.
J Obstet Gynaecol ; 44(1): 2350761, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38785148

RESUMEN

BACKGROUND: Asiaticoside (AS) has been reported to improve the changes induced by high glucose stimulation, and it may have potential therapeutic effects on gestational diabetes mellitus (GDM). This study aims to explore the effect of AS on the cell model of GDM and the action mechanism of the PI3K/AKT pathway. METHODS: The GDM model was established in HTR-8/Svneo cells with a high glucose (HG) medium. After the cytotoxicity assay of AS, cells were divided into the control group, HG group and HG + AS group to conduct control experiment in cells. The cell proliferation and migration were detected by CCK-8 assay and scratch test, respectively. The mRNA levels of PI3K, AKT2, mTORC1, and GLUT4 in PI3K/AKT signalling pathway were measured by RT-PCR, and the protein expressions of these signalling molecules were monitored by western blot. RESULTS: AS showed a promotion effect on the cell proliferation rate of HTR-8/Svneo cells, and 80 µmol/L AS with a treatment time of 48 h had no cytotoxicity. The cell proliferation rate, migration rate, mRNA levels and protein expressions of PI3K, AKT2, mTORC1, and GLUT4 in the HG group were significantly lower than those in the control group, which were significantly increased in the HG + AS group (p < 0.05). CONCLUSIONS: AS can facilitate the cell proliferation and migration in the cell model of GDM, and might play a role in GDM treatment via PI3K/AKT pathway.


Asiaticoside possesses various pharmacological effects and has been reported to show a beneficial effect on the treatment of diabetes mellitus. This research firstly investigated the effect and mechanism of asiaticoside on gestational diabetes mellitus, and found that asiaticoside could facilitate the cell proliferation and migration of HTR-8/Svneo cells treated with high glucose, and affect the signalling molecules of PI3K/AKT pathway. Therefore, asiaticoside may be a novel useful therapeutic drug in the treatment of gestational diabetes mellitus.


Asunto(s)
Movimiento Celular , Proliferación Celular , Diabetes Gestacional , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Triterpenos , Humanos , Diabetes Gestacional/metabolismo , Femenino , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Triterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular/efectos de los fármacos , Línea Celular , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Glucosa/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
6.
BMC Genomics ; 25(1): 514, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789922

RESUMEN

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Asunto(s)
Antioxidantes , Peces , Resveratrol , Animales , Resveratrol/farmacología , Peces/metabolismo , Peces/crecimiento & desarrollo , Peces/genética , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nutrientes/metabolismo , Alimentación Animal/análisis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Dieta/veterinaria , Perfilación de la Expresión Génica
7.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791516

RESUMEN

Relapse to alcohol abuse, often caused by cue-induced alcohol craving, is a major challenge in alcohol addiction treatment. Therefore, disrupting the cue-alcohol memories can suppress relapse. Upon retrieval, memories transiently destabilize before they reconsolidate in a process that requires protein synthesis. Evidence suggests that the mammalian target of rapamycin complex 1 (mTORC1), governing the translation of a subset of dendritic proteins, is crucial for memory reconsolidation. Here, we explored the involvement of two regulatory pathways of mTORC1, phosphoinositide 3-kinase (PI3K)-AKT and extracellular regulated kinase 1/2 (ERK1/2), in the reconsolidation process in a rat (Wistar) model of alcohol self-administration. We found that retrieval of alcohol memories using an odor-taste cue increased ERK1/2 activation in the amygdala, while the PI3K-AKT pathway remained unaffected. Importantly, ERK1/2 inhibition after alcohol memory retrieval impaired alcohol-memory reconsolidation and led to long-lasting relapse suppression. Attenuation of relapse was also induced by post-retrieval administration of lacosamide, an inhibitor of collapsin response mediator protein-2 (CRMP2)-a translational product of mTORC1. Together, our findings indicate the crucial role of ERK1/2 and CRMP2 in the reconsolidation of alcohol memories, with their inhibition as potential treatment targets for relapse prevention.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Proteínas del Tejido Nervioso , Animales , Ratas , Masculino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ratas Wistar , Memoria/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Etanol , Alcoholismo/metabolismo , Alcoholismo/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Recurrencia , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Autoadministración , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
8.
J Extracell Vesicles ; 13(5): e12448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779712

RESUMEN

The excretory-secretory proteome plays a pivotal role in both intercellular communication during disease progression and immune escape mechanisms of various pathogens including cestode parasites like Taenia solium. The cysticerci of T. solium causes infection in the central nervous system known as neurocysticercosis (NCC), which affects a significant population in developing countries. Extracellular vesicles (EVs) are 30-150-nm-sized particles and constitute a significant part of the secretome. However, the role of EV in NCC pathogenesis remains undetermined. Here, for the first time, we report that EV from T. solium larvae is abundant in metabolites that can negatively regulate PI3K/AKT pathway, efficiently internalized by macrophages to induce AKT and mTOR degradation through auto-lysosomal route with a prominent increase in the ubiquitination of both proteins. This results in less ROS production and diminished bacterial killing capability among EV-treated macrophages. Due to this, both macro-autophagy and caspase-linked apoptosis are upregulated, with a reduction of the autophagy substrate sequestome 1. In summary, we report that T. solium EV from viable cysts attenuates the AKT-mTOR pathway thereby promoting apoptosis in macrophages, and this may exert immunosuppression during an early viable stage of the parasite in NCC, which is primarily asymptomatic. Further investigation on EV-mediated immune suppression revealed that the EV can protect the mice from DSS-induced colitis and improve colon architecture. These findings shed light on the previously unknown role of T. solium EV and the therapeutic role of their immune suppression potential.


Asunto(s)
Colitis , Modelos Animales de Enfermedad , Vesículas Extracelulares , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Proto-Oncogénicas c-akt , Taenia solium , Animales , Vesículas Extracelulares/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Taenia solium/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Colitis/metabolismo , Colitis/parasitología , Transducción de Señal , Sulfato de Dextran , Macrófagos/metabolismo , Macrófagos/parasitología , Neurocisticercosis/metabolismo , Neurocisticercosis/parasitología , Apoptosis
9.
Cell Mol Life Sci ; 81(1): 218, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758395

RESUMEN

The endocytic adaptor protein 2 (AP-2) complex binds dynactin as part of its noncanonical function, which is necessary for dynein-driven autophagosome transport along microtubules in neuronal axons. The absence of this AP-2-dependent transport causes neuronal morphology simplification and neurodegeneration. The mechanisms that lead to formation of the AP-2-dynactin complex have not been studied to date. However, the inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) enhances the transport of newly formed autophagosomes by influencing the biogenesis and protein interactions of Rab-interacting lysosomal protein (RILP), another dynein cargo adaptor. We tested effects of mTORC1 inhibition on interactions between the AP-2 and dynactin complexes, with a focus on their two essential subunits, AP-2ß and p150Glued. We found that the mTORC1 inhibitor rapamycin enhanced p150Glued-AP-2ß complex formation in both neurons and non-neuronal cells. Additional analysis revealed that the p150Glued-AP-2ß interaction was indirect and required integrity of the dynactin complex. In non-neuronal cells rapamycin-driven enhancement of the p150Glued-AP-2ß interaction also required the presence of cytoplasmic linker protein 170 (CLIP-170), the activation of autophagy, and an undisturbed endolysosomal system. The rapamycin-dependent p150Glued-AP-2ß interaction occurred on lysosomal-associated membrane protein 1 (Lamp-1)-positive organelles but without the need for autolysosome formation. Rapamycin treatment also increased the acidification and number of acidic organelles and increased speed of the long-distance retrograde movement of Lamp-1-positive organelles. Altogether, our results indicate that autophagy regulates the p150Glued-AP-2ß interaction, possibly to coordinate sufficient motor-adaptor complex availability for effective lysosome transport.


Asunto(s)
Autofagia , Complejo Dinactina , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Neuronas , Lisosomas/metabolismo , Complejo Dinactina/metabolismo , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuronas/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Sirolimus/farmacología , Ratones , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Autofagosomas/metabolismo , Unión Proteica
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 425-429, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38813640

RESUMEN

AMP-activated protein kinase (AMPK) is a widely distributed and evolutionarily conserved serine/threonine protein kinase present in eukaryotic cells. In regulating cellular energy metabolism, AMPK plays an extremely important role as an energy metabolic kinase. When the body is in a low energy state, AMPK is activated in response to changes in intracellular adenine nucleotide levels and is bound to adenosine monophosphate (AMP) or adenosine diphosphate (ADP). Activated AMPK regulates various metabolic processes, including lipid and glucose metabolism and cellular autophagy. AMPK directly promotes autophagy by phosphorylating autophagy-related proteins in the mammalian target of rapamycin complex 1 (mTORC1), serine/threonine protein kinase-dysregulated 51-like kinase 1 (ULK1) and type III phosphatidylinositol 3-kinase-vacuolar protein-sorting 34 (PIK3C3-VPS34) complexes. AMPK also indirectly promotes autophagy by regulating the expression of downstream autophagy-related genes of transcription factors such as forkhead box O3 (FOXO3), lysosomal function transcription factor EB (TFEB) and bromodomain protein 4 (BRD4). AMPK also regulates mitochondrial autophagy, induces the division of damaged mitochondria and promotes the transfer of the autophagic response to damaged mitochondria. Another function of AMPK is to regulate mitochondrial health by stimulating mitochondrial biogenesis and participating in various aspects of mitochondrial homeostasis regulation. This review discusses the specific regulation of mitochondrial biology and internal environmental homeostasis by AMPK signaling channels as central to the cellular response to energy stress and regulation of mitochondria, highlighting the key role of AMPK in regulating cellular autophagy and mitochondrial autophagy, as well as advances in research on the regulation of mitochondrial homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Homeostasis , Mitocondrias , Transducción de Señal , Autofagia/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Mitocondrias/metabolismo , Animales , Metabolismo Energético , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
11.
Acta Biomater ; 181: 425-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729544

RESUMEN

Synovial macrophages play an important role in the progression of osteoarthritis (OA). In this study, we noted that synovial macrophages can activate pyroptosis in a gasdermin d-dependent manner and produce reactive oxygen species (ROS), aberrantly activating the mammalian target of rapamycin complex 1 (mTORC1) pathway and matrix metalloproteinase-9 (MMP9) expression in synovial tissue samples collected from both patients with OA and collagen-induced osteoarthritis (CIOA) mouse model. To overcome this, we constructed rapamycin- (RAPA, a mTORC1 inhibitor) loaded mesoporous Prussian blue nanoparticles (MPB NPs, for catalyzing ROS) and modified the NPs with MMP9-targeted peptides (favor macrophage targeting) to develop RAPA@MPB-MMP9 NPs. The inherent enzyme-like activity and RAPA released from RAPA@MPB-MMP9 NPs synergistically impeded the pyroptosis of macrophages and the activation of the mTORC1 pathway. In particular, the NPs decreased pyroptosis-mediated ROS generation, thereby inhibiting cGAS-STING signaling pathway activation caused by the release of mitochondrial DNA. Moreover, the NPs promoted macrophage mitophagy to restore mitochondrial stability, alleviate pyroptosis-related inflammatory responses, and decrease senescent synoviocytes. After the as-prepared NPs were intra-articularly injected into the CIOA mouse model, they efficiently attenuated synovial macrophage pyroptosis and cartilage degradation. In conclusion, our study findings provide a novel therapeutic strategy for OA that modulates the pyroptosis and mitophagy of synovial macrophage by utilizing functionalized NPs. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) presents a significant global challenge owing to its complex pathogenesis and finite treatment options. Synovial macrophages have emerged as key players in the progression of OA, managing inflammation and tissue destruction. In this study, we discovered a novel therapeutic strategy in which the pyroptosis and mitophagy of synovial macrophages are targeted to mitigate OA pathology. For this, we designed and prepared rapamycin-loaded mesoporous Prussian blue nanoparticles (RAPA@MPB-MMP9 NPs) to specifically target synovial macrophages and modulate their inflammatory responses. These NPs could efficiently suppress macrophage pyroptosis, diminish reactive oxygen species production, and promote mitophagy, thereby alleviating inflammation and protecting cartilage integrity. Our study findings not only clarify the intricate mechanisms underlying OA pathogenesis but also present a promising therapeutic approach for effectively managing OA by targeting dysregulation in synovial macrophages.


Asunto(s)
Macrófagos , Mitofagia , Nanopartículas , Osteoartritis , Piroptosis , Especies Reactivas de Oxígeno , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Animales , Piroptosis/efectos de los fármacos , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Mitofagia/efectos de los fármacos , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Masculino , Sirolimus/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Progresión de la Enfermedad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Membrana Sinovial/patología , Membrana Sinovial/efectos de los fármacos , Ratones Endogámicos C57BL , Ferrocianuros
12.
Sci Rep ; 14(1): 12521, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822085

RESUMEN

Sirtuin1 (SIRT1) activity decreases the tuberous sclerosis complex 2 (TSC2) lysine acetylation status, inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signalling and concomitantly, activating autophagy. This study analyzes the role of TSC2 acetylation levels in its translocation to the lysosome and the mitochondrial turnover in both mouse embryonic fibroblast (MEF) and in mouse insulinoma cells (MIN6) as a model of pancreatic ß cells. Resveratrol (RESV), an activator of SIRT1 activity, promotes TSC2 deacetylation and its translocation to the lysosome, inhibiting mTORC1 activity. An improvement in mitochondrial turnover was also observed in cells treated with RESV, associated with an increase in the fissioned mitochondria, positive autophagic and mitophagic fluxes and an enhancement of mitochondrial biogenesis. This study proves that TSC2 in its deacetylated form is essential for regulating mTORC1 signalling and the maintenance of the mitochondrial quality control, which is involved in the homeostasis of pancreatic beta cells and prevents from several metabolic disorders such as Type 2 Diabetes Mellitus.


Asunto(s)
Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias , Sirtuina 1 , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Animales , Acetilación , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sirtuina 1/metabolismo , Autofagia , Transporte de Proteínas , Resveratrol/farmacología , Transducción de Señal , Fibroblastos/metabolismo , Células Secretoras de Insulina/metabolismo , Línea Celular Tumoral
13.
Elife ; 122024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713053

RESUMEN

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.


Asunto(s)
Senescencia Celular , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transducción de Señal , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Senescencia Celular/genética , Sirolimus/farmacología , Regulación Fúngica de la Expresión Génica , Eliminación de Gen , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
14.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1888-1895, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812201

RESUMEN

This study observed the effects of Notoginseng Radix et Rhizoma on the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin complex 1(mTORC1) signaling pathway and mitochondrial energy metabolism in the rat model of adriamycin-induced renal fibrosis with blood stasis syndrome to explore the mechanism of Notoginseng Radix et Rhizoma in protecting the kidney. Thirty male rats with adriamycin-induced renal fibrosis were randomized into model, low-, medium-, and high-dose Notoginseng Radix et Rhizoma, and positive control groups(n=6). Six clean SD male rats were selected into the normal group. The normal group and model group were administrated with normal saline, and other groups with corresponding drugs. After 8 weeks of treatment, the renal function, renal pathology, adenosine triphosphate(ATP) levels, Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase activities, and the protein levels of ATP5B, mTORC1, 70 kDa ribosomal protein S6 kinase(P70S6K), P85, Akt, p-Akt, and SH2-containing inositol phosphatase(SHIP2) in the renal tissue were determined. Compared with the normal group, the model group showed elevated levels of blood urea nitrogen(BUN) and serum creatinine(SCr)(P<0.01). Compared with the model group, Notoginseng Radix et Rhizoma and the positive control lowered the levels of BUN and SCr, which were significant in the medium-and high-dose Noto-ginseng Radix et Rhizoma groups and the positive control group(P<0.05). Compared with the model group, Notoginseng Radix et Rhizoma and the positive control alleviated the pathological changes in the renal tissue, such as vacuolar and fibroid changes, glomerulus atrophy, cystic expansion of renal tubules, and massive infiltration of inflammatory cells. Compared with the normal group, the model group showed decreased mitochondrial ATP content and Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase activities in the renal tissue(P<0.05), and medium-and high-dose Notoginseng Radix et Rhizoma and positive control mitigated such decreases(P<0.05). Compared with the model group, medium-and high-dose Notoginseng Radix et Rhizoma and the positive control up-regulated the protein levels of ATP5B and SHIP2 and down-regulated the protein levels of mTORC1, P70S6K, P85, Akt, and p-Akt(P<0.05 or P<0.01 or P<0.001). Notoginseng Radix et Rhizoma may exert an anti-fibrosis effect by inhibiting the activation of the PI3K/Akt/mTORC1 pathway to restore mitochondrial energy metabolism, thus protecting the kidney.


Asunto(s)
Medicamentos Herbarios Chinos , Metabolismo Energético , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias , Panax notoginseng , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Panax notoginseng/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Metabolismo Energético/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Rizoma/química , Humanos , Transducción de Señal/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Insuficiencia Renal/tratamiento farmacológico , Insuficiencia Renal/metabolismo
15.
Cell Rep ; 43(5): 114173, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700984

RESUMEN

Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Neuronas , Organoides , Fosfohidrolasa PTEN , Humanos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Organoides/metabolismo , Neuronas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Mutación/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Transducción de Señal , Proliferación Celular , Proteína Reguladora Asociada a mTOR/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Fenotipo
16.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744825

RESUMEN

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Asunto(s)
Acetil-CoA Carboxilasa , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Supervivencia Celular , Ácidos Grasos , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Glucosa/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ácidos Grasos/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones , NADP/metabolismo , Biosíntesis de Proteínas , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Estrés Oxidativo , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética
17.
Exp Gerontol ; 190: 112428, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604253

RESUMEN

BACKGROUND: Mitochondrial dysregulation in skeletal myocytes is considered a major factor in aged sarcopenia. In this study, we aimed to study the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on Sestrin2-mediated mechanistic target of rapamycin complex 1 (mTORC1) in aged skeletal muscles. METHODS: C2C12 myoblasts were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of DNA damage, mitochondrial membrane potential (Δψm), mitochondrial ROS and PGC-1α protein. The PGC-1α silence in the C2C12 cells was established by siRNA transfection. The levels of DNA damage, Δψm, mitochondrial ROS, Sestrin2 and p-S6K1/S6K1 proteins were observed after the PGC-1α silence in the C2C12 cells. Recombinant Sestrin2 treatment was used to observe the changes of DNA damage, Δψm, mitochondrial ROS and p-S6K1/S6K1 protein in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. Wild-type (WT) mice and muscle-specific PGC-1α conditional knockout (MKO) mice, including young and old, were used to analyse the effects of PGC-1α on muscle function and the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles. Recombinant Sestrin2 was administrated to analyse its effects on muscle function in the old WT mice and old MKO mice. RESULTS: 7ß-OHC treatment induced DNA damage, mitochondrial dysfunction and decrease of PGC-1α protein in the C2C12 cells. PGC-1α silence also induced DNA damage and mitochondrial dysfunction in the C2C12 cells. Additionally, PGC-1α silence or 7ß-OHC treatment decreased the levels of Sestrin2 and p-S6K1/S6K1 protein in the C2C12 cells. Recombinant Sestrin2 treatment significantly improved the DNA damage and mitochondrial dysfunction in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia and decreased the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles when compared to the WT mice. Recombinant Sestrin2 treatment improved muscle function and increased p-S6K1 levels in the old two genotypes. CONCLUSION: This research demonstrates that PGC-1α participates in regulating mitochondrial function in aged sarcopenia through effects on the Sestrin2-mediated mTORC1 pathway.


Asunto(s)
Daño del ADN , Diana Mecanicista del Complejo 1 de la Rapamicina , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Quinasas S6 Ribosómicas 90-kDa , Sarcopenia , Sestrinas , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sarcopenia/metabolismo , Ratones Noqueados , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Transducción de Señal , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Masculino , Músculo Esquelético/metabolismo , Línea Celular , Mitocondrias/metabolismo , Peroxidasas/metabolismo , Ratones Endogámicos C57BL , Mioblastos/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653360

RESUMEN

OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.


Asunto(s)
Dieta Alta en Grasa , Células Secretoras de Glucagón , Glucagón , Canales Iónicos , Ratones Noqueados , Animales , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Ratones , Canales Iónicos/metabolismo , Canales Iónicos/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Transducción de Señal , Insulina/metabolismo , Línea Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mecanotransducción Celular , Ratones Endogámicos C57BL , Proglucagón/metabolismo , Proglucagón/genética , Pirazinas , Tiadiazoles
19.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38640930

RESUMEN

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Asunto(s)
Hidroxicolesteroles , Lisosomas , Macrófagos , Microambiente Tumoral , Animales , Hidroxicolesteroles/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Lisosomas/metabolismo , Microambiente Tumoral/inmunología , Factor de Transcripción STAT6/metabolismo , Adenilato Quinasa/metabolismo , Ratones Endogámicos C57BL , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Reprogramación Metabólica
20.
Front Immunol ; 15: 1357072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638435

RESUMEN

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Asunto(s)
Arginina , Toxinas Bacterianas , Proteínas de Unión al Calcio , Interleucina-6 , Fosfolipasas de Tipo C , Animales , Masculino , Arginina/farmacología , Toxinas Bacterianas/toxicidad , Proteína X Asociada a bcl-2 , Pollos/genética , Inflamación , Diana Mecanicista del Complejo 1 de la Rapamicina , ARN Mensajero/genética , Serina-Treonina Quinasas TOR/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA