Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273518

RESUMEN

Cladosporium cladosporioides are the pigmented soil fungi containing melanin. The aim of this work was to determine the influence of amphotericin B on free radicals in the natural melanin isolated from pigmented fungi Cladosporium cladosporioides and to compare it with the effect in synthetic DOPA-melanin. Electron paramagnetic resonance (EPR) spectra were measured at X-band (9.3 GHz) with microwave power in the range of 2.2-70 mW. Amplitudes, integral intensities, linewidths of the EPR spectra, and g factors, were analyzed. The concentrations of free radicals in the tested melanin samples were determined. Microwave saturation of EPR lines indicates the presence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. o-Semiquinone free radicals in concentrations ~1020 [spin/g] exist in the tested melanin samples and in their complexes with amphotericin B. Changes in concentrations of free radicals in the examined synthetic and natural melanin point out their participation in the formation of amphotericin B binding to melanin. A different influence of amphotericin B on free radical concentration in Cladosporium cladosporioides melanin and in DOPA-melanin may be caused by the occurrence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. The advanced spectral analysis in the wide range of microwave powers made it possible to compare changes in the free radical systems of different melanin polymers. This study is important for knowledge about the role of free radicals in the interactions of melanin with drugs.


Asunto(s)
Anfotericina B , Cladosporium , Melaninas , Melaninas/metabolismo , Cladosporium/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Anfotericina B/farmacología , Radicales Libres/metabolismo , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Dihidroxifenilalanina/análogos & derivados
2.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3083-3102, 2024 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-39319726

RESUMEN

Tyrosinase is a copper-containing polyphenol oxidase widely applied in the food, cosmetics, pharmaceutical, and other industries. Currently, the production of commercial tyrosinase primarily relies on extraction from fungi, which has high costs, low purity, low specific activity, and poor stability. The objective of this study is to obtain highly expressed bacterial tyrosinase with potential for industrial applications. The bacterial tyrosinases from five different sources were heterologously expressed in Escherichia coli BL21(DE3), and the tyrosinases TyrBm and TyrVs derived from Bacillus megaterium and Verrucomicrobium spinosum were obtained with the enzyme activities of (16.1±0.2) U/mL and (48.6±0.9) U/mL, respectively. After protein purification, we compared the enzymatic properties of TyrBm and TyrVs, which revealed that TyrVs exhibited better thermal stability and higher substrate specificity than TyrBm. On the basis of characterizing TyrVs with high catalytic performance, we established a biological hair dyeing system based on TyrVs catalysis to achieve in-situ catalytic hair dyeing. The color washing fastness test measured the ∆E value less than 7.38±0.64 after simulated 14-day cleaning. To facilitate the rapid separation of catalytic products and enzymes, we successfully constructed an immobilized enzyme TyrVs-CipA dependent on self-assembly label CipA and applied this enzyme in the DOPA modification of hydrolyzed silk fibroin (HSF). The immobilized enzyme continuously catalyzed HSF for more than seven cycles, resulting in a single DOPA modification degree exceeding 70.00%. Further investigations demonstrated that DOPA modification enhances the scavenging activity of HSF towards DPPH and O2- radicals by 507.80% and 78.23%, respectively. This study provides a technical foundation for the development of environmentally friendly biological hair dye based on tyrosinase and biomaterials for tissue engineering.


Asunto(s)
Bacillus megaterium , Escherichia coli , Fibroínas , Monofenol Monooxigenasa , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Bacillus megaterium/enzimología , Bacillus megaterium/genética , Fibroínas/química , Fibroínas/biosíntesis , Fibroínas/genética , Fibroínas/metabolismo , Dihidroxifenilalanina/metabolismo , Dihidroxifenilalanina/química , Dihidroxifenilalanina/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Colorantes/metabolismo , Colorantes/química , Hidrólisis
3.
Sci Rep ; 14(1): 20564, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232139

RESUMEN

High molecular weight polyethylenimine (HMW PEI; branched 25 kDa PEI) has been widely investigated for gene delivery due to its high transfection efficiency. However, the toxicity and lack of targeting to specific cells have limited its clinical application. In the present investigation, L-3, 4-dihydroxyphenylalanine (L-DOPA) was conjugated on HMW PEI in order to target L-type amino acid transporter 1 (LAT-1) and modulate positive charge density on the surface of polymer/plasmid complexes (polyplexes). The results of biophysical characterization revealed that the PEI conjugates are able to form nanoparticles ≤ 180 nm with the zeta potential ranging from + 9.5-12.4 mV. These polyplexes could condense plasmid DNA and protect it against nuclease digestion at the carrier to plasmid ratios higher than 4. L-DOPA conjugated PEI derivatives were complexed with a plasmid encoding human interleukin-12 (hIL-12). Targeted polyplexes showed up to 2.5 fold higher transfection efficiency in 4T1 murine mammary cancer cell line, which expresses LAT-1, than 25 kDa PEI polyplexes prepared in the same manner. The cytotoxicity of these polyplexes was also substantially lower than the unmodified parent HMW PEI. These results support the use of L-3, 4-dihydroxyphenylalanine derivatives of PEI in any attempt to develop a LAT-1 targeted gene carrier.


Asunto(s)
Peso Molecular , Plásmidos , Polietileneimina , Polietileneimina/química , Plásmidos/genética , Plásmidos/química , Animales , Ratones , Línea Celular Tumoral , Humanos , Dihidroxifenilalanina/química , Transfección/métodos , Técnicas de Transferencia de Gen , Interleucina-12/metabolismo , Interleucina-12/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Nanopartículas/química , ADN/química
4.
Anal Chim Acta ; 1322: 342995, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182984

RESUMEN

Chirality, an inherent characteristic of natural substances (such as sugars, peptides, proteins, and nucleic acid), plays a vital role in human metabolism and exerts substantial impacts. In general, chiral drugs can display diverse pharmacological and pharmacokinetic properties. One enantiomer may exhibit therapeutic effects, while the other could cause adverse reactions. Selective recognition of enantiomers is thus a significant task in the biomolecular and pharmaceutical fields. Despite the development of several chiral identification techniques, low-cost enantioselective sensing methods remain highly desirable. Here, we designed and developed an electrochemical sensing device for reductive enantiomer identification using natural wood channels as the substrate. The wood channels were endowed with oxidase-like activity through the in-situ growth of cerium oxide nanoparticles (CeO2). Chiral recognition capability was further introduced by incorporating a layer of chiral ZIF-8 (L-ZIF) as the chiral selector. To demonstrate the enantioselective sensing performance, 3,4-dihydroxyphenylalanine (DOPA) enantiomers were employed as model analytes. Due to the oxidase-like activity and the confinement effect of the proposed channels, the captured DOPA enantiomers were effectively oxidized to their quinone structure, and the Ce(IV) in CeO2 was reduced to Ce(III). These changes led to alterations in the surface charge of the channels, thereby modulating their ionic transport properties. This sensing mechanism also proved useful for the identification of other reductive enantiomers. The limits of detection for l-DOPA and d-DOPA were determined as 2.41 nM and 1.56 nM, respectively. The resulting wood channel-based sensing device not only can be used for the recognition and detection of reductive enantiomers, but also is expected to be applied to the non-electochemically active substances. Moreover, this study offers a novel type of solid-state channel material with low cost, reproducibility, and easy accessibility for electrochemical chiral sensing.


Asunto(s)
Cerio , Técnicas Electroquímicas , Oxidación-Reducción , Estereoisomerismo , Cerio/química , Dihidroxifenilalanina/química , Dihidroxifenilalanina/análogos & derivados , Madera/química , Nanopartículas/química
5.
Macromol Rapid Commun ; 45(20): e2400276, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39031940

RESUMEN

Lubricant-infused slippery surfaces have recently emerged as promising antifouling coatings, showing potential against proteins, cells, and marine mussels. However, a comprehensive understanding of the molecular binding behaviors and interaction strength of foulants to these surfaces is lacking. In this work, mussel-inspired chemistry based on catechol-containing chemicals including 3,4-dihydroxyphenylalanine (DOPA) and polydopamine (PDA) is employed to investigate the antifouling performance and repellence mechanisms of fluorinated-based slippery surface, and the correlated interaction mechanisms are probed using atomic force microscopy (AFM). Intermolecular force measurements and deposition experiments between PDA and the surface reveal the ability of lubricant film to inhibit the contact of PDA particles with the substrate. Moreover, the binding mechanisms and bond dissociation energy between a single DOPA moiety and the lubricant-infused slippery surface are quantitatively investigated employing single-molecule force spectroscopy based on AFM (SM-AFM), which reveal that the infused lubricant layer can remarkably influence the dissociation forces and weaken the binding strength between DOPA and underneath per-fluorinated monolayer surface. This work provides new nanomechanical insights into the fundamental antifouling mechanisms of the lubricant-infused slippery surfaces against mussel-derived adhesive chemicals, with important implications for the design of lubricant-infused materials and other novel antifouling platforms for various bioengineering and engineering applications.


Asunto(s)
Bivalvos , Dihidroxifenilalanina , Indoles , Lubricantes , Microscopía de Fuerza Atómica , Polímeros , Propiedades de Superficie , Polímeros/química , Indoles/química , Dihidroxifenilalanina/química , Bivalvos/química , Animales , Lubricantes/química , Adhesivos/química , Incrustaciones Biológicas/prevención & control
6.
Bioconjug Chem ; 35(8): 1160-1165, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39023912

RESUMEN

Photoredox is a powerful synthetic tool in organic chemistry and has been widely used in various fields, including nuclear medicine and molecular imaging. In particular, acridinium-based organophotoredox radiolabeling has significantly impacted the production and discovery of positron emission tomography (PET) agents. Despite their extensive use in preclinical research, no PET agents synthesized by acridinium photoredox labeling have been tested in humans. [18F]FDOPA is clinically used for tumor diagnosis and the evaluation of neuropsychiatric disorders, but its application is limited by complex synthesis methods, the need for expensive modules, and/or the high cost of consumable materials/cassettes. In this report, we integrated a photoredox labeling unit with an automated module and produced [18F]FDOPA for human study. This research not only represents the first human study of a PET agent generated by acridinium-based organophotoredox reactions but also demonstrates the safety of this novel labeling method, serving as a milestone/reference for the clinical translation of other PET agents generated by this technique in the future.


Asunto(s)
Dihidroxifenilalanina , Oxidación-Reducción , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Dihidroxifenilalanina/análogos & derivados , Dihidroxifenilalanina/química , Radiofármacos/química , Radiofármacos/síntesis química , Acridinas/química , Procesos Fotoquímicos , Radioisótopos de Flúor/química
7.
J Chromatogr A ; 1731: 465199, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39053252

RESUMEN

The success of polymerase chain reaction (PCR) depends on the quality of deoxyribonucleic acid (DNA) templates. This study developed a cost-effective and eco-friendly DNA extraction system utilizing poly(3,4-dihydroxyphenylalanine)-modified cellulose paper (polyDOPA@paper). PolyDOPA@paper was prepared by oxidatively self-polymerizing DOPA under weak alkaline conditions and utilizing the adhesive property of polyDOPA on different materials. Compared to the uncoated cellulose paper, polyDOPA coating significantly enhances DNA adsorption owing to its abundant amino, carboxyl, and hydroxyl moieties. The DNA extraction mechanism using polyDOPA@paper was discussed. The maximum adsorption capacity of polyDOPA@paper for DNA was 20.7 µg cm-2. Moreover, an automated extraction system was designed and fabricated using 3D printing technology. The device simplifies the operation and ensures the reproducibility and consistency of the results. More importantly, it eliminates the need for specialized training of operators. The feasibility of the polyDOPA@paper-based automated extraction system was evaluated by quantitatively detecting Escherichia coli in spiked milk samples via a real-time PCR. The detection limit was 102 cfu mL-1. The results suggest that the system would have significant potential in detecting pathogens.


Asunto(s)
Celulosa , Dihidroxifenilalanina , Límite de Detección , Leche , Papel , Polímeros , Celulosa/química , Celulosa/análogos & derivados , Adsorción , Dihidroxifenilalanina/química , Dihidroxifenilalanina/aislamiento & purificación , Dihidroxifenilalanina/análogos & derivados , Polímeros/química , Leche/química , Escherichia coli , Animales , Reproducibilidad de los Resultados , ADN/aislamiento & purificación , ADN/química , Impresión Tridimensional , Reacción en Cadena en Tiempo Real de la Polimerasa , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/análisis
8.
Pigment Cell Melanoma Res ; 37(6): 769-782, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38803190

RESUMEN

Melanin, particularly eumelanin, is commonly viewed as an efficient antioxidant and photoprotective pigment. Nonetheless, the ability of melanin to photogenerate reactive oxygen species and sensitize the formation of cyclobutane pyrimidine dimers may contribute to melanin-dependent phototoxicity. The phototoxic potential of melanin depends on a variety of factors, including molecular composition, redox state, and degree of aggregation. Using complementary spectroscopic and analytical methods we analyzed the physicochemical properties of Dopa-melanin, a synthetic model of eumelanin, subjected to oxidative degradation induced by aerobic photolysis or exposure to 0.1 M hydrogen peroxide. Both modes of oxidative degradation were accompanied by dose-dependent bleaching of melanin and irreversible modifications of its paramagnetic, ion- and electron-exchange and antioxidant properties. Bleached melanin exhibited enhanced efficiency to photogenerate singlet oxygen in both UVA and short-wavelength visible light. Although chemical changes of melanin subunits, including a relative increase of DHICA content and disruption of melanin polymer induced by oxidative degradation were considered, these two mechanisms may not be sufficient for a satisfactory explanation of the elevated photosensitizing ability of the bleached eumelanin. This study points out possible adverse changes in the photoprotective and antioxidant properties of eumelanin that could occur in pigmented tissues after exposure to high doses of intense solar radiation.


Asunto(s)
Melaninas , Oxidación-Reducción , Melaninas/química , Melaninas/metabolismo , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Luz , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Fotólisis , Rayos Ultravioleta , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/metabolismo
9.
ACS Appl Mater Interfaces ; 16(23): 30117-30127, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38820308

RESUMEN

Ceria (CeO2) nanoparticles with haloperoxidase (HPO)-like activity have gained attention as a biologically benign antifoulant. 3,4-Dihydroxy-l-phenylalanine (DOPA), a main composition in mussel foot proteins, plays a crucial role in the biofouling process. However, the impact on the HPO-like activity and antifouling performance of CeO2 nanoparticles when DOPA molecules adsorb on them remains unexplored. This interesting question warrants investigation, particularly considering that it may occur in an actual marine environment. Herein, the interaction between DOPA and CeO2 is explored. Despite the higher Ce3+ fractions and the lower band gap energies due to the electron transfer from DOPA to the CeO2 surface, DOPA still had a slightly negative effect on the HPO-like activity of CeO2 since they decreased the exposed Ce3+ sites. The DOPA-CeO2 nanocomposites with HPO-like activities could kill bacteria and trigger quorum-sensing signaling quenching, achieving a biofilm inhibition performance. Amazingly, 0.1% DOPA-CeO2 nanocomposite exhibited higher antibacterial activity and better biofilm suppression activities due to its HPO-like activity and positive zeta potential. The remarkable results demonstrated that DOPA, as a participant in the biofouling process, could enhance the antibacterial activity and antifouling performance of CeO2 nanoparticles at an appropriate concentration.


Asunto(s)
Antibacterianos , Biopelículas , Cerio , Peroxidasas , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Cerio/química , Cerio/farmacología , Dihidroxifenilalanina/química , Dihidroxifenilalanina/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Peroxidasas/metabolismo , Peroxidasas/química , Percepción de Quorum/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
10.
Org Lett ; 26(20): 4308-4313, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38728659

RESUMEN

In this study, we introduce a practical methodology for the synthesis of PET probes by seamlessly combining flow chemistry with photoredox radiofluorination. The clinical PET tracer 6-[18F]FDOPA was smoothly prepared in a 24.3% non-decay-corrected yield with over 99.0% radiochemical purity (RCP) and enantiomeric excess (ee), notably by a simple cartridge-based purification. The flow chemistry-enhanced photolabeling method supplies an efficient and versatile solution for the synthesis of 6-[18F]FDOPA and for more PET tracer development.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radioisótopos de Flúor/química , Estructura Molecular , Radiofármacos/química , Radiofármacos/síntesis química , Oxidación-Reducción , Dihidroxifenilalanina/química , Dihidroxifenilalanina/síntesis química , Dihidroxifenilalanina/análogos & derivados , Procesos Fotoquímicos , Halogenación
11.
J Food Sci ; 89(6): 3554-3568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660920

RESUMEN

Lotus rhizome is an important aquatic vegetable, but the blackening of lotus rhizome epidermis (LRE) seriously affects its appearance and quality, which makes lotus rhizome products unmarketable. In this study, the effects of polyphenols and iron on the LRE color were studied to explore the possible mechanism of LRE blackening. Results indicated that the measurable total phenols contents in the mud treatment (MT) group were significantly reduced, and the total iron contents were significantly increased compared with the bruised treatment group (p < 0.05). The high-performance liquid chromatography results showed that the main polyphenols in LRE were dopa, gallocatechin, and catechin, as well as a small amount of catechol, epicatechin, proanthocyanidin B2, and proanthocyanidin C1. Moreover, the results of color difference and ultraviolet adsorption spectroscopy showed that there were obviously black or brown-gray of dopa (525 nm), gallocatechin (504.5 nm), and catechin (550 and 504.5 nm) with FeCl2. The simulated system treatment of LRE further confirmed that the chromaticity effect of dopa and iron in bruised LRE was similar to that of the MT group, whereas 1% (w/w) ascorbic acid, 2% (w/w) EDTA-2Na, or 3% (w/w) citric acid could solely prohibit the blackening. This suggested that the dopa in LRE and FeCl2 in mud may mainly combine into [2(DOPA-2H+)+Fe3+]- through non-covalent interaction, which leads to the blackening of bruised LRE under neutral conditions. These results can guide the storage of lotus rhizomes and improve the development of the lotus rhizome industry.


Asunto(s)
Catequina , Color , Hierro , Lotus , Polifenoles , Rizoma , Rizoma/química , Polifenoles/farmacología , Polifenoles/análisis , Hierro/análisis , Catequina/farmacología , Catequina/análisis , Lotus/química , Cromatografía Líquida de Alta Presión , Epidermis de la Planta/química , Proantocianidinas/farmacología , Proantocianidinas/análisis , Catecoles/farmacología , Dihidroxifenilalanina/química , Biflavonoides
12.
Protein Expr Purif ; 219: 106483, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38609025

RESUMEN

Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.


Asunto(s)
Dihidroxifenilalanina , Mytilus edulis , Animales , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Mytilus edulis/genética , Mytilus edulis/química , Mytilus edulis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/química , Proteínas/genética , Proteínas/química , Proteínas/aislamiento & purificación , Hidroxilación , Escherichia coli/genética , Escherichia coli/metabolismo
13.
Biomacromolecules ; 25(1): 379-387, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38108296

RESUMEN

Mussels are marine organisms that are capable of constructing an underwater adhesion between their bodies and rigid structures. It is well known that mussels achieve underwater adhesion through the presence of mussel adhesive proteins (MAPs) that contain high levels of 3,4-dihydroxyphenylalanine (DOPA). Although the extraordinary underwater adhesive properties of mussels are attributed to DOPA, its capacity to play a dual role in surface adhesion and internal cohesion is inherently limited. However, mussels employ a combination of chemical moieties, not just DOPA, along with anatomical components, such as plaque and byssus, in underwater adhesion. This also involves junction proteins that connect the plaque and byssus. In this study, a novel hybrid MAP was bioengineered via the fusion of the plaque protein (foot protein type 1) and the histidine-rich domain of the junction protein (foot protein type 4). To achieve direct adhesion underwater, the adhesive should maintain surface adhesion without disintegrating. Notably, the histidine-Zn-coordinated hybrid MAP hydrogel maintained a high surface adhesion ability even after cross-linking because of the preservation of its unoxidized and non-cross-linked DOPA moieties. The formulated adhesive hydrogel system based on the bioengineered hybrid MAP exhibited self-healing properties, owing to the reversible metal coordination bonds. The developed adhesive hydrogel exhibits outstanding levels of bulk adhesion in underwater environments, highlighting its potential as an effective adhesive biomaterial. Therefore, the introduction of histidine-rich domains into MAPs may be applied in various studies to formulate mussel-inspired adhesives with self-healing properties and to fully utilize the adhesive ability of DOPA.


Asunto(s)
Adhesivos , Bivalvos , Animales , Adhesivos/química , Histidina , Zinc , Hidrogeles , Proteínas/química , Dihidroxifenilalanina/química , Bivalvos/metabolismo
14.
Langmuir ; 39(49): 17903-17920, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039288

RESUMEN

Coral reef survival is threatened globally. One way to restore this delicate ecosystem is to enhance coral growth by the controlled propagation of coral fragments. To be sustainable, this technique requires the use of biocompatible underwater adhesives. Hydrogels based on rationally designed ultrashort self-assembling peptides (USP) are of great interest for various biological and environmental applications, due to their biocompatibility and tunable mechanical properties. Implementing superior adhesion properties to the USP hydrogel compounds is crucial in both water and high ionic strength solutions and is relevant in medical and marine environmental applications such as coral regeneration. Some marine animals secrete large quantities of the aminoacids dopa and lysine to enhance their adhesion to wet surfaces. Therefore, the addition of catechol moieties to the USP sequence containing lysine (IIZK) should improve the adhesive properties of USP hydrogels. However, it is challenging to place the catechol moiety (Do) within the USP sequence at an optimal position without compromising the hydrogel self-assembly process and mechanical properties. Here, we demonstrate that, among three USP hydrogels, DoIIZK is the least adhesive and that the adhesiveness of the IIZDoK hydrogel is compromised by its poor mechanical properties. The best adhesion outcome was achieved using the IIZKDo hydrogel, the only one to show equally sound adhesive and mechanical properties. A mechanistic understanding of this outcome is presented here. This property was confirmed by the successful gluing of coral fragments by means of IIZKDo hydrogel that are still thriving after more than three years since the deployment. The validated biocompatibility of this underwater hydrogel glue suggests that it could be advantageously implemented for other applications, such as surgical interventions.


Asunto(s)
Antozoos , Restauración y Remediación Ambiental , Hidrogeles , Animales , Adhesivos/química , Dihidroxifenilalanina/química , Ecosistema , Hidrogeles/química , Lisina , Péptidos
15.
Langmuir ; 39(49): 17600-17610, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039395

RESUMEN

Cation-π interaction is one of the most important noncovalent interactions identified in biosystems, which has been proven to play an essential role in the strong adhesion of marine mussels. In addition to the well-known catecholic amino acid, l-3,4-dihydroxyphenylalanine, mussel foot proteins are rich in various aromatic moieties (e.g., tyrosine, phenylalanine, and tryptophan) and cationic residues (e.g., lysine, arginine, and histidine), which favor a series of short-range cation-π interactions with adjustable strengths, serving as a prototype for the development of high-performance underwater adhesives. This work highlights our recent advances in understanding and utilizing cation-π interactions in underwater adhesives, focusing on three aspects: (1) the investigation of the cation-π interaction mechanisms in mussel foot proteins via force-measuring techniques; (2) the modulation of cation-π interactions in mussel mimetic polymers with the variation of cations, anions, and aromatic groups; (3) the design of wet adhesives based on these revealed principles, leading to functional materials in the form of films, coacervates, and hydrogels with biomedical and engineering applications. This review provides valuable insights into the development and optimization of smart materials based on cation-π interactions.


Asunto(s)
Materiales Biomiméticos , Bivalvos , Animales , Materiales Biomiméticos/química , Proteínas/química , Adhesivos/química , Dihidroxifenilalanina/química , Cationes/química , Bivalvos/química
16.
Macromol Rapid Commun ; 44(24): e2300300, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37657944

RESUMEN

Reconstructing functional sequence motifs of proteins, using statistical copolymers greatly reduces the information content, but simplifies synthesis significantly. Key amino acid residues involved in the adhesion of mussel foot proteins are identified. The side-chain functionalities of Dopa, lysine, and arginine are abstracted and incorporated into acrylate monomers to allow controlled radical polymerization. The resulting Dopa-acrylate (Y*-acr), arginine-acrylate (R-acr), and lysine-acrylate (K-acr) monomers are polymerized in different monomer ratios and compositions by reversible addition fragmentation transfer polymerization with a poly(ethylene glycol) (PEG) macrochain transfer agent. This results in two sets of PEG-block-copolymers with statistical mixtures and different monomer ratios of catechol/primary amine and catechol/guanidine side-chain functionalities, both important pairs for mimicking π-cation interactions. The coating behavior of these PEG-block-copolymers is evaluated using quartz crystal microbalance with dissipation energy monitoring (QCM-D), leading to non-covalent PEGylation of the substrates with clear compositional optima in the coating stability and antifouling properties. The coatings prevent non-reversible albumin or serum adsorption, as well as reduce cellular adhesion and fungal spore attachment.


Asunto(s)
Bivalvos , Lisina , Animales , Adhesivos , Polímeros , Dihidroxifenilalanina/química , Acrilatos , Arginina
17.
Angew Chem Int Ed Engl ; 62(24): e202216610, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37009775

RESUMEN

Here we uncover collagen, the main structural protein of all connective tissues, as a redox-active material. We identify dihydroxyphenylalanine (DOPA) residues, post-translational oxidation products of tyrosine residues, to be common in collagen derived from different connective tissues. We observe that these DOPA residues endow collagen with substantial radical scavenging capacity. When reducing radicals, DOPA residues work as redox relay: they convert to the quinone and generate hydrogen peroxide. In this dual function, DOPA outcompetes its amino acid precursors and ascorbic acid. Our results establish DOPA residues as redox-active side chains of collagens, probably protecting connective tissues against radicals formed under mechanical stress and/or inflammation.


Asunto(s)
Dihidroxifenilalanina , Tirosina , Dihidroxifenilalanina/química , Tirosina/química , Colágeno/química , Oxidación-Reducción , Aminoácidos/metabolismo
18.
Biomacromolecules ; 24(4): 1774-1783, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36952229

RESUMEN

3,4-Dihydroxyphenylalanine (DOPA), a naturally occurring yet noncanonical amino acid, endows protein polymers with diverse chemical reactivities and novel functionalities. Although many efforts have been made to incorporate DOPA into proteins, the incorporation efficiency and production titer remain low and severely hinder the exploration of these peculiar proteins for biomaterial fabrication. Here, we report an efficient biosynthetic strategy to produce large amounts of DOPA-incorporated structural proteins for the fabrication of hydrogels with tunable mechanical properties. First, synthetic genes were constructed that encode repetitive resilin-like proteins (RLPs) with varying proportions of tyrosine residues and molecular weights (Mw). Decoding of these genes into RLPs incorporated with DOPA was achieved via mis-aminoacylation of DOPA by endogenous tyrosyl-tRNA synthetase (TyrRS) in recombinant Escherichia coli cells. By developing a stoichiometry-guided two-phase culture strategy, we achieved independent control of the bacterial growth and protein synthesis phases. This enabled hyperproduction of the DOPA-incorporated RLPs at gram-per-liter levels and with a high DOPA incorporation yield of 76-85%. The purified DOPA-containing RLPs were then successfully cross-linked into bulk hydrogels via facile DOPA-Fe3+ complexations. Interestingly, these hydrogels exhibited viscoelastic and self-healing properties that are highly dependent on the catechol content and Mw of the RLPs. Finally, exploration of the molecular cross-linking mechanisms revealed that higher DOPA contents of the proteins would result in the concomitant occurrence of metal coordination and oxidative covalent cross-linking. In summary, our results suggest a useful platform to generate DOPA-functionalized protein materials and provide deeper insights into the gelation systems based on DOPA chemistry.


Asunto(s)
Dihidroxifenilalanina , Hidrogeles , Dihidroxifenilalanina/química , Hidrogeles/química , Proteínas de Insectos/química , Polímeros
19.
ACS Appl Bio Mater ; 6(2): 865-873, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36625035

RESUMEN

Synergistic interactions between 3,4-dihydroxyphenylalanine (Dopa, Y*), cationic residues, and the aromatic rings have been recently highlighted as influential factors that enhance the underwater adhesion strength of mussel foot proteins and their derivatives. In this study, we report the first ever evidence of a cation-catechol-benzene ternary synergy between Y*, lysine (Lys, K), and phenylalanine (Phe, F) in adhesive peptides. We synthesized three hexapeptides containing a different combination of Y*, K, and F, i.e., (KY*)3, (KF)3, and (KY*F)2, respectively, exploring the relationship between the cohesive performance and molecular architecture of peptides. The peptide with the (KY*F)2 sequence displays the strongest underwater cohesion energy of 10.3 ± 0.3 mJ m-2 from direct nanoscale surface force measurements. Combined with molecular dynamics simulation, we demonstrated that there are more bonding interactions (including cation-π, π-π, and hydrogen bond interactions) in (KY*F)2 compared to the other two peptides. In addition, peptide (KY*F)2 still shows the strongest cohesive energies of 7.6 ± 0.7 and 3.7 ± 0.5 mJ m-2 in acidic and high-ionic strength environments, respectively, although the cohesive energy decreases compared to the value in pure water. Our results further explain the underwater cohesion mechanisms combining multiple interactions and offer insights on designing Dopa containing underwater adhesives.


Asunto(s)
Dihidroxifenilalanina , Lisina , Lisina/química , Dihidroxifenilalanina/química , Péptidos/química , Proteínas/química , Adhesivos/química , Cationes
20.
Biomed Mater ; 18(1)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36537718

RESUMEN

Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.


Asunto(s)
Bivalvos , Células-Madre Neurales , Animales , Hidrogeles/química , Adhesivos/química , Proteínas/química , Polímeros/química , Dihidroxifenilalanina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA