Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.726
Filtrar
1.
Sci Rep ; 14(1): 10592, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719900

RESUMEN

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Asunto(s)
Antibacterianos , Cromatografía de Gases y Espectrometría de Masas , Hexanos , Fitoquímicos , Verduras , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/análisis , Verduras/química , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Hexanos/química , Apiaceae/química , Pruebas de Sensibilidad Microbiana , Derivados de Alilbenceno , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ácidos Grasos Insaturados/análisis , Staphylococcus aureus/efectos de los fármacos , Dioxolanos
2.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2117-2127, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812227

RESUMEN

Piperlongumine(PL), a natural alkaloid extracted from Piperis Longi Fructus, has attracted much attention in recent years because of its strong anti-tumor activity, little toxicity to normal cells, and excellent sensitizing effect combined with chemotherapy and radiotherapy, which endow PL with unique advantages as an anti-tumor drug. However, similar to other alkaloids, PL has low water solubility and poor bioavailability. To improve the application of PL in the clinical treatment of tumors, researchers have constructed various nano-drug delivery systems to increase the efficiency of PL delivery. This paper reviewed the physicochemical properties, anti-tumor mechanism, combined therapies, and nano-drug delivery systems of PL in recent years. The review aimed to provide a reference for further research on the anti-tumor effect and nano-drug delivery system of PL. Moreover, this review is expected to provide a reference for the development and application of PL in the anti-tumor therapies.


Asunto(s)
Dioxolanos , Neoplasias , Dioxolanos/química , Humanos , Animales , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Piperidonas
3.
BMC Microbiol ; 24(1): 180, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789974

RESUMEN

BACKGROUND: Cobweb disease is a fungal disease that commonly affects the cultivation and production of edible mushrooms, leading to serious yield and economic losses. It is considered a major fungal disease in the realm of edible mushrooms. The symptoms of cobweb disease were found during the cultivation of Lyophyllum decastes. This study aimed to identify the causative pathogen of cobweb disease and evaluate effective fungicides, providing valuable insights for field control and management of L. decastes cobweb disease. RESULTS: The causal agent of cobweb disease was isolated from samples infected and identified as Cladobotryum mycophilum based on morphological and cultural characteristics, as well as multi-locus phylogeny analysis (ITS, RPB1, RPB2, and TEF1-α). Pathogenicity tests further confirmed C. mycophilum as the responsible pathogen for this condition. Among the selected fungicides, Prochloraz-manganese chloride complex, Trifloxystrobin, tebuconazole, and Difenoconazole exhibited significant inhibitory effects on the pathogen's mycelium, with EC50 values of 0.076 µg/mL, 0.173 µg/mL, and 0.364 µg/mL, respectively. These fungicides can serve as references for future field control of cobweb disease in L. decastes. CONCLUSION: This study is the first report of C. mycophilum as the causing agent of cobweb disease in L. decastes in China. Notably, Prochloraz-manganese chloride complex demonstrated the strongest inhibitory efficacy against C. mycophilum.


Asunto(s)
Fungicidas Industriales , Filogenia , China , Fungicidas Industriales/farmacología , Agaricales/genética , Agaricales/efectos de los fármacos , Agaricales/clasificación , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Ascomicetos/clasificación , ADN de Hongos/genética , Triazoles/farmacología , Pruebas de Sensibilidad Microbiana , Estrobilurinas , Acetatos , Dioxolanos , Iminas
4.
Biomacromolecules ; 25(5): 2925-2933, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38691827

RESUMEN

A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.


Asunto(s)
Dióxido de Carbono , Cemento de Policarboxilato , Polimerizacion , Dióxido de Carbono/química , Cemento de Policarboxilato/química , Compuestos Epoxi/química , Óxido de Etileno/química , Ciclohexenos/química , Catálisis , Viscosidad , Dioxolanos
5.
J Biochem Mol Toxicol ; 38(6): e23740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779996

RESUMEN

The current study was focused on the anticancer activity of myristicin against MCF-7 human breast cancer (BC) cells. BC is the most common and leading malignant disease in women worldwide. Now-a-days, various conventional therapies are used against BC and still represent a chief challenge because those treatments fail to differentiate normal cells from malignant cells, and they have severe side effects also. So, there is a need develop new therapies to decrease BC-related morbidity and mortality. Myristicin, a 1­allyl­5­methoxy­3, 4­methylenedioxybenzene, is a main active aromatic compound present in various spices, such as nutmeg, mace, carrot, cinnamon, parsely and some essential oils. Myristicin has a wide range of effects, including antitumor, antioxidative and antimicrobial activity. Nevertheless, the effects of myristicin on human BC cells remain largely unrevealed. The cytotoxicity effect of myristicin on MCF­7 cells was increased dose dependently detected by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Lactate Dehydrogenase assays. Myristicin was found to be significantly inducing the cell apoptosis, as compared to control, using acridine orange/ethidium bromide, Hoechst stain and annexin V. Moreover, it activates cell antimigration, intracellular reactive oxygen species generation and cell cycle arrest in the G1/S phase. In addition, myristicin induces the expression of apoptosis and cell cycle genes (Caspases8, Bax, Bid, Bcl2, PARP, p53, and Cdk1) was demonstrated by quantitative polymerase chain reaction and apoptosis proteins (c-PARP, Caspase 9, Cytochrome C, PDI) expression was also analyzed with western blot. Overall, we illustrated that myristicin could regulate apoptosis signaling pathways in MCF-7 BC cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Humanos , Apoptosis/efectos de los fármacos , Células MCF-7 , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Dioxolanos/farmacología , Compuestos de Bencilo/farmacología , Derivados de Alilbenceno/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
6.
Environ Pollut ; 349: 123924, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580058

RESUMEN

The study evaluated Ceremonia 25 EC®, a plant protection product (PPP) containing difenoconazole, in tomato crops, to identify potential risks associated with PPPs, and in addition to this compound, known metabolites from difenoconazole degradation and co-formulants present in the PPP were monitored. An ultra high performance liquid chromatography coupled to quadrupole-Orbitrap mass analyser (UHPLC-Q-Orbitrap-MS) method was validated with a working range of 2 µg/kg (limit of quantification, LOQ) to 200 µg/kg. Difenoconazole degradation followed a biphasic double first-order in parallel (DFOP) kinetic model in laboratory and greenhouse trials, with high accuracy (R2 > 0.9965). CGA-205374, difenoconazole-alcohol, and hydroxy-difenoconazole metabolites were tentatively identified and semi-quantified in laboratory trials by UHPLC-Q-Orbitrap-MS from day 2 to day 30. No metabolites were found in greenhouse trials. Additionally, 13 volatile co-formulants were tentatively identified by gas chromatography (GC) coupled to Q-Orbitrap-MS, detectable up to the 7th day after PPP application. This study provides a comprehensive understanding of difenoconazole dissipation in tomatoes, identification of metabolites, and detection of co-formulants associated with the applied PPP.


Asunto(s)
Dioxolanos , Fungicidas Industriales , Solanum lycopersicum , Triazoles , Solanum lycopersicum/metabolismo , Solanum lycopersicum/química , Dioxolanos/metabolismo , Triazoles/metabolismo , Triazoles/análisis , Triazoles/química , Fungicidas Industriales/metabolismo , Fungicidas Industriales/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas/métodos , Contaminación de Alimentos/análisis , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/metabolismo
7.
Int J Biol Macromol ; 268(Pt 2): 131502, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626834

RESUMEN

Piperlonguminine (PLG) is a major alkaloid found in Piper longum fruits. It has been shown to possess a variety of biological activities, including anti-tumor, anti-hyperlipidemic, anti-renal fibrosis and anti-inflammatory properties. Previous studies have reported that PLG inhibits various CYP450 enzymes. The main objective of this study was to identify reactive metabolites of PLG in vitro and assess its ability to inhibit CYP450. In rat and human liver microsomal incubation systems exposed to PLG, two oxidized metabolites (M1 and M2) were detected. Additionally, in microsomes where N-acetylcysteine was used as a trapping agent, N-acetylcysteine conjugates (M3, M4, M5 and M6) of four isomeric O-quinone-derived reactive metabolites were found. The formation of metabolites was dependent on NADPH. Inhibition and recombinant CYP450 enzyme incubation experiments showed that CYP3A4 was the primary enzyme responsible for the metabolic activation of PLG. This study characterized the O-dealkylated metabolite (M1) through chemical synthesis. The IC50 shift assay showed time-dependent inhibition of CYP3A4, 2C9, 2E1, 2C8 and 2D6 by PLG. This research contributes to the understanding of PLG-induced enzyme inhibition and bioactivation.


Asunto(s)
Activación Metabólica , Citocromo P-450 CYP3A , Dioxolanos , Microsomas Hepáticos , Animales , Humanos , Citocromo P-450 CYP3A/metabolismo , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Ratas , Dioxolanos/farmacología , Dioxolanos/química , Inhibidores del Citocromo P-450 CYP3A/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Masculino , Piperidonas , Benzodioxoles
8.
J Food Drug Anal ; 32(1): 1-20, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38526593

RESUMEN

Liver fibrosis occurs due to injury or inflammation, which results in the excessive production of collagen and the formation of fibrotic scar tissue that impairs liver function. Despite the limited treatment options available, freshwater clams may hold promise in the treatment of liver fibrosis. In this study, we demonstrated the effects of ethanol extract of freshwater clam (FCE), ethyl acetate extract of FCE (EA-FCE), and trans-2-nonadecyl-4-(hydroxymethyl)-1,3-dioxolane (TNHD) on liver fibrosis induced by dimethylnitrosamine (DMN). Administration of FCE and TNHD alleviated liver injury, including tissue damage, necrosis, inflammation scores, fibrosis scores, serum enzymes, and triglyceride levels. Furthermore, we analyzed the expression of fibrosis-related proteins, such as α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-ß), as well as the hydroxyproline content, which decreased after treatment with FCE and TNHD. Animal experiments revealed that FCE and TNHD can reduce liver fibrosis by inhibiting cytokines that activate stellate cells and decreasing extracellular matrix (ECM) secretion. Cell experiments have shown that TNHD inhibits the MAPK/Smad signaling pathway and TGF-ß1 activation, resulting in a reduction in the expression of fibrosis-related proteins. Therefore, freshwater clam extracts, particularly TNHD, may have potential therapeutic and preventive effects for the amelioration of liver fibrosis.


Asunto(s)
Bivalvos , Dimetilnitrosamina , Dioxolanos , Animales , Dimetilnitrosamina/toxicidad , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Bivalvos/genética , Inflamación
9.
Artículo en Inglés | MEDLINE | ID: mdl-38442785

RESUMEN

Difenoconazole (DFZ) is a widely used triazole fungicide in agricultural production. However, the presence of DFZ residue in the environment poses a significant risk to non-target organisms. Ferulic acid (FA) is a phenolic compound known for its antioxidant and anti-inflammatory properties. This study aims to investigate the hepatic damage caused by DFZ in carp and explore the mechanism through which FA alleviates this damage. The findings revealed that FA enhanced the antioxidant capability of the carp's liver and reduced the accumulation of reactive oxygen species (ROS) in the liver tissue. Moreover, FA regulated the transcriptional levels of inflammation-related factors, effectively preventing the inflammatory response triggered by the NF-κB signaling pathway. Additionally, TUNEL results demonstrated that DFZ initiated apoptosis, while dietary supplementation with FA decreased the protein expression levels of Bax and Cytochrome C (Cyt c) and the transcriptional levels of bax, caspase3, caspase9, p53 genes. Furthermore, FA increased the protein expression and transcriptional levels of Bcl-2. In conclusion, FA protects against liver injury induced by DFZ exposure in carp by modulating oxidative damage, inflammation, and apoptosis.


Asunto(s)
Carpas , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ácidos Cumáricos , Dioxolanos , Animales , Antioxidantes/farmacología , Proteína X Asociada a bcl-2 , Estrés Oxidativo , Inflamación/inducido químicamente , Triazoles/toxicidad , Apoptosis
10.
Adv Ther ; 41(4): 1351-1371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443647

RESUMEN

Stiripentol (Diacomit®) (STP) is an orally active antiseizure medication (ASM) indicated as adjunctive therapy, for the treatment of seizures associated with Dravet syndrome (DS), a severe form of childhood epilepsy, in conjunction with clobazam and, in some regions valproic acid. Since the discovery of STP, several mechanisms of action (MoA) have been described that may explain its specific effect on seizures associated with DS. STP is mainly considered as a potentiator of gamma-aminobutyric acid (GABA) neurotransmission: (i) via uptake blockade, (ii) inhibition of degradation, but also (iii) as a positive allosteric modulator of GABAA receptors, especially those containing α3 and δ subunits. Blockade of voltage-gated sodium and T-type calcium channels, which is classically associated with anticonvulsant and neuroprotective properties, has also been demonstrated for STP. Finally, several studies indicate that STP could regulate glucose energy metabolism and inhibit lactate dehydrogenase. STP is also an inhibitor of several cytochrome P450 enzymes involved in the metabolism of other ASMs, contributing to boost their anticonvulsant efficacy as add-on therapy. These different MoAs involved in treatment of DS and recent data suggest a potential for STP to treat other neurological or non-neurological diseases.


Asunto(s)
Dioxolanos , Epilepsias Mioclónicas , Humanos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Dioxolanos/farmacología , Dioxolanos/uso terapéutico , Convulsiones/tratamiento farmacológico , Epilepsias Mioclónicas/tratamiento farmacológico , Ácido gamma-Aminobutírico
11.
Transl Res ; 268: 63-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499286

RESUMEN

Cisplatin alone or in combination with 5FU and docetaxel is the preferred chemotherapy regimen for advanced-stage OSCC patients. However, its use has been linked to recurrence and metastasis due to the development of drug resistance. Therefore, sensitization of cancer cells to conventional chemotherapeutics can be an effective strategy to overcome drug resistance. Piperlongumine (PL), an alkaloid, have shown anticancer properties and sensitizes numerous neoplasms, but its effect on OSCC has not been explored. However, low aqueous solubility and poor pharmacokinetics limit its clinical application. Therefore, to improve its therapeutic efficacy, we developed piperlongumine-loaded PLGA-based smart nanoparticles (smart PL-NPs) that can rapidly release PL in an acidic environment of cancer cells and provide optimum drug concentrations to overcome chemoresistance. Our results revealed that smart PL-NPs has high cellular uptake in acidic environment, facilitating the intracellular delivery of PL and sensitizing cancer cells to cisplatin, resulting in synergistic anticancer activity in vitro by increasing DNA damage, apoptosis, and inhibiting drug efflux. Further, we have mechanistically explored the Hippo-YAP signaling pathway, which is the critical mediator of chemoresistance, and investigated the chemosensitizing effect of PL in OSCC. We observed that PL alone and in combination with cisplatin significantly inhibits the activation of YAP and its downstream target genes and proteins. In addition, the combination of cisplatin with smart PL-NPs significantly inhibited tumor growth in two preclinical models (patient-derived cell based nude mice and zebrafish xenograft). Taken together, our findings suggest that smart PL-NPs with cisplatin will be a novel formulation to reverse cisplatin resistance in patients with advanced OSCC.


Asunto(s)
Cisplatino , Dioxolanos , Resistencia a Antineoplásicos , Vía de Señalización Hippo , Neoplasias de la Boca , Nanopartículas , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Cisplatino/farmacología , Nanopartículas/química , Dioxolanos/farmacología , Dioxolanos/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Pez Cebra , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Factores de Transcripción/metabolismo , Ratones Desnudos , Ratones , Proteínas Señalizadoras YAP , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Piperidonas
12.
Epilepsia Open ; 9(2): 689-703, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38427284

RESUMEN

OBJECTIVES: Stiripentol, fenfluramine, and cannabidiol are licensed add-on therapies to treat seizures in Dravet Syndrome (DS). There are no direct or indirect comparisons assessing their full licensed dose regimens, across different jurisdictions, as first-line add-on therapies in DS. METHODS: We conducted a systematic review and frequentist network meta-analysis (NMA) of randomized controlled trial (RCT) data for licensed add-on DS therapies. We compared the proportions of patients experiencing: reductions from baseline in monthly convulsive seizure frequency (MCSF) of ≥50% (clinically meaningful), ≥75% (profound), and 100% (seizure-free); serious adverse events (SAEs); discontinuations due to AEs. RESULTS: We identified relevant data from two placebo-controlled RCTs for each drug. Stiripentol 50 mg/kg/day and fenfluramine 0.7 mg/kg/day had similar efficacy in achieving ≥50% (clinically meaningful) and ≥75% (profound) reductions from baseline in MCSF (absolute risk difference [RD] for stiripentol versus fenfluramine 1% [95% confidence interval: -20% to 22%; p = 0.93] and 6% [-15% to 27%; p = 0.59], respectively), and both were statistically superior (p < 0.05) to licensed dose regimens of cannabidiol (10 or 20 mg/kg/day, with/irrespective of clobazam) for these outcomes. Stiripentol was statistically superior in achieving seizure-free intervals compared to fenfluramine (RD = 26% [CI: 8% to 44%; p < 0.01]) and licensed dose regimens of cannabidiol. There were no significant differences in the proportions of patients experiencing SAEs. The risk of discontinuations due to AEs was lower for stiripentol, although the stiripentol trials were shorter. SIGNIFICANCE: This NMA of RCT data indicates stiripentol, as a first-line add-on therapy in DS, is at least as effective as fenfluramine and both are more effective than cannabidiol in reducing convulsive seizures. No significant difference in the incidence of SAEs between the three add-on agents was observed, but stiripentol may have a lower risk of discontinuations due to AEs. These results may inform clinical decision-making and the continued development of guidelines for the treatment of people with DS. PLAIN LANGUAGE SUMMARY: This study compared three drugs (stiripentol, fenfluramine, and cannabidiol) used alongside other medications for managing seizures in a severe type of epilepsy called DS. The study found that stiripentol and fenfluramine were similarly effective in reducing seizures and both were more effective than cannabidiol. Stiripentol was the best drug for stopping seizures completely based on the available clinical trial data. All three drugs had similar rates of serious side effects, but stiripentol had a lower chance of being stopped due to side effects. This information can help guide treatment choices for people with DS.


Asunto(s)
Cannabidiol , Dioxolanos , Epilepsias Mioclónicas , Humanos , Cannabidiol/uso terapéutico , Anticonvulsivantes/uso terapéutico , Fenfluramina/uso terapéutico , Metaanálisis en Red , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Epilepsias Mioclónicas/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
Biomed Khim ; 70(1): 41-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38450680

RESUMEN

Pesticides represent a serious problem for agricultural workers due to their neurotoxic effects. The aim of this study was to evaluate the ability of pharmacological oxidative phosphorylation uncouplers to reduce the effect of the difenoconazole fungicide on mitochondrial DNA (mtDNA) of various organs in mice. Injections of difenoconazole caused cognitive deficits in mice, and the protonophore 2,4-dinitrophenol (2,4-DNP) and Azur I (AzI), a demethylated metabolite of methylene blue (MB), prevented the deterioration of cognitive abilities in mice induced by difenoconazole. Difenoconazole increased the rate of reactive oxygen species (ROS) production, likely through inhibition of complex I of the mitochondrial respiratory chain. After intraperitoneal administration of difenoconazole lungs, testes and midbrain were most sensitive to the accumulation of mtDNA damage. In contrast, the cerebral cortex and hippocampus were not tolerant to the effects of difenoconazole. The protonophore 2,4-DNP reduced the rate of ROS formation and significantly reduced the amount of mtDNA damage caused by difenoconazole in the midbrain, and partially, in the lungs and testes. MB, an alternative electron carrier capable of bypassing inhibited complex I, had no effect on the effect of difenoconazole on mtDNA, while its metabolite AzI, a demethylated metabolite of MB, was able to protect the mtDNA of the midbrain and testes. Thus, mitochondria-targeted therapy is a promising approach to reduce pesticide toxicity for agricultural workers.


Asunto(s)
Colorantes Azulados , Dioxolanos , Fungicidas Industriales , Triazoles , Animales , Ratones , Fungicidas Industriales/toxicidad , 2,4-Dinitrofenol , Especies Reactivas de Oxígeno , Mitocondrias , ADN Mitocondrial , Complejo I de Transporte de Electrón
14.
Toxicol Appl Pharmacol ; 484: 116860, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342444

RESUMEN

Difenoconazole (DFZ) is a fungicidal pesticide extensively employed for the management of fungal diseases in fruits, vegetables, and cereal crops. However, its potential environmental impact cannot be ignored, as DFZ accumulation is able to lead to aquatic environment pollution and harm to non-target organisms. Quercetin (QUE), a flavonoid abundant in fruits and vegetables, possesses antioxidant and anti-inflammatory properties. In this article, carp were exposed to 400 mg/kg QUE and/or 0.3906 mg/L DFZ for 30 d to investigate the effect of QUE on DFZ-induced respiratory toxicity in carp. Research shows that DFZ exposure increases reactive oxygen species (ROS) production in the carp's respiratory system, leading to oxidative stress, inflammation, and damage to gill tissue and tight junction proteins. Further research demonstrates that DFZ induces mitochondrial dynamic imbalance and gill cell apoptosis. Notably, QUE treatment significantly reduces ROS levels, alleviates oxidative stress and inflammation, and mitigates mitochondrial dynamics imbalance and mitochondrial apoptosis. This study emphasizes the profound mechanism of DFZ toxicity to the respiratory system of common carp and the beneficial role of QUE in mitigating DFZ toxicity. These findings contribute to a better understanding of pesticide risk assessment in aquatic systems and provide new insights into strategies to reduce their toxicity.


Asunto(s)
Carpas , Dioxolanos , Plaguicidas , Triazoles , Animales , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Dinámicas Mitocondriales , Carpas/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo , Inflamación , Sistema Respiratorio , Apoptosis
15.
Ecotoxicol Environ Saf ; 273: 116135, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402793

RESUMEN

Difenoconazole has a widespread agricultural use to control fungal diseases in crops, including rice. In edge-of-field surface waters the residues of this lipophilic fungicide may be toxic to both pelagic and benthic organisms. To allow an effect assessment we mined the regulatory and open literature for aquatic toxicity data. Since published sediment toxicity data were scarce we conducted 28 d sediment-spiked toxicity test with 8 species of benthic macroinvertebrates. Ecotoxicological threshold levels for effects were assessed by applying the species sensitivity distribution approach. Based on short-term L(E)C50's for aquatic organisms from water-only tests an acute Hazardous Concentration to 5% of the species (HC5) of 100 µg difenoconazole/L was obtained, while the HC5 based on chronic NOEC values was a factor of 104 lower (0.96 µg difenoconazole/L). For benthic macroinvertebrates the chronic HC5, based on 28d-L(E)C10 values, was 0.82 mg difenoconazole/kg dry weight sediment. To allow a risk assessment for water- and sediment-dwelling organisms, exposure concentrations were predicted for the water and sediment compartment of an edge-of-field pond bordering rice paddies treated with difenoconazole using the Chinese Top-Rice modelling approach, the Chinese Nanchang exposure scenario and the Equilibrium Partitioning theory. It appeared that in the vast majority of the 20 climate years simulated, potential risks to aquatic and sediment organisms cannot be excluded. Although the HC5 values based on laboratory toxicity data provide one line of evidence only, our evaluation suggests population- and community-level effects on these organisms due to chronic risks in particular.


Asunto(s)
Dioxolanos , Oryza , Triazoles , Contaminantes Químicos del Agua , Estanques , Organismos Acuáticos , Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química
16.
Seizure ; 117: 90-97, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354598

RESUMEN

BACKGROUND: Numerous anti-seizure medications (ASMs) have been developed to treat Dravet syndrome (DS). This network meta-analysis aimed to comprehensively analyse the efficacy of ASMs in DS patients, especially in non-seizure-free patients after treatment. METHODS: PubMed, EMBASE, Cochrane Library, and Chinese National Knowledge Infrastructure databases were searched. The treatment efficacy was assessed by the percentage reduction in monthly convulsive seizure frequency (MCSF) from baseline or individuals who achieved at least a 50 % or 75 % reduction from baseline in convulsive seizure frequency (CSF). RESULTS: Six randomised controlled trials with 633 participants and seven regimens based on four add-on ASMs-fenfluramine (FFA), stiripentol (STP), cannabidiol (CBD), and soticlestat-were included. All drug regimens were superior to the placebo at achieving at least 50 % and 75 % reductions in CSF, but only STP, 0.4 mg/kg/d FFA (FFA0.4), and 0.7 mg/kg/d FFA (FFA0.7) reduced MCSF. STP (50 mg/kg/d) had the highest correlation with reducing MCSF and achieving at least a 50 % reduction from baseline in CSF, followed by FFA0.4 and FFA0.7. Soticlestat and CBD may also be effective in reducing seizures in DS patients. CONCLUSION: STP can be recommended as the first choice among the included drug regimens for reducing seizures in DS patients, while FFA0.4 may be considered the second choice. Other drug regimens can be used as alternative treatments. STP, FFA0.4, and FFA0.7 may consistently present favourable efficacy in most DS patients, while other regimens may present prominent inter-individual variability. Appropriate dose selection and intense monitoring are necessary when treating DS using these drugs.


Asunto(s)
Anticonvulsivantes , Dioxolanos , Epilepsias Mioclónicas , Metaanálisis en Red , Humanos , Epilepsias Mioclónicas/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Cannabidiol/uso terapéutico
17.
Environ Sci Pollut Res Int ; 31(13): 19396-19408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358624

RESUMEN

As a broad-spectrum and efficient triazole fungicide, difenoconazole is widely used, which not only pollutes the environment but also exerts toxic effects on non-target organisms. The spleen plays an important role in immune protection as an important secondary lymphoid organ in carp. In this study, we assessed the protective impact of silybin as a dietary additive on spleen tissues of carp during exposure to difenoconazole. Sixty carp were separated into four groups for this investigation including control group, difenoconazole group, silybin group, and silybin and difenoconazole group. By hematoxylin-eosin staining, dihydroethidium staining, immunohistochemical staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, quantitative real-time PCR assay, Western blot analysis, biochemical assays, and immune function indicator assays, we found that silybin could prevent difenoconazole-induced spleen tissue damage, oxidative stress, and immune dysfunction, and inhibited apoptosis of carp spleen tissue cells by suppressing the formation of p53-driven caspase-9-apoptotic protease activating factor-1-cytochrome C complex. The results suggested that silybin as a dietary additive could improve spleen tissue damage and immune dysfunction induced by difenoconazole in aquaculture carp.


Asunto(s)
Carpas , Dioxolanos , Bazo , Animales , Bazo/metabolismo , Caspasa 9/farmacología , Proteína p53 Supresora de Tumor , Silibina/farmacología , Carpas/metabolismo , Citocromos c/metabolismo , Apoptosis , Triazoles/farmacología
18.
J Ethnopharmacol ; 324: 117775, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38224793

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Perillae Folium, the leaves and twigs of Perilla frutescens (L.) Britton, has been included in many traditional Chinese medicine herbal formulas to treat depression. However, the precise antidepressant mechanism of the essential oil from Perillae Folium (PFEO) has not been fully investigated. AIM OF THE STUDY: To assess the effects and potential mechanisms of PFEO on depression using animal models and network pharmacology analysis. MATERIALS AND METHODS: PFEO was intranasally administered to a mouse model of social defeat stress (SDS). The antidepressant effects of PFEO on SDS-induced mice were evaluated using behavioral tests. Enzyme-linked immunosorbent assay (ELISA) and western blot were performed to measure the levels of depression-related biomarkers in the hippocampus and serum of the mice. The chemical compounds of PFEO were determined using gas chromatography-mass spectrometry (GC-MS). Network pharmacology and molecular docking analyses were conducted to investigate the potential bioactive components of PFEO and the mechanisms underlying the antidepressant effects. To validate the mechanisms of the bioactive compounds, in vitro models using PC12 and BV2 cells were established and the blood-brain barrier (BBB) permeability was evaluated. RESULTS: The intranasal administration of PFEO suppressed SDS-induced depression in mice by increasing the time spent in the social zone and the social interactions in the social interaction test and by decreasing the immobility time in the tail suspension and forced swimming tests. Moreover, the PFEO treatment reduced the SDS-induced anxiety-like behavior, as inferred from the increased activity in the central zone observed in the open field test and in the open arms observed in the elevated plus maze test. PFEO administration recovered the SDS-induced decrease in the levels of 5-HT, NE, gamma-aminobutyric acid (GABA), and p-ERK in the hippocampus of mice. Furthermore, the increased serum corticosterone level was also attenuated by the PFEO treatment. A total of 21 volatile compounds were detected in PFEO using GC-MS, among which elemicin (15.52%), apiol (15.16%), and perillaldehyde (12.79%) were the most abundant ones. The PFEO compounds targeted 32 depression-associated genes, which were mainly related to neural cells and neurotransmission pathways. Molecular docking indicated good binding affinities between the bioactive components of PFEO (apiol, ß-caryophyllene, elemicin, and myristicin) and the key targets, including ACHE, IL1B, IL6, MAOB, SLC6A2, SLC6A3, SLC6A4, and tumor necrosis factor. Among the four compounds, ß-caryophyllene, elemicin, and myristicin were more effective in reducing neurotoxicity and neuroinflammation. Elemicin showed the highest BBB permeability rate. CONCLUSIONS: This study shows the antidepressant activities of PFEO in an SDS-induced mouse model and suggests its potential mechanisms of action: regulation of the corticosterone levels, hippocampal neurotransmitters, and ERK signaling. Apiol, ß-caryophyllene, elemicin, and myristicin may be the main contributors to the observed effects induced by PFEO. Further studies are needed to fully elucidate the underlying mechanisms and the main PFEO bioactive components.


Asunto(s)
Derivados de Alilbenceno , Depresión , Dioxolanos , Aceites Volátiles , Sesquiterpenos Policíclicos , Pirogalol/análogos & derivados , Animales , Ratones , Depresión/tratamiento farmacológico , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Corticosterona , Administración Intranasal , Simulación del Acoplamiento Molecular , Derrota Social , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal , Hipocampo , Modelos Animales de Enfermedad
19.
Phytomedicine ; 123: 155197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952409

RESUMEN

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE: To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS: In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-ß-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS: The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION: Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.


Asunto(s)
Dioxolanos , Glicósidos , Lignanos , Naftalenos , Phyllanthus , Infección por el Virus Zika , Virus Zika , Recién Nacido , Animales , Humanos , Chlorocebus aethiops , Infección por el Virus Zika/tratamiento farmacológico , Células Vero , Antivirales/farmacología , Antivirales/uso terapéutico , Lignanos/farmacología , Lignanos/uso terapéutico , Replicación Viral
20.
Epilepsia Open ; 9(1): 164-175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37867433

RESUMEN

OBJECTIVE: To assess efficacy and tolerability of stiripentol (STP) as adjunctive treatment in Dravet syndrome and non-Dravet refractory developmental and epileptic encephalopathies (DREEs). METHODS: Retrospective observational study of all children and adults with DREE and prescribed adjunctive STP at Hospital Ruber Internacional from January 2000 to February 2023. Outcomes were retention rate, responder rate (proportion of patients with ≥50% reduction in total seizure frequency relative to baseline), seizure freedom rate, responder rate for status epilepticus, rate of adverse event and individual adverse events, reported at 3, 6, and 12 months and at final visit. Seizure outcomes are reported overall, and for Dravet and non-Dravet subgroups. RESULTS: A total of 82 patients (55 Dravet syndrome and 27 non-Dravet DREE) were included. Median age was 5 years (range 1-59 years), and median age of epilepsy onset was younger in the Dravet group (4.9 [3.6-6] months) than non-Dravet (17.9 [6-42.3], P < 0.001). Median follow-up time STP was 24.1 months (2 years; range 0.3-164 months) and was longer in the Dravet group (35.9 months; range 0.8-164) than non-Dravet (17 months range 0.3-62.3, P < 0.001). At 12 months, retention rate, responder rate and seizure free rate was 68.3% (56/82), 65% [48-77%] and 18% [5.7-29%], respectively. There were no statistically significant differences between groups on these seizure outcomes. Adverse events were reported in 46.3% of patients (38/82), without differences between groups. SIGNIFICANCE: In this population of patients with epileptic and developmental encephalopathies, outcomes with adjunctive STP were similar in patients with non-Dravet DREE to patients with Dravet syndrome.


Asunto(s)
Dioxolanos , Epilepsias Mioclónicas , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , Persona de Mediana Edad , Adulto Joven , Anticonvulsivantes/uso terapéutico , Dioxolanos/uso terapéutico , Epilepsias Mioclónicas/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA