Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 848
Filtrar
1.
Int J Biol Macromol ; 277(Pt 2): 134246, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098461

RESUMEN

A novel nanoparticle screening technique was established to mostly enhance the aqueous solubility and oral bioavailability of aceclofenac using nanoparticle systems. Among the polymers investigated, sodium carboxymethylcellulose (Na-CMC) showed the greatest increase in drug solubility. Utilizing spray-drying technique, the solvent-evaporated solid dispersion (SESD), surface-attached solid dispersion (SASD), and solvent-wetted solid dispersion (SWSD) were prepared using aceclofenac and Na-CMC at a weight ratio of 1:1 in 50 % ethanol, distilled water, and ethanol, respectively. Using Na-CMC as a solid carrier, an aceclofenac-loaded liquid self-emulsifying drug delivery system was spray-dried and fluid-bed granulated together with microcrystalline cellulose, producing a solid self-nanoemulsifying drug delivery system (SNEDDS) and solid self-nanoemulsifying granule system (SNEGS), respectively. Their physicochemical properties and preclinical assessments in rats were performed. All nanoparticles exhibited very different properties, including morphology, crystallinity, and size. As a result, they significantly enhanced the solubility, dissolution, and oral bioavailability in the following order: SNEDDS ≥ SNEGS > SESD ≥ SASD ≥ SWSD. Based on our screening technique, the SNEDDS was selected as the optimal nanoparticle with the highest bioavailability of aceclofenac. Thus, our nanoparticle screening technique should be an excellent guideline for solubilization research to improve the solubility and bioavailability of many poorly water-soluble bioactive materials.


Asunto(s)
Disponibilidad Biológica , Carboximetilcelulosa de Sodio , Diclofenaco , Nanopartículas , Solubilidad , Agua , Diclofenaco/farmacocinética , Diclofenaco/análogos & derivados , Diclofenaco/química , Diclofenaco/administración & dosificación , Carboximetilcelulosa de Sodio/química , Nanopartículas/química , Animales , Ratas , Administración Oral , Agua/química , Masculino , Emulsiones/química , Portadores de Fármacos/química , Tamaño de la Partícula , Ratas Sprague-Dawley
2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000538

RESUMEN

Skin penetration of an active pharmaceutical ingredient is key to developing topical drugs. This penetration can be adjusted for greater efficacy and/or safety through the selection of dosage form. Two emerging dosage forms, cream-gel and gel-in-oil emulsion, were tested for their ability to deliver diclofenac into the skin, with the target of maximising skin retention while limiting systemic exposure. Prototypes with varying amounts of solvents and emollients were formulated and evaluated by in vitro penetration testing on human skin. Cream-gel formulas showed better skin penetration than the emulgel benchmark drug even without added solvent, while gel-in-oil emulsions resulted in reduced diffusion of the active into the receptor fluid. Adding propylene glycol and diethylene glycol monoethyl ether as penetration enhancers resulted in different diclofenac penetration profiles depending on the dosage form and whether they were added to the disperse or continuous phase. Rheological characterisation of the prototypes revealed similar profiles of cream-gel and emulgel benchmark, whereas gel-in-oil emulsion demonstrated flow characteristics suitable for massaging product into the skin. This study underlined the potential of cream-gel and gel-in-oil emulsions for adjusting active penetration into the skin, broadening the range of choices available to topical formulation scientists.


Asunto(s)
Administración Cutánea , Diclofenaco , Emulsiones , Absorción Cutánea , Piel , Diclofenaco/farmacocinética , Diclofenaco/administración & dosificación , Diclofenaco/química , Humanos , Absorción Cutánea/efectos de los fármacos , Emulsiones/química , Piel/metabolismo , Piel/efectos de los fármacos , Reología , Geles/química , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Administración Tópica , Emolientes/química , Emolientes/farmacocinética , Emolientes/administración & dosificación
3.
Int J Toxicol ; 43(5): 491-502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38901831

RESUMEN

These toxicity studies aimed to assess the safety and tolerability of a novel intravenous diclofenac sodium (37.5 mg/mL) formulation containing povidone K12 (80 mg/mL) as the key excipient in Wistar rats. This formulation was tested at doses of 3, 7, and 15 mg/kg/day and was administered daily for 28 days by intravenous route. Toxicokinetic estimation revealed a dose-proportional increase in plasma exposure to diclofenac. The formulation was well tolerated in males; however, mortality was observed in females (2/15) at the highest dose (15 mg/kg/day). Adverse gastrointestinal events related to NSAIDS and a few other treatment-related effects on clinical and anatomic pathology were noted at the 15 mg/kg/day dose, which normalized at the end of the 2-week recovery period. In addition, the excipient povidone K12 was present in a higher amount than the approved Inactive Ingredient Database (IID) limit in the proposed novel formulation. It was qualified through a separate 28-day repeated dose toxicity study by intravenous route in Wistar rats. Povidone K12 was found to be well tolerated and safe up to a dose of 165 mg/kg/day. No treatment-related adverse effects were observed in this study. In conclusion, repeated administration of a novel intravenous formulation containing diclofenac sodium was found to be safe up to the dose of 7 mg/kg/day in female rats and 15 mg/kg/day in male rats.


Asunto(s)
Antiinflamatorios no Esteroideos , Diclofenaco , Ratas Wistar , Animales , Diclofenaco/toxicidad , Diclofenaco/farmacocinética , Diclofenaco/administración & dosificación , Masculino , Femenino , Antiinflamatorios no Esteroideos/toxicidad , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Ratas , Excipientes/toxicidad , Excipientes/farmacocinética , Excipientes/química , Povidona/toxicidad , Povidona/química , Povidona/farmacocinética , Administración Intravenosa , Relación Dosis-Respuesta a Droga , Inyecciones Intravenosas
4.
Clin Pharmacol Drug Dev ; 13(8): 907-914, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38716761

RESUMEN

The multimodal analgesia strategy for acute pain involves using 2 or more analgesic medications with distinct mechanisms of action. This study assessed the bioavailability and tolerability of 2 tramadol hydrochloride (50 mg)/diclofenac sodium (50 mg) fixed-dose combination formulations under fed conditions to attend the Brazilian regulatory requirements for generic product registration. An open-label, randomized, single-dose, 2-period, 2-way crossover trial was conducted, including healthy subjects of both sexes. Subjects received a single dose of either the test or reference formulation of tramadol/diclofenac fixed-dose combination tablets with a 7-day washout period. Blood samples were collected up to 36 hours after dosing for tramadol and 12 hours for diclofenac and quantified using a validated liquid chromatography-tandem mass spectrometry method. Of 56 subjects enrolled, 53 completed the study. The 90% confidence intervals for maximum plasma concentration and area under the concentration-time curve from time 0 to the last quantifiable concentration were within acceptable bioequivalence limits of 80%-125%. Considering the results presented in this study, the test formulation is bioequivalent to the reference formulation and could be interchangeable in medical practice.


Asunto(s)
Dolor Agudo , Analgésicos Opioides , Área Bajo la Curva , Disponibilidad Biológica , Estudios Cruzados , Diclofenaco , Combinación de Medicamentos , Medicamentos Genéricos , Equivalencia Terapéutica , Tramadol , Humanos , Masculino , Tramadol/farmacocinética , Tramadol/administración & dosificación , Diclofenaco/farmacocinética , Diclofenaco/administración & dosificación , Femenino , Adulto , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/administración & dosificación , Medicamentos Genéricos/efectos adversos , Adulto Joven , Dolor Agudo/tratamiento farmacológico , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/administración & dosificación , Persona de Mediana Edad , Brasil , Manejo del Dolor/métodos , Voluntarios Sanos , Espectrometría de Masas en Tándem
5.
Biomater Adv ; 161: 213889, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781739

RESUMEN

Diclofenac, a nonsteroidal anti-inflammatory drug, is commonly prescribed for managing osteoarthritis, rheumatoid arthritis, and post-surgical pain. However, oral administration of diclofenac often leads to adverse effects. This study introduces an innovative nano-in-micro approach to create diclofenac nanoparticle-loaded microneedle patches aimed at localised, sustained pain relief, circumventing the drawbacks of oral delivery. The nanoparticles were produced via wet-milling, achieving an average size of 200 nm, and then incorporated into microneedle patches. These patches showed improved skin penetration in ex vivo tests using Franz-cell setups compared to traditional diclofenac formulations. In vivo tests on rats revealed that the nanoparticle-loaded microneedle patches allowed for quick drug uptake and prolonged release, maintaining drug levels in tissues for up to 72 h. With a systemic bioavailability of 57 %, these patches prove to be an effective means of transdermal drug delivery. This study highlights the potential of this novel microneedle delivery system in enhancing the treatment of chronic pain with reduced systemic side effects.


Asunto(s)
Administración Cutánea , Antiinflamatorios no Esteroideos , Diclofenaco , Sistemas de Liberación de Medicamentos , Agujas , Diclofenaco/administración & dosificación , Diclofenaco/farmacocinética , Animales , Ratas , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/administración & dosificación , Masculino , Piel/metabolismo , Absorción Cutánea/efectos de los fármacos , Parche Transdérmico , Ratas Sprague-Dawley
6.
Acta Pharm ; 74(2): 269-287, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815199

RESUMEN

Oral solid dosage forms are most frequently administered with a glass of water which empties from the stomach relatively fast, but with a certain variability in its emptying kinetics. The purpose of this study was thus to simulate different individual water gastric emptying (GE) patterns in an in vitro glass-bead flow-through dissolution system. Further, the effect of GE on the dissolution of model drugs from immediate-release tablets was assessed by determining the amount of dissolved drug in the samples pumped out of the stomach compartment. Additionally, different HCl solutions were used as dissolution media to assess the effect of the variability of pH of the gastric fluid on the dissolution of three model drugs: paracetamol, diclofenac sodium, and dipyridamole. The difference in fast and slow GE kinetics resulted in different dissolution profiles of paracetamol in all studied media. For diclofenac sodium and dipyridamole tablets, the effect of GE kinetics was well observed only in media, where the solubility was not a limiting factor. Therefore, GE kinetics of co-ingested water influences the drug release from immediate-release tablets, however, in certain cases, other parameters influencing drug dissolution can partly or fully hinder the expression of this effect.


Asunto(s)
Acetaminofén , Diclofenaco , Dipiridamol , Liberación de Fármacos , Vaciamiento Gástrico , Solubilidad , Comprimidos , Agua , Vaciamiento Gástrico/fisiología , Diclofenaco/química , Diclofenaco/farmacocinética , Diclofenaco/administración & dosificación , Agua/química , Dipiridamol/química , Dipiridamol/administración & dosificación , Acetaminofén/química , Acetaminofén/farmacocinética , Acetaminofén/administración & dosificación , Concentración de Iones de Hidrógeno , Cinética , Administración Oral , Vidrio
7.
J Control Release ; 370: 392-404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663750

RESUMEN

The toxicity for the human body of non-steroidal anti-inflammatory drugs (NSAIDs) overdoses is a consequence of their low water solubility, high doses, and facile accessibility to the population. New drug delivery systems (DDS) are necessary to overcome the bioavailability and toxicity related to NSAIDs. In this context, UiO-66(Zr) metal-organic framework (MOF) shows high porosity, stability, and load capacity, thus being a promising DDS. However, the adsorption and release capability for different NSAIDs is scarcely described. In this work, the biocompatible UiO-66(Zr) MOF was used to study the adsorption and release conditions of ibuprofen, naproxen, and diclofenac using a theoretical and experimental approximation. DFT results showed that the MOF-drug interaction was due to an intermolecular hydrogen bond between protons of the groups in the defect sites, (µ3 - OH, and - OH2) and a lone pair of oxygen carboxyl functional group of the NSAIDs. Also, the experimental results suggest that the solvent where the drug is dissolved affects the adsorption process. The adsorption kinetics are similar between the drugs, but the maximum load capacity differs for each drug. The release kinetics assay showed a solvent dependence kinetics whose maximum liberation capacity is affected by the interaction between the drug and the material. Finally, the biological assays show that none of the systems studied are cytotoxic for HMVEC. Additionally, the wound healing assay suggests that the UiO-66(Zr) material has potential application on the wound healing process. However, further studies should be done.


Asunto(s)
Antiinflamatorios no Esteroideos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Estructuras Metalorgánicas , Naproxeno , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/química , Estructuras Metalorgánicas/química , Naproxeno/administración & dosificación , Naproxeno/química , Naproxeno/farmacocinética , Ibuprofeno/administración & dosificación , Ibuprofeno/química , Ibuprofeno/farmacocinética , Humanos , Adsorción , Portadores de Fármacos/química , Diclofenaco/administración & dosificación , Diclofenaco/química , Diclofenaco/farmacocinética , Supervivencia Celular/efectos de los fármacos , Ácidos Ftálicos
8.
Drug Deliv Transl Res ; 14(9): 2403-2416, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38291224

RESUMEN

Aceclofenac (ACE) is a drug that was precisely devised to circumvent the shortcomings associated with diclofenac. However, ACE too corresponds to nonsteroidal anti-inflammatory drug (NSAID)-related adverse effects, but with a lower amplitude. The present investigation seeks to develop liposomes loaded with ACE adopting a central composite design (CCD) and formulate a chitosan-based hydrogel for synergistic anti-inflammatory efficacy and improved ACE dermal administration. On the basis of preliminary vesicle size, Poly Dispersity Index (PDI), and drug entrapment, the composition of lipid, cholesterol, and vitamin E TPGS were chosen as independent variables. The formulation composition met the specifications for an optimum liposomal formulation, with total lipid concentration (13.5% w/w), cholesterol concentration (10% w/w), and surfactant concentration (2% w/w). With particle size and PDI of 174.22 ± 5.46 nm and 0.285 ± 0.01 respectively, the optimised formulation achieved an entrapment effectiveness of 92.08 ± 3.56%. Based on the CCD design, the optimised formulation Acec-Lipo opt was chosen and was subsequently transformed to a chitosan-based gel formulation for in vitro drug release, penetration through the skin, in vivo analgesic therapeutic activity, and skin irritation testing. % age oedema inhibition was found to be greatest with the Acec-Lipo opt gel formulation, followed by Acec gel. These results reinforce the notion that the inclusion of chitosan resulted in a synergistic effect despite the same strength of the drug. The findings suggested that Acec-Lipo incorporated in chitosan gel for skin targeting might be an effective formulation for topical ACE administration in clinical subjects.


Asunto(s)
Administración Cutánea , Antiinflamatorios no Esteroideos , Quitosano , Diclofenaco , Liposomas , Absorción Cutánea , Diclofenaco/administración & dosificación , Diclofenaco/análogos & derivados , Diclofenaco/farmacocinética , Diclofenaco/química , Quitosano/química , Quitosano/administración & dosificación , Quitosano/análogos & derivados , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Masculino , Liberación de Fármacos , Geles , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Piel/metabolismo , Piel/efectos de los fármacos , Inflamación/tratamiento farmacológico , Ratas , Tamaño de la Partícula , Hidrogeles/química , Hidrogeles/administración & dosificación , Vitamina E/química , Vitamina E/administración & dosificación , Vitamina E/análogos & derivados , Ratas Wistar , Edema/tratamiento farmacológico , Edema/inducido químicamente
9.
Onderstepoort J Vet Res ; 89(1): e1-e8, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35792606

RESUMEN

Diclofenac was responsible for the decimation of Gyps vulture species on the Indian subcontinent during the 1980s and 1990s. Gyps vultures are extremely sensitive (the lethal dose 50 [LD50] ~ 0.1 mg/kg - 0.2 mg/kg), with toxicity appearing to be linked to metabolic deficiency, demonstrated by the long T1/2 (~12 h - 17 h). This is in striking comparison to the domestic chicken (Gallus gallus domesticus), in which the LD50 is ~10 mg/kg and the T1/2 is ~1 h. The phase 1 cytochrome P450 (CYP) 2C subfamily has been cited as a possible reason for metabolic deficiency. The aim of this study was to determine if CYP2C9 homolog pharmacogenomic differences amongst avian species is driving diclofenac toxicity in Gyps vultures. We exposed each of 10 CYP-inhibited test group chickens to a unique dose of diclofenac (as per the Organisation for Economic Co-operation and Development [OECD] toxicity testing guidelines) and compared the toxicity and pharmacokinetic results to control group birds that received no CYP inhibitor. Although no differences were noted in the LD50 values for each group (11.92 mg/kg in the CYP-inhibited test group and 11.58 mg/kg in the control group), the pharmacokinetic profile of the test group was suggestive of partial inhibition of CYP metabolism. Evaluation of the metabolite peaks produced also suggested partial metabolic inhibition in test group birds, as they produced lower amounts of metabolites for one of the three peaks demonstrated and had higher diclofenac exposure. This pilot study supports the hypothesis that CYP metabolism is varied amongst bird species and may explain the higher resilience to diclofenac in the chicken versus vultures.


Asunto(s)
Diclofenaco , Falconiformes , Animales , Antiinflamatorios no Esteroideos/toxicidad , Pollos , Sistema Enzimático del Citocromo P-450 , Diclofenaco/farmacocinética , Diclofenaco/toxicidad , Proyectos Piloto
10.
Drug Deliv ; 29(1): 489-498, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35147052

RESUMEN

For the prolonged, controlled delivery of systemic drugs, we propose an implantable drug-delivery chip (DDC) embedded with pairs of a microchannel and drug-reservoir serving as a drug diffusion barrier and depot, respectively. We pursued a DDC for dual drugs: a main-purpose drug, diclofenac (DF), for systemic exposure, and an antifibrotic drug, tranilast (TR), for local delivery. Thus, the problematic fibrotic tissue formation around the implanted device could be diminished, thereby less hindrance in systemic exposure of DF released from the DDC. First, we separately prepared DDCs for DF or TR delivery, and sought to find a proper microchannel length for a rapid onset and sustained pattern of drug release, as well as the required drug dose. Then, two distinct DDCs for DF and TR delivery, respectively, were assembled to produce a Dual_DDC for the concurrent delivery of DF and TR. When the Dual_DDC was implanted in living rats, the DF concentration in blood plasma did not drop significantly in the later periods after implantation relative to that in the early periods before fibrotic tissue formation. When the Dual_DDC was implanted without TR, there was a significant decrease in the blood plasma DF concentration as the time elapsed after implantation. Biopsied tissues around the Dual_DDC exhibited a significant decrease in the fibrotic capsule thickness and collagen density relative to the Dual_DDC without TR, owing to the effect of the local, sustained release of the TR.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Diclofenaco/farmacología , Implantes de Medicamentos/química , Fibrosis/patología , ortoaminobenzoatos/farmacología , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Preparaciones de Acción Retardada , Diclofenaco/administración & dosificación , Diclofenaco/farmacocinética , Liberación de Fármacos , Ratas , Ratas Sprague-Dawley , ortoaminobenzoatos/administración & dosificación , ortoaminobenzoatos/farmacocinética
11.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209205

RESUMEN

Cochlear implants, like other active implants, rely on precise and effective electrical stimulation of the target tissue but become encapsulated by different amounts of fibrous tissue. The current study aimed at the development of a dual drug release from a PLLA coating and from the bulk material to address short-term and long-lasting release of anti-inflammatory drugs. Inner-ear cytocompatibility of drugs was studied in vitro. A PLLA coating (containing diclofenac) of medical-grade silicone (containing 5% dexamethasone) was developed and release profiles were determined. The influence of different coating thicknesses (2.5, 5 and 10 µm) and loadings (10% and 20% diclofenac) on impedances of electrical contacts were measured with and without pulsatile electrical stimulation. Diclofenac can be applied to the inner ear at concentrations of or below 4 × 10-5 mol/L. Release of dexamethasone from the silicone is diminished by surface coating but not blocked. Addition of 20% diclofenac enhances the dexamethasone release again. All PLLA coatings serve as insulator. This can be overcome by using removable masking on the contacts during the coating process. Dual drug release with different kinetics can be realized by adding drug-loaded coatings to drug-loaded silicone arrays without compromising electrical stimulation.


Asunto(s)
Antiinflamatorios , Materiales Biocompatibles Revestidos/química , Implantes Cocleares , Dexametasona , Diclofenaco , Sistemas de Liberación de Medicamentos , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Dexametasona/química , Dexametasona/farmacocinética , Diclofenaco/química , Diclofenaco/farmacocinética , Liberación de Fármacos , Ratas , Ratas Sprague-Dawley
12.
Int J Pharm ; 614: 121469, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35031414

RESUMEN

An important question in the development of a dermatological drug product is whether a target concentration has been achieved in, for example, the viable epidermis following topical administration. When attempting to address this challenge, it is essential to consider the role of excipients in the formulation that may influence drug partitioning and diffusion in the different layers of the skin. The objective, therefore, was to correlate, in human subjects, the skin pharmacokinetics of diclofenac (specifically, its uptake into and clearance from the stratum corneum (SC)) from an approved drug product (Voltaren® medicated plaster) with the in vivo co-uptake of two key excipients, namely propylene glycol and butylene glycol. SC sampling was used to assess diclofenac input into the skin during patch application, and its subsequent clearance post-removal of the delivery system. In parallel the uptake of the two glycol excipients was also measured. Drug and excipient amounts in the SC increased with time of application up to 6 h and, for diclofenac, no further increase was observed when the administration was prolonged to 12 h. When the plaster was removed after 6 h of wear, diclofenac cleared relatively slowly from the SC suggesting that drug binding with a slow off-rate had occurred. The results indicate that the optimisation of drug delivery from a topical formulation must take into account the disposition of key excipients and their impact on dermato-pharmacokinetics in general.


Asunto(s)
Diclofenaco , Excipientes , Absorción Cutánea , Administración Cutánea , Diclofenaco/farmacocinética , Excipientes/farmacocinética , Humanos , Piel/metabolismo
13.
Bioanalysis ; 13(14): 1101-1111, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34275331

RESUMEN

Aim: Determination of plasma protein binding (PPB) is considered vital for better understanding of pharmacokinetic and pharmacodynamic activities of drugs due to the role of free concentration in pharmacological response. Methodology & results: Solid-phase microextraction (SPME) was investigated for measurement of PPB from biological matrices and compared with a gold standard approach (rapid equilibrium dialysis [RED]). Discussion & conclusion: SPME-derived values of PPB correlated well with literature values, and those determined by RED. Respectively, average protein binding across three concentrations by RED and SPME was 33.1 and 31.7% for metoprolol, 89.0 and 86.6% for propranolol and 99.2 and 99.0% for diclofenac. This study generates some evidence for SPME as an alternative platform for the determination of PPB.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Microextracción en Fase Sólida/métodos , Animales , Cromatografía Liquida , Diálisis , Diclofenaco/farmacocinética , Diclofenaco/farmacología , Metoprolol/farmacocinética , Metoprolol/farmacología , Propranolol/farmacocinética , Propranolol/farmacología , Unión Proteica , Ratas , Espectrometría de Masas en Tándem
14.
Biopharm Drug Dispos ; 42(8): 351-358, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34191301

RESUMEN

Gamma hydroxybutyric acid (GHB) has been approved clinically to treat excessive daytime sleepiness and cataplexy in patients with narcolepsy, alcohol and opioid withdrawal, and as an anesthetic. The use of GHB clinically is limited due to its high abuse potential. The absorption, clearance and tissue uptake of GHB is mediated by proton-dependent and sodium-coupled monocarboxylate transporters (MCTs and SMCTs) and inhibition of these transporters may result in a change in GHB pharmacokinetics and pharmacodynamics. Previous studies have reported that non-steroidal anti-inflammatory drugs (NSAIDs) may inhibit these monocarboxylate transporters. Therefore, the purpose of this work was to analyze the interaction between GHB (at a dose of 600 mg/kg i. v.) and the NSAID, diclofenac, by examining the effects of this drug on the in vivo pharmacokinetics and pharmacodynamics in rat studies. The pharmacodynamic effect evaluated was respiratory depression, a measure of toxicity observed by GHB at this dose. There was an improvement in the respiratory rate with diclofenac administration suggesting an effect of diclofenac on GHB toxicity. In vitro studies with rat blood brain endothelial cells (RBE4) that express MCT1 indicated that diclofenac can inhibit GHB transport with an IC50 of 10.6 µM at pH 7.4. In vivo studies found a decrease in brain GHB concentrations and a decrease in the brain-to-plasma concentration ratio following diclofenac treatment. With this study we can conclude that diclofenac and potentially other NSAIDs can inhibit the transport of GHB into the brain, therefore decreasing GHB's pharmacodynamic effects and toxicity.


Asunto(s)
Encéfalo , Diclofenaco/farmacocinética , Interacciones Farmacológicas , Hidroxibutiratos/farmacocinética , Transportadores de Ácidos Monocarboxílicos , Insuficiencia Respiratoria , Simportadores , Anestésicos/farmacocinética , Anestésicos/toxicidad , Animales , Antiinflamatorios no Esteroideos/farmacocinética , Transporte Biológico Activo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Hidroxibutiratos/toxicidad , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ratas , Ratas Sprague-Dawley , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico , Oxibato de Sodio/farmacocinética , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo
15.
Nat Nanotechnol ; 16(7): 820-829, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33795849

RESUMEN

The poor transport of molecular and nanoscale agents through the blood-brain barrier together with tumour heterogeneity contribute to the dismal prognosis in patients with glioblastoma multiforme. Here, a biodegradable implant (µMESH) is engineered in the form of a micrometre-sized poly(lactic-co-glycolic acid) mesh laid over a water-soluble poly(vinyl alcohol) layer. Upon poly(vinyl alcohol) dissolution, the flexible poly(lactic-co-glycolic acid) mesh conforms to the resected tumour cavity as docetaxel-loaded nanomedicines and diclofenac molecules are continuously and directly released into the adjacent tumour bed. In orthotopic brain cancer models, generated with a conventional, reference cell line and patient-derived cells, a single µMESH application, carrying 0.75 mg kg-1 of docetaxel and diclofenac, abrogates disease recurrence up to eight months after tumour resection, with no appreciable adverse effects. Without tumour resection, the µMESH increases the median overall survival (∼30 d) as compared with the one-time intracranial deposition of docetaxel-loaded nanomedicines (15 d) or 10 cycles of systemically administered temozolomide (12 d). The µMESH modular structure, for the independent coloading of different molecules and nanomedicines, together with its mechanical flexibility, can be exploited to treat a variety of cancers, realizing patient-specific dosing and interventions.


Asunto(s)
Implantes Absorbibles , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular , Diclofenaco/farmacocinética , Diclofenaco/farmacología , Docetaxel/farmacocinética , Docetaxel/farmacología , Implantes de Medicamentos/farmacocinética , Implantes de Medicamentos/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Mol Pharm ; 18(4): 1792-1805, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33739838

RESUMEN

Human liver microsomes (HLM) and human hepatocytes (HH) are important in vitro systems for studies of intrinsic drug clearance (CLint) in the liver. However, the CLint values are often in disagreement for these two systems. Here, we investigated these differences in a side-by-side comparison of drug metabolism in HLM and HH prepared from 15 matched donors. Protein expression and intracellular unbound drug concentration (Kpuu) effects on the CLint were investigated for five prototypical probe substrates (bupropion-CYP2B6, diclofenac-CYP2C9, omeprazole-CYP2C19, bufuralol-CYP2D6, and midazolam-CYP3A4). The samples were donor-matched to compensate for inter-individual variability but still showed systematic differences in CLint. Global proteomics analysis outlined differences in HLM from HH and homogenates of human liver (HL), indicating variable enrichment of ER-localized cytochrome P450 (CYP) enzymes in the HLM preparation. This suggests that the HLM may not equally and accurately capture metabolic capacity for all CYPs. Scaling CLint with CYP amounts and Kpuu could only partly explain the discordance in absolute values of CLint for the five substrates. Nevertheless, scaling with CYP amounts improved the agreement in rank order for the majority of the substrates. Other factors, such as contribution of additional enzymes and variability in the proportions of active and inactive CYP enzymes in HLM and HH, may have to be considered to avoid the use of empirical scaling factors for prediction of drug metabolism.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/enzimología , Hígado/enzimología , Microsomas Hepáticos/enzimología , Bupropión/farmacocinética , Sistema Enzimático del Citocromo P-450/análisis , Diclofenaco/farmacocinética , Etanolaminas/farmacocinética , Eliminación Hepatobiliar , Humanos , Hígado/citología , Midazolam/farmacocinética , Omeprazol/farmacocinética , Proteoma/análisis , Proteómica
17.
CPT Pharmacometrics Syst Pharmacol ; 10(5): 399-411, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547863

RESUMEN

Establishing bioequivalence (BE) for dermatological drug products by conducting comparative clinical end point studies can be costly and the studies may not be sufficiently sensitive to detect certain formulation differences. Quantitative methods and modeling, such as physiologically-based pharmacokinetic (PBPK) modeling, can support alternative BE approaches with reduced or no human testing. To enable PBPK modeling for regulatory decision making, models should be sufficiently verified and validated (V&V) for the intended purpose. This report illustrates the US Food and Drug Administration (FDA) approval of a generic diclofenac sodium topical gel that was based on a totality of evidence, including qualitative and quantitative sameness and physical and structural similarity to the reference product, an in vivo BE study with PK end points, and, more importantly, for the purposes of this report, a virtual BE assessment leveraging dermal PBPK modeling and simulation instead of a comparative clinical end point study in patients. The modeling approach characterized the relationship between systemic (plasma) and local (skin and synovial fluid) diclofenac exposure and demonstrated BE between the generic and reference products at the presumed site of action. Based on the fit-for-purpose modeling principle, the V&V process involved assessing observed data of diclofenac concentrations in skin tissues and plasma, and the overall performance of the modeling platform for relevant products. Using this case as an example, this report provides current scientific considerations on good practices for model V&V and the establishment of BE for dermatological drug products when leveraging PBPK modeling and simulation for regulatory decision making.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Diclofenaco/farmacocinética , Modelos Biológicos , Equivalencia Terapéutica , Administración Cutánea , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/sangre , Antiinflamatorios no Esteroideos/metabolismo , Diclofenaco/administración & dosificación , Diclofenaco/sangre , Diclofenaco/metabolismo , Humanos , Piel/metabolismo
18.
AAPS PharmSciTech ; 22(2): 68, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564940

RESUMEN

Poor physicomechanical properties and limited aqueous solubility restrict the bioavailability of aceclofenac when given orally. To improve its above properties, aceclofenac (ACE) was cocrystallized with dimethyl urea (DMU) in 1:2 molar ratio by dry and solvent assisted grinding. The cocrystals were characterized by ATR-FTIR, DSC, and PXRD, and their surface morphology was studied by SEM. There was enhancement in intrinsic dissolution rate (IDR) (~eight- and ~fivefold in cocrystals prepared by solvent assisted grinding (SAG) and solid state grinding (SSG), respectively, in 0.1 N HCl, pH 1.2) and similarly (~3.42-fold and ~1.20-fold in phosphate buffer, pH 7.4) as compared to pure drug. Additionally, mechanical properties were assessed by tabletability curves. The tensile strength of ACE was < 1 MPa in contrast to the cocrystal tensile strength (3.5 MPa) which was ~1.98 times higher at 6000 psi. The tablet formulation of cocrystal by direct compression displayed enhanced dissolution profile (~36% in 0.1 N HCl, pH 1.2, and ~100% in phosphate buffer, pH 7.4) in comparison to physical mixture (~ 30% and ~ 80%) and ACE (~18% and ~50%) after 60 min, respectively. Stability studies of cocrystal tablets for 3 months indicated a stable formulation. Pharmacokinetic studies were performed by using rabbit model. The AUC0-∞ (37.87±1.3 µgh/ml) and Cmax (6.94±2.94 µg/ml) of the selected cocrystal C1 prepared by SAG were significantly enhanced (p < 0.05) and were ~3.43 and ~1.63-fold higher than that of ACE. In conclusion, new cocrystal of ACE-DMU was successfully prepared with improved tabletability, in vitro and in vivo properties.


Asunto(s)
Diclofenaco/análogos & derivados , Animales , Cristalización , Diclofenaco/química , Diclofenaco/farmacocinética , Liberación de Fármacos , Estabilidad de Medicamentos , Femenino , Masculino , Conejos , Comprimidos/química , Urea/química
19.
Drug Deliv ; 28(1): 261-271, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33501878

RESUMEN

Controlled drug delivery systems are of utmost importance for the improvement of drug bioavailability while limiting the side effects. For the improvement of their performances, drug release modeling is a significant tool for the further optimization of the drug delivery systems to cross the barrier to practical application. We report here on the modeling of the diclofenac sodium salt (DCF) release from a hydrogel matrix based on PEGylated chitosan in the context of Multifractal Theory of Motion, by means of a fundamental spinor set given by 2 × 2 matrices with real elements, which can describe the drug-release dynamics at global and local scales. The drug delivery systems were prepared by in situ hydrogenation of PEGylated chitosan with citral in the presence of the DCF, by varying the hydrophilic/hydrophobic ratio of the components. They demonstrated a good dispersion of the drug into the matrix by forming matrix-drug entities which enabled a prolonged drug delivery behavior correlated with the hydrophilicity degree of the matrix. The application of the Multifractal Theory of Motion fitted very well on these findings, the fractality degree accurately describing the changes in hydrophilicity of the polymer. The validation of the model on this series of formulations encourages its further use for other systems, as an easy tool for estimating the drug release toward the design improvement. The present paper is a continuation of the work 'A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations,' published in Drug Delivery Journal, 27(1), 2020, that focused on the consequences induced by the invariance groups of Multifractal Diffusion Equations in correlation with the drug release dynamics.


Asunto(s)
Quitosano , Diclofenaco/farmacocinética , Liberación de Fármacos , Hidrogeles , Modelos Teóricos , Polietilenglicoles , Monoterpenos Acíclicos , Diclofenaco/administración & dosificación , Sistemas de Liberación de Medicamentos , Hidrogenación , Modelos Químicos
20.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153182

RESUMEN

Although nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the main types of drugs used to treat pain, they have several adverse effects, and such effects can be reduced by combining two analgesic drugs. The aim of this study was to evaluate the nociceptive activity of methyleugenol combined with either diclofenac or ketorolac, and determine certain parameters of pharmacokinetics. For the isobolographic analysis, the experimental effective dose 30 (ED30) was calculated for the drugs applied individually. With these effective doses, the peak plasma concentration (Cmax) was found and the other parameters of pharmacokinetics were established. Methyleugenol plus diclofenac and methyleugenol plus ketorolac decreased licking behavior in a dose-dependent manner in phase II, with an efficacy of 32.9 ± 9.3 and 39.8 ± 9.6%, respectively. According to the isobolographic analysis, the experimental and theoretical ED30 values were similar for methyleugenol plus diclofenac, suggesting an additive effect, but significantly different for methyleugenol plus ketorolac (3.6 ± 0.5 vs. 7.7 ± 0.6 mg/kg, respectively), indicating a probable synergistic interaction. Regarding pharmacokinetics, the only parameter showing a significant difference was Cmax for the methyleugenol plus diclofenac combination. Even with this difference, the combinations studied may be advantageous for treating inflammatory pain, especially for the combination methyleugenol plus ketorolac.


Asunto(s)
Analgésicos , Diclofenaco , Eugenol/análogos & derivados , Ketorolaco , Analgésicos/farmacocinética , Analgésicos/farmacología , Animales , Diclofenaco/agonistas , Diclofenaco/farmacocinética , Diclofenaco/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Eugenol/agonistas , Eugenol/farmacocinética , Eugenol/farmacología , Ketorolaco/agonistas , Ketorolaco/farmacocinética , Ketorolaco/farmacología , Masculino , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA