Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Brain Dev ; 46(7): 250-253, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38641466

RESUMEN

INTRODUCTION: CAD (MIM*114010) encodes a large multifunctional protein with the enzymatic activity of the first three enzymes initiating and controlling the de novo pyrimidine biosynthesis pathway. Biallelic pathogenic variants in CAD cause the autosomal recessive developmental and epileptic encephalopathy 50 (MIM #616457) or CAD deficiency presenting with epilepsy, status epilepticus (SE), neurological deterioration and anemia with anisopoikilocytosis. Mortality is around 9% of patients, mainly related to the no use of its specific treatment with uridine. Majority of reported cases have an early onset during infancy, with some few starting later in childhood. CASE REPORT: Here we report a deceased female patient with CAD deficiency whose epilepsy started at 14 years. She showed a rapid neurologic deterioration including cognitive decline, electroencephalographic background slowing which later evolved to a fatal refractory SE and supra and infratentorial atrophy on neuroimaging. Anemia developed after SE onset. METHODS AND RESULTS: her post-mortem whole exome sequencing identified biallelic missense variants in CAD (NM_004341.5): c.[2944G > A];[5366G > A] p.[(Asp982Asn)];[(Arg1789Gln)]. Our review of twenty-eight reported cases (2015-2023) revealed an epilepsy age onset from neonatal period to 7 years and the SE prevalence of 46 %. DISCUSSION: With our case, we highlight the relevance of suspecting this treatable condition in older patients and in SE with no evident etiology.


Asunto(s)
Epilepsia , Humanos , Femenino , Epilepsia/genética , Adolescente , Dihidroorotasa/genética , Mutación Missense , Estado Epiléptico/genética , Disfunción Cognitiva/genética , Edad de Inicio , Aspartato Carbamoiltransferasa , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)
2.
J Inherit Metab Dis ; 46(6): 1170-1185, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37540500

RESUMEN

CAD is a large, 2225 amino acid multienzymatic protein required for de novo pyrimidine biosynthesis. Pathological CAD variants cause a developmental and epileptic encephalopathy which is highly responsive to uridine supplements. CAD deficiency is difficult to diagnose because symptoms are nonspecific, there is no biomarker, and the protein has over 1000 known variants. To improve diagnosis, we assessed the pathogenicity of 20 unreported missense CAD variants using a growth complementation assay that identified 11 pathogenic variants in seven affected individuals; they would benefit from uridine treatment. We also tested nine variants previously reported as pathogenic and confirmed the damaging effect of seven. However, we reclassified two variants as likely benign based on our assay, which is consistent with their long-term follow-up with uridine. We found that several computational methods are unreliable predictors of pathogenic CAD variants, so we extended the functional assay results by studying the impact of pathogenic variants at the protein level. We focused on CAD's dihydroorotase (DHO) domain because it accumulates the largest density of damaging missense changes. The atomic-resolution structures of eight DHO pathogenic variants, combined with functional and molecular dynamics analyses, provided a comprehensive structural and functional understanding of the activity, stability, and oligomerization of CAD's DHO domain. Combining our functional and protein structural analysis can help refine clinical diagnostic workflow for CAD variants in the genomics era.


Asunto(s)
Dihidroorotasa , Proteínas , Humanos , Dihidroorotasa/química , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Mutación Missense , Uridina
3.
Proc Natl Acad Sci U S A ; 119(39): e2202157119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122209

RESUMEN

CTNNB1, encoding ß-catenin protein, is the most frequently altered proto-oncogene in hepatic neoplasms. In this study, we studied the significance and pathological mechanism of CTNNB1 gain-of-function mutations in hepatocarcinogenesis. Activated ß-catenin not only triggered hepatic tumorigenesis but also exacerbated Tp53 deletion or hepatitis B virus infection-mediated liver cancer development in mouse models. Using untargeted metabolomic profiling, we identified boosted de novo pyrimidine synthesis as the major metabolic aberration in ß-catenin mutant cell lines and livers. Oncogenic ß-catenin transcriptionally stimulated AKT2, which then phosphorylated the rate-limiting de novo pyrimidine synthesis enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) on S1406 and S1859 to potentiate nucleotide synthesis. Moreover, inhibition of ß-catenin/AKT2-stimulated pyrimidine synthesis axis preferentially repressed ß-catenin mutant cell proliferation and tumor formation. Therefore, ß-catenin active mutations are oncogenic in various preclinical liver cancer models. Stimulation of ß-catenin/AKT2/CAD signaling cascade on pyrimidine synthesis is an essential and druggable vulnerability for ß-catenin mutant liver cancer.


Asunto(s)
Neoplasias Hepáticas , Pirimidinas , beta Catenina , Animales , Ácido Aspártico , Carcinogénesis , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Sistemas de Liberación de Medicamentos , Ligasas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatología , Ratones , Nucleótidos , Fosfatos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/biosíntesis , beta Catenina/metabolismo
4.
BMC Pediatr ; 22(1): 125, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277149

RESUMEN

BACKGROUND: Early infantile epileptic encephalopathy is a severe form of epilepsy that is genetically extremely heterogeneous and characterized by seizures or spasms at the beginning of infancy. Homozygous or compound heterozygous mutation in the CAD gene cause early infantile epileptic encephalopathy-50 (EIEE50). This case report describes the clinical and molecular features of three patients affected with early infantile epileptic encephalopathy. CASE PRESENTATION: In this report, we describe the clinical features of two deceased daughters and one recently deceased son affected with seizure, muscular hypotonia, and developmental delay. After genetic counseling, blood samples were obtained from the parents, and whole-exome sequencing was performed. Genomic DNA was extracted from whole blood, and mutation analysis was performed using PCR and sequencing methods for the CAD gene. Genetic analysis using the whole-exome sequencing method has detected a novel likely pathogenic mutation on CAD gene, c.2995G > A (p.Val999Met), in heterozygous states in asymptomatic parents and homozygous state in affected newborn son. This mutation has not been reported in the literature for its pathogenicity. CONCLUSIONS: The asymptomatic parents are carriers for the likely pathogenic variant in the CAD gene, and the recently deceased newborn son had the same mutation in a homozygous state. Given that, multiple lines of in silico computational analysis support the detrimental impact of the variant on the gene, and this variant is absent in population databases. Pathogenic mutations in the CAD gene are related to autosomal recessive EIEE50 with similar signs and symptoms to our patients. Ultimately, it is confirmed that this mutation is causative in our patients.


Asunto(s)
Aspartato Carbamoiltransferasa , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante) , Dihidroorotasa , Epilepsia , Espasmos Infantiles , Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Epilepsia/genética , Humanos , Lactante , Recién Nacido , Irán , Mutación , Convulsiones , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética
5.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202294

RESUMEN

Dihydroorotase (DHOase) is the third enzyme in the de novo biosynthesis pathway for pyrimidine nucleotides, and an attractive target for potential anticancer chemotherapy. By screening plant extracts and performing GC-MS analysis, we identified and characterized that the potent anticancer drug plumbagin (PLU), isolated from the carnivorous plant Nepenthes miranda, was a competitive inhibitor of DHOase. We also solved the complexed crystal structure of yeast DHOase with PLU (PDB entry 7CA1), to determine the binding interactions and investigate the binding modes. Mutational and structural analyses indicated the binding of PLU to DHOase through loop-in mode, and this dynamic loop may serve as a drug target. PLU exhibited cytotoxicity on the survival, migration, and proliferation of 4T1 cells and induced apoptosis. These results provide structural insights that may facilitate the development of new inhibitors targeting DHOase, for further clinical anticancer chemotherapies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Vías Biosintéticas/efectos de los fármacos , Dihidroorotasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Naftoquinonas/farmacología , Pirimidinas/biosíntesis , Antineoplásicos Fitogénicos/química , Sitios de Unión , Productos Biológicos/química , Dominio Catalítico , Dihidroorotasa/química , Dihidroorotasa/genética , Inhibidores Enzimáticos/química , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Mutación , Naftoquinonas/química , Unión Proteica , Relación Estructura-Actividad
6.
Ann Clin Transl Neurol ; 8(3): 716-722, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497533

RESUMEN

We report two siblings with intractable epilepsy, developmental regression, and progressive cerebellar atrophy due to biallelic variants in the gene CAD. For the affected girl, uridine started at age 5 resulted in dramatic improvements in seizure control and development, cessation of cerebellar atrophy, and resolution of hematological abnormalities. Her older brother had a more severe course and only modest response to uridine started at 14 years old. Treatment of this progressive condition via uridine supplementation provides an example of precision diagnosis and treatment using clear outcome measures and biomarkers to monitor efficacy.


Asunto(s)
Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/genética , Uridina/farmacología , Atrofia/patología , Enfermedades Cerebelosas/tratamiento farmacológico , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/patología , Niño , Preescolar , Discapacidades del Desarrollo/tratamiento farmacológico , Discapacidades del Desarrollo/genética , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Linaje , Hermanos , Uridina/administración & dosificación
7.
J Biomol Struct Dyn ; 39(9): 3144-3157, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32338152

RESUMEN

Pyrimidine biosynthetic pathway enzymes constitute an important target for the development of antitumor drugs. To understand the role of binding mechanisms underlying the inborn errors of pyrimidine biosynthetic pathway, structure and function of enzymes have been analyzed. Pyrimidine biosynthetic pathway is initiated by CAD enzymes that harbor the first three enzymatic activities facilitated by Carbamoyl Phosphate Synthetase (CPSase), Aspartate Transcarbamoylase (ATCase) and Dihydroorotase (DHOase). While being an attractive therapeutic target, the lack of data driven us to study the CPSase (CarA and CarB) and its mode of binding to ATCase and DHOase which are the major limitation for its structural optimization. Understanding the binding mode of CPSase, ATCase and DHOase could help to identify the potential interface hotspot residues that favor the mechanism behind it. The mechanistic insight into the CAD complexes were achieved through Molecular modeling, Protein-Protein docking, Alanine scanning and Molecular dynamics (MD) Studies. The hotspot residues present in the CarB region of carboxy phosphate and carbamoyl phosphate synthetic domains are responsible for the assembly of CAD (CPSase-ATCase-DHOase) complexes. Overall analysis suggests that the identified hotspot residues were confirmed by alanine scanning and important for the regulation of pyrimidine biosynthesis. MD simulations analysis provided the prolonged stability of the interacting complexes. The present study reveals the novel hotspot residues such as Glu134, Glu147, Glu154, Asp266, Lys269, Glu274, Asp333, Trp459, Asp526, Asp528, Glu533, Glu544, Glu546, Glu800, Val855, Asp877, Tyr884 and Gln919 which could be targeted for structure-based inhibitor design to potentiate the CAD mediated regulation of aggressive tumors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aspartato Carbamoiltransferasa , Dihidroorotasa , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Modelos Moleculares , Proteínas
8.
Ann Clin Transl Neurol ; 8(1): 284-287, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33249780

RESUMEN

Refractory epilepsy and encephalopathy are frequently encountered in patients with inborn errors of metabolism. We report a case of an 8-year-old girl with history of developmental delay, autism and intractable epilepsy that was found to have a pathogenic variant in CAD. We briefly review the biochemical pathway of CAD and the preclinical and clinical studies that suggest uridine supplementation can rescue the CAD deficiency phenotypes. Our case demonstrates a relatively late-onset case of refractory epilepsy with a rapid response to treatment using the uridine pro-drug triacetyluridine (TAU), the FDA-approved treatment for hereditary orotic aciduria.


Asunto(s)
Acetatos/uso terapéutico , Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Generalizada/genética , Uridina/análogos & derivados , Niño , Femenino , Humanos , Mutación Missense , Uridina/uso terapéutico
10.
PLoS One ; 15(3): e0229494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32126100

RESUMEN

Pseudomonas aeruginosa is a virulent pathogen that has become more threatening with the emergence of multidrug resistance. The aspartate transcarbamoylase (ATCase) of this organism is a dodecamer comprised of six 37 kDa catalytic chains and six 45 kDa chains homologous to dihydroorotase (pDHO). The pDHO chain is inactive but is necessary for ATCase activity. A stoichiometric mixture of the subunits associates into a dodecamer with full ATCase activity. Unlike other known ATCases, the P. aeruginosa catalytic chain does not spontaneously assemble into a trimer. Chemical-crosslinking and size-exclusion chromatography showed that P. aeruginosa ATCase is monomeric which accounts for its lack of catalytic activity since the active site is a composite comprised of residues from adjacent monomers in the trimer. Circular dichroism spectroscopy indicated that the ATCase chain adopts a structure that contains secondary structure elements although neither the ATCase nor the pDHO subunits are very stable as determined by a thermal shift assay. Formation of the complex increases the melting temperature by about 30°C. The ATCase is strongly inhibited by all nucleotide di- and triphosphates and exhibits extreme cooperativity. Previous studies suggested that the regulatory site is located in an 11-residue extension of the amino end of the catalytic chain. However, deletion of the extensions did not affect catalytic activity, nucleotide inhibition or the assembly of the dodecamer. Nucleotides destabilized the dodecamer which probably accounts for the inhibition and apparent cooperativity of the substrate saturation curves. Contrary to previous interpretations, these results suggest that P. aeruginosa ATCase is not allosterically regulated by nucleotides.


Asunto(s)
Aspartato Carbamoiltransferasa/química , Aspartato Carbamoiltransferasa/metabolismo , Dihidroorotasa/química , Dihidroorotasa/metabolismo , Pseudomonas aeruginosa/enzimología , Secuencias de Aminoácidos , Aspartato Carbamoiltransferasa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Dicroismo Circular , Dihidroorotasa/genética , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Termodinámica
11.
Cells ; 9(2)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085644

RESUMEN

Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.


Asunto(s)
Dihidroorotasa/metabolismo , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/metabolismo , Glutamato Deshidrogenasa/metabolismo , Glutaminasa/metabolismo , Interacciones Huésped-Patógeno/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Animales , Chlorocebus aethiops , Efecto Citopatogénico Viral/efectos de los fármacos , Efecto Citopatogénico Viral/genética , Dihidroorotasa/genética , Infecciones por Enterovirus/virología , Técnicas de Silenciamiento del Gen , Glutamato Deshidrogenasa/genética , Ácido Glutámico/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Glutamina/farmacología , Glucólisis/genética , Ácidos Cetoglutáricos/farmacología , Interferencia de ARN , Transfección , Células Vero
12.
Gut ; 69(1): 158-167, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833451

RESUMEN

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Asunto(s)
Aspartato Carbamoiltransferasa/genética , Ácido Aspártico/análogos & derivados , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Receptor alfa de Estrógeno/metabolismo , Fulvestrant/farmacología , Hepatitis D Crónica/tratamiento farmacológico , Ácido Fosfonoacético/análogos & derivados , Pirimidinas/biosíntesis , Antivirales/farmacología , Aspartato Carbamoiltransferasa/antagonistas & inhibidores , Aspartato Carbamoiltransferasa/metabolismo , Ácido Aspártico/farmacología , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/antagonistas & inhibidores , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Línea Celular , Dihidroorotasa/antagonistas & inhibidores , Dihidroorotasa/metabolismo , Antagonistas del Receptor de Estrógeno/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Silenciador del Gen , Hepatitis D Crónica/genética , Hepatitis D Crónica/metabolismo , Virus de la Hepatitis Delta/fisiología , Hepatocitos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Resistencia a la Insulina , Estadios del Ciclo de Vida , Mutación con Pérdida de Función , Ácido Fosfonoacético/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/metabolismo , Transducción de Señal , Replicación Viral
13.
Int J Biol Macromol ; 136: 1176-1187, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31207330

RESUMEN

The de novo pyrimidine biosynthesis pathway is essential for the proliferation of many pathogens. One of the pathway enzymes, dihydroorotase (DHO), catalyzes the reversible interconversion of N-carbamoyl-l-aspartate to 4,5-dihydroorotate. The substantial difference between bacterial and mammalian DHOs makes it a promising drug target for disrupting bacterial growth and thus an important candidate to evaluate as a response to antimicrobial resistance on a molecular level. Here, we present two novel three-dimensional structures of DHOs from Yersinia pestis (YpDHO), the plague-causing pathogen, and Vibrio cholerae (VcDHO), the causative agent of cholera. The evaluations of these two structures led to an analysis of all available DHO structures and their classification into known DHO types. Comparison of all the DHO active sites containing ligands that are listed in DrugBank was facilitated by a new interactive, structure-comparison and presentation platform. In addition, we examined the genetic context of characterized DHOs, which revealed characteristic patterns for different types of DHOs. We also generated a homology model for DHO from Plasmodium falciparum.


Asunto(s)
Dihidroorotasa/química , Dihidroorotasa/metabolismo , Pirimidinas/biosíntesis , Vibrio cholerae/enzimología , Yersinia pestis/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Dihidroorotasa/genética , Genómica , Malatos/metabolismo , Modelos Moleculares , Homología de Secuencia de Aminoácido , Zinc/metabolismo
14.
FEBS J ; 286(6): 1204-1213, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30657257

RESUMEN

Dihydroorotase (DHOase) is involved in the de novo synthesis of pyrimidine in virtually all organisms, and it is usually associated with two other enzymes found in this biosynthetic pathway, carbamylphosphate synthetase and/or aspartate transcarbamylase (ATCase). In the hyperthermophilic bacterium Aquifex aeolicus, ATCase and DHOase are noncovalently associated. Upon dissociation, ATCase keeps its activity entirely while DHOase is totally inactivated. It was previously shown that high pressure fully restores the activity of this isolated DHOase. On the basis of kinetic studies, site-directed mutagenesis and the use of peptides mimicking loop A, a loop that appears to block access to the active site, was proposed that this pressure-induced reactivation was due to the decrease in the volume of the system, -ΔV, resulting from the disruption of known ionic interactions between the loop and the main part of the protein. In this study, this interpretation is more precisely demonstrated by the determination of the crystallographic structure of isolated DHOase under pressure. In addition to the loop displacements, pressure induces a discrete rearrangement of the catalytic site aspartate 305, an effect that might additionally contribute to the reactivation of this enzyme.


Asunto(s)
Ácido Aspártico/metabolismo , Bacterias/enzimología , Dihidroorotasa/química , Dihidroorotasa/metabolismo , Zinc/metabolismo , Aquifex , Ácido Aspártico/química , Ácido Aspártico/genética , Dominio Catalítico , Cristalografía , Dihidroorotasa/genética , Mutagénesis Sitio-Dirigida , Mutación , Presión , Conformación Proteica
15.
J Biol Chem ; 293(49): 18903-18913, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30315107

RESUMEN

The dihydroorotase (DHOase) domain of the multifunctional protein carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) catalyzes the third step in the de novo biosynthesis of pyrimidine nucleotides in animals. The crystal structure of the DHOase domain of human CAD (huDHOase) revealed that, despite evolutionary divergence, its active site components are highly conserved with those in bacterial DHOases, encoded as monofunctional enzymes. An important element for catalysis, conserved from Escherichia coli to humans, is a flexible loop that closes as a lid over the active site. Here, we combined mutagenic, structural, biochemical, and molecular dynamics analyses to characterize the function of the flexible loop in the activity of CAD's DHOase domain. A huDHOase chimera bearing the E. coli DHOase flexible loop was inactive, suggesting the presence of distinctive elements in the flexible loop of huDHOase that cannot be replaced by the bacterial sequence. We pinpointed Phe-1563, a residue absolutely conserved at the tip of the flexible loop in CAD's DHOase domain, as a critical element for the conformational equilibrium between the two catalytic states of the protein. Substitutions of Phe-1563 with Ala, Leu, or Thr prevented the closure of the flexible loop and inactivated the protein, whereas substitution with Tyr enhanced the interactions of the loop in the closed position and reduced fluctuations and the reaction rate. Our results confirm the importance of the flexible loop in CAD's DHOase domain and explain the key role of Phe-1563 in configuring the active site and in promoting substrate strain and catalysis.


Asunto(s)
Aspartato Carbamoiltransferasa/química , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/química , Dihidroorotasa/química , Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Catálisis , Dominio Catalítico , Dihidroorotasa/genética , Humanos , Simulación de Dinámica Molecular , Mutagénesis , Mutación , Fenilalanina/química , Conformación Proteica , Dominios Proteicos
16.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100185

RESUMEN

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Asunto(s)
Genómica , Metabolómica , Neoplasias/patología , Urea/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animales , Aspartato Carbamoiltransferasa/genética , Aspartato Carbamoiltransferasa/metabolismo , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Línea Celular Tumoral , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Proteínas de Transporte de Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferasa/antagonistas & inhibidores , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Fosforilación/efectos de los fármacos , Pirimidinas/biosíntesis , Pirimidinas/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
17.
Cell Death Dis ; 8(10): e3062, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28981092

RESUMEN

Chemotherapy drugs interfere with cellular processes to generate genotoxic lesions that activate cell death pathways. Sustained DNA damage induced by these drugs can provoke mutations in surviving non-cancerous cells, potentially increasing the risk of therapy-related cancers. Ligation of death receptors by ligands such as TRAIL, and subsequent activation of extrinsic apoptotic pathways, also provokes mutations. In this study, we show that executioner caspase activation of the apoptotic nuclease CAD/DFF40 is essential for TRAIL-induced mutations in surviving cells. As exposure to chemotherapy drugs also activates apoptotic caspases and presumably CAD, we hypothesized that these pathways may also contribute to the mutagenesis induced by conventional chemotherapy drugs, perhaps augmenting the mutations that arise from direct DNA damage provoked by these agents. Interestingly, vincristine-mediated mutations were caspase and CAD dependent. Executioner caspases accounted for some of the mutations caused by the topoisomerase poisons doxorubicin and SN38, but were dispensable for mutagenesis following treatment with cisplatin or temozolomide. These data highlight a non-apoptotic role of caspases in mutagenesis mediated by death receptor agonists, microtubule poisons and topoisomerase inhibitors, and provide further evidence for a potential carcinogenic consequence of sublethal apoptotic signaling stimulated by anticancer therapies.


Asunto(s)
Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Caspasas/genética , Dihidroorotasa/genética , Neoplasias/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Apoptosis/efectos de los fármacos , Camptotecina/administración & dosificación , Camptotecina/efectos adversos , Camptotecina/análogos & derivados , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Daño del ADN/efectos de los fármacos , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Dacarbazina/análogos & derivados , Doxorrubicina/administración & dosificación , Doxorrubicina/efectos adversos , Activación Enzimática/efectos de los fármacos , Humanos , Irinotecán , Mutagénesis/efectos de los fármacos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Temozolomida , Vincristina/administración & dosificación , Vincristina/efectos adversos
18.
Protein J ; 36(4): 361-373, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28660315

RESUMEN

The gene that codes for the putative dihydroorotase in the hyperthermophilic archaeon Methanococcus jannaschii was subcloned in pET-21a and expressed in Escherichia coli. A purification protocol was devised. The purity of the protein was evaluated by SDS-PAGE and the protein was confirmed by sequencing using LC-MS. The calculated molecular mass is 48104 Da. SEC-LS suggested that the protein is a monomer in solution. ICP-MS showed that there are two Zn ions per monomer. Kinetic analysis of the recombinant protein gave hyperbolic kinetics with Vmax = 12.2 µmol/min/mg and Km = 0.14 mM at 25 °C. Furthermore the activity of the protein increased with temperature consistent with the hyperthermophilic nature of the organism. A homology model was constructed using the mesophilic Bacillus anthracis protein as the template. Residues known to be critical for Zn and substrate binding were conserved. The activity of the enzyme at 85 and 90 °C was found to be relatively constant over 160 min and this correlates with the temperature of optimal growth of the organism of 85 °C. The amino acid sequences and structures of the two proteins were compared and this gave insight into some of the factors that may confer thermostability-more Lys and Ile, fewer Ala, Thr, Gln and Gly residues, and shorter N- and C-termini. Additional and better insight into the thermostabilization strategies adopted by this enzyme will be provided when its crystal structure is determined.


Asunto(s)
Proteínas Arqueales/química , Dihidroorotasa/química , Methanocaldococcus/química , Zinc/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacillus anthracis/química , Bacillus anthracis/enzimología , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Methanocaldococcus/enzimología , Peso Molecular , Sistemas de Lectura Abierta , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica , Transformación Bacteriana , Zinc/metabolismo
19.
Structure ; 25(6): 912-923.e5, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28552578

RESUMEN

CAD, the multifunctional protein initiating and controlling de novo biosynthesis of pyrimidines in animals, self-assembles into ∼1.5 MDa hexamers. The structures of the dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains of human CAD have been previously determined, but we lack information on how these domains associate and interact with the rest of CAD forming a multienzymatic unit. Here, we prove that a construct covering human DHO and ATC oligomerizes as a dimer of trimers and that this arrangement is conserved in CAD-like from fungi, which holds an inactive DHO-like domain. The crystal structures of the ATC trimer and DHO-like dimer from the fungus Chaetomium thermophilum confirm the similarity with the human CAD homologs. These results demonstrate that, despite being inactive, the fungal DHO-like domain has a conserved structural function. We propose a model that sets the DHO and ATC complex as the central element in the architecture of CAD.


Asunto(s)
Aspartato Carbamoiltransferasa/química , Aspartato Carbamoiltransferasa/metabolismo , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/química , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Dihidroorotasa/química , Dihidroorotasa/metabolismo , Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato/química , Carbamoil Fosfato/metabolismo , Chaetomium/enzimología , Cristalografía por Rayos X , Dihidroorotasa/genética , Humanos , Microscopía Electrónica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Multimerización de Proteína , Pirimidinas/biosíntesis
20.
Ann Oncol ; 28(6): 1302-1308, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368455

RESUMEN

BACKGROUND: Monitoring response and resistance to kinase inhibitors is essential to precision cancer medicine, and is usually investigated by molecular profiling of a tissue biopsy obtained at progression. However, tumor heterogeneity and tissue sampling bias limit the effectiveness of this strategy. In addition, tissue biopsies are not always feasible and are associated with risks due to the invasiveness of the procedure. To overcome these limitations, blood-based liquid biopsy analysis has proven effective to non-invasively follow tumor clonal evolution. PATIENTS AND METHODS: We exploited urine cell-free, trans-renal DNA (tr-DNA) and matched plasma circulating tumor DNA (ctDNA) to monitor a metastatic colorectal cancer patient carrying a CAD-ALK translocation during treatment with an ALK inhibitor. RESULTS: Using a custom next generation sequencing panel we identified the genomic CAD-ALK rearrangement and a TP53 mutation in plasma ctDNA. Sensitive assays were developed to detect both alterations in urine tr-DNA. The dynamics of the CAD-ALK rearrangement in plasma and urine were concordant and paralleled the patient's clinical course. Detection of the CAD-ALK gene fusion in urine tr-DNA anticipated radiological confirmation of disease progression. Analysis of plasma ctDNA identified ALK kinase mutations that emerged during treatment with the ALK inhibitor entrectinib. CONCLUSION: We find that urine-based genetic testing allows tracing of tumor-specific oncogenic rearrangements. This strategy could be effectively applied to non-invasively monitor tumor evolution during therapy. The same approach could be exploited to monitor minimal residual disease after surgery with curative intent in patients whose tumors carry gene fusions. The latter could be implemented without the need of patient hospitalization since urine tr-DNA can be self-collected, is stable over time and can be shipped at specified time-points to central labs for testing.


Asunto(s)
Aspartato Carbamoiltransferasa/genética , Benzamidas/uso terapéutico , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Dihidroorotasa/genética , Reordenamiento Génico , Indazoles/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico , Biomarcadores de Tumor , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/orina , Resistencia a Antineoplásicos , Femenino , Fusión Génica , Humanos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos , Proteínas Tirosina Quinasas Receptoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA