Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126042

RESUMEN

Thyroid dyshormonogenesis (THD) is a heterogeneous group of genetic diseases caused by the total or partial defect in the synthesis or secretion of thyroid hormones. Genetic variants in DUOX2 can cause partial to total iodination organification defects and clinical heterogeneity, from transient to permanent congenital hypothyroidism. The aim of this study was to undertake a molecular characterization and genotype-phenotype correlation in patients with THD and candidate variants in DUOX2. A total of 31 (19.38%) patients from the Catalan Neonatal Screening Program presented with variants in DUOX2 that could explain their phenotype. Fifteen (48.39%) patients were compound heterozygous, 10 (32.26%) heterozygous, and 4 (12.90%) homozygous. In addition, 8 (26.67%) of these patients presented variants in other genes. A total of 35 variants were described, 10 (28.57%) of these variants have not been previously reported in literature. The most frequent variant in our cohort was c.2895_2898del/p.(Phe966SerfsTer29), classified as pathogenic according to reported functional studies. The final diagnosis of this cohort was permanent THD in 21 patients and transient THD in 10, according to reevaluation and/or need for treatment with levothyroxine. A clear genotype-phenotype correlation could not be identified; therefore, functional studies are necessary to confirm the pathogenicity of the variants.


Asunto(s)
Oxidasas Duales , Estudios de Asociación Genética , Humanos , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Femenino , Masculino , Recién Nacido , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/patología , Fenotipo , Mutación , Genotipo , Hipotiroidismo Congénito/genética , Tamizaje Neonatal , Tiroxina
2.
Front Endocrinol (Lausanne) ; 15: 1367808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040671

RESUMEN

Introduction: Defects in any thyroid hormone synthesis steps cause thyroid dyshormonogenesis (THD). THD due to thyroglobulin (TG) gene variants is a cause of congenital hypothyroidism (CH) with a wide clinical spectrum, ranging from mild to severe permanent hypothyroidism. We present high-throughput sequencing results of patients with TG variants. Methods: A CH high-throughput sequencing-panel of the main genes involved in the regulation of thyroid hormonogenesis was performed to identify those TG variants that may be related to patient THD phenotype. Results: We identified 21 TG gene variants in 19 patients (11.8%) which could explain their phenotype. Ten of those (47.6%) were not previously described. CH was biochemically severe in these 19 patients. Eight of them were reevaluated after one month of discontinuing LT4 treatment and all had severe permanent hypothyroidism. We also identified another 16 patients who presented heterozygous TG variants, of whom, at reevaluation, five had mild permanent and only one had severe permanent hypothyroidisms. Discussions: In this study, 10 novel and 11 previously reported variants in the TG gene have been identified that could explain the phenotype of 19 patients from non-consanguineous families from a large THD cohort. Although not all these TG gene variants can explain all the patients' THD phenotypes, some of them had severe or mild permanent hypothyroidism at reevaluation.


Asunto(s)
Hipotiroidismo Congénito , Tiroglobulina , Humanos , Tiroglobulina/genética , Femenino , Masculino , Hipotiroidismo Congénito/genética , Niño , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Lactante , Disgenesias Tiroideas/genética , Mutación , Adolescente , Adulto , Recién Nacido
3.
Medicina (Kaunas) ; 60(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064575

RESUMEN

Background and Objectives: Congenital thyroid dyshormonogenesis is caused by alterations in the synthesis of thyroid hormones in a newborn. Additionally, 10 to 20% of these cases are hereditary, caused by defects in proteins involved in hormonal synthesis. One of the most common causes is mutations in the thyroid peroxidase (TPO) enzyme gene, an autosomal recessive disease. We aimed to detect mutations of the TPO gene in 12 Chilean patients with congenital hypothyroidism due to dyshormonogenesis (CHD) and to characterize these patients clinically and molecularly. Materials and Methods: Twelve patients under 20 years of age with CHD, controlled at San Juan de Dios Hospital in Santiago, Chile, were selected according to the inclusion criteria: elevated neonatal TSH, persistent hypothyroidism, and thyroid normotopic by imaging study. Those with deafness, Down syndrome, and central or transient congenital hypothyroidism were excluded. Blood samples were taken for DNA extraction, and the 17 exons and exon-intron junctions of the TPO gene were amplified by PCR. The PCR products were sequenced by Sanger. Results: Two possibly pathogenic mutations of the TPO gene were detected: c.2242G>A (p.Val748Met) and c.1103C>T (p.Pro368Leu). These mutations were detected in 2 of 12 patients (16.6%): 1 was compound heterozygous c.1103C>T/c.2242G>A, and the other was heterozygous for c.2242G>A. In the diagnostic confirmation test, both patients presented diffuse hyper-uptake goiter on thyroid scintigraphy and high TSH in venous blood (>190 uIU/mL). Conclusions: The frequency of patients with possibly pathogenic mutations in TPO with CHD was 16.6%. Its study would allow for genetic counseling to be offered to the families of affected patients.


Asunto(s)
Hipotiroidismo Congénito , Yoduro Peroxidasa , Proteínas de Unión a Hierro , Mutación , Humanos , Hipotiroidismo Congénito/genética , Hipotiroidismo Congénito/sangre , Chile , Yoduro Peroxidasa/genética , Femenino , Masculino , Proteínas de Unión a Hierro/genética , Autoantígenos/genética , Lactante , Niño , Adolescente , Preescolar , Recién Nacido , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/complicaciones , Disgenesias Tiroideas/sangre
4.
Kaohsiung J Med Sci ; 40(8): 744-756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923290

RESUMEN

Thyroid dyshormonogenesis (TDH) is responsible for 15%-25% of congenital hypothyroidism (CH) cases. Pathogenetic variants of this common inherited endocrine disorders vary geographically. Unraveling the genetic underpinnings of TDH is essential for genetic counseling and precise therapeutic strategies. This study aims to identify genetic variants associated with TDH in Southern Taiwan using whole exome sequencing (WES). We included CH patients diagnosed through newborn screening at a tertiary medical center from 2011 to 2022. Permanent TDH was determined based on imaging evidence of bilateral thyroid structure and the requirement for continuous medication beyond 3 years of age. Genomic DNA extracted from blood was used for exome library construction, and pathogenic variants were detected using an in-house algorithm. Of the 876 CH patients reviewed, 121 were classified as permanent, with 47 (40%) confirmed as TDH. WES was conducted for 45 patients, and causative variants were identified in 32 patients (71.1%), including DUOX2 (15 cases), TG (8 cases), TSHR (7 cases), TPO (5 cases), and DUOXA2 (1 case). Recurrent variants included DUOX2 c.3329G>A, TSHR c.1349G>A, TG c.1348delT, and TPO c.2268dupT. We identified four novel variants based on genotype, including TSHR c.1135C>T, TSHR c.1349G>C, TG c.2461delA, and TG c.2459T>A. This study underscores the efficacy of WES in providing definitive molecular diagnoses for TDH. Molecular diagnoses are instrumental in genetic counseling, formulating treatment, and developing management strategies. Future research integrating larger population cohorts is vital to further elucidate the genetic landscape of TDH.


Asunto(s)
Hipotiroidismo Congénito , Secuenciación del Exoma , Yoduro Peroxidasa , Receptores de Tirotropina , Humanos , Taiwán , Femenino , Masculino , Hipotiroidismo Congénito/genética , Hipotiroidismo Congénito/diagnóstico , Recién Nacido , Yoduro Peroxidasa/genética , Receptores de Tirotropina/genética , Oxidasas Duales/genética , Tiroglobulina/genética , Proteínas de Unión a Hierro/genética , Preescolar , Variación Genética , Mutación , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/diagnóstico , Lactante , Autoantígenos
5.
Am J Physiol Endocrinol Metab ; 326(6): E832-E841, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656129

RESUMEN

Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.


Asunto(s)
Proliferación Celular , Transducción de Señal , Factores Asociados con la Proteína de Unión a TATA , Glándula Tiroides , Factor de Transcripción TFIID , Pez Cebra , Animales , Pez Cebra/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Glándula Tiroides/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/metabolismo , Humanos , Histona Acetiltransferasas
6.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605010

RESUMEN

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Asunto(s)
Factor de Crecimiento de Hepatocito , Disgenesias Tiroideas , Animales , Ratones , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Cadherinas/genética , Disgenesias Tiroideas/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
7.
Front Endocrinol (Lausanne) ; 14: 1286747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964961

RESUMEN

Background: BOREALIN/CDCA8 mutations are associated with congenital hypothyroidism and thyroid dysgenesis. Borealin is involved in mitosis as part of the Chromosomal Passenger Complex. Although BOREALIN mutations decrease thyrocyte adhesion and migration, little is known about the specific role of Borealin in the thyroid. Methods: We characterized thyroid development and function in Borealin-deficient (Borealin +/-) mice using histology, transcriptomic analysis, and quantitative PCR. Results: Thyroid development was impaired with a hyperplastic anlage on embryonic day E9.5 followed by thyroid hypoplasia from E11.5 onward. Adult Borealin +/- mice exhibited euthyroid goiter and defect in thyroid hormone synthesis. Borealin +/- aged mice had disorganized follicles and papillary-like structures in thyroids due to ERK pathway activation and a strong increase of Braf-like genes described by The Cancer Genome Atlas (TCGA) network of papillary thyroid carcinoma. Moreover, Borealin +/- thyroids exhibited structural and transcriptomic similarities with papillary thyroid carcinoma tissue from a human patient harboring a BOREALIN mutation, suggesting a role in thyroid tumor susceptibility. Conclusion: These findings demonstrate Borealin involvement in critical steps of thyroid structural development and function throughout life. They support a role for Borealin in thyroid dysgenesis with congenital hypothyroidism. Close monitoring for thyroid cancer seems warranted in patients carrying BOREALIN mutations.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , Neoplasias de la Tiroides , Animales , Ratones , Proteínas de Ciclo Celular/genética , Hipotiroidismo Congénito/genética , Cáncer Papilar Tiroideo/genética , Disgenesias Tiroideas/genética , Neoplasias de la Tiroides/genética
8.
Probl Endokrinol (Mosk) ; 69(1): 76-85, 2023 02 25.
Artículo en Ruso | MEDLINE | ID: mdl-36842079

RESUMEN

BACKGROUND: Loss-of-function mutations in the TSH receptor gene (TSHR) (NP_000360.2) are the potential causes of thyroid dysgenesis in patients with congenital hypothyroidism. Heterozygous variants of the TSHR gene lead to partial resistance to TSH, homozygous and compound heterozygous variants have been shown to cause CH due to thyroid hypoplasia or TSH resistance. Recently more and more articles in this field have appeared in the international literature sources, while local publications are limited. The studies are necessary to understand the etiology, pathogenesis of the disease, to improve the management of these patients. AIM: To assess the frequency of incidence of pathogenic variants of the TSHR gene in children with CH due to thyroid dysgenesis. To study inheritance and phenotypic patterns of CH in families. MATERIALS AND METHODS: In this single-center interventional one-stage non-comparative study a group of CH patients was examined. The patients underwent neck ultrasound and radionuclide imaging. The examination was performed 14 days after hormone replacement therapy suspension or prior to its initiation. The structure of thyroid dysgenesis was estimated, genetic testing for mutations in the TSHR gene was performed using the NGS method. RESULTS: The study included 95 children with primary CH (75 girls; 20 boys). The patients' median age at the time of examination was 6.2 years [4.5; 8.9], the median level of neonatal TSH was 157.5 mU/l [60.9; 257.2]. Ectopic thyroid was found in 52% of children, aplasia in 36%, hypoplasia and hemiagenesis in 10% and 2%, respectively. In 5.4% of cases (in 5 out of 95 patients), different variants of the TSH gene were detected. Two children had heterozygous p.R450H and p.D487N variants in TSHR gene, two patients was homozygous for the p.S49Afs * 9 variant, one child had compound heterozygous variants (p.A485D and p.R450H). According to ultrasound imaging, all patients had thyroid hypoplasia of varying severity. Three children underwent thyroid scintigraphy, which revealed decreased 99mТc pertechnetate uptake (0.3-0.9%). CONCLUSION: In our study, the incidence of different variants in the TSHR gene in children with CH was 5.3%. Our analysis uncovered two previously undescribed variants. Genetic testing may be able to help with making the diagnosis, patient's management, and genetic counseling.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , Niño , Femenino , Humanos , Recién Nacido , Masculino , Hipotiroidismo Congénito/genética , Mutación , Receptores de Tirotropina/genética , Disgenesias Tiroideas/genética , Tirotropina , Preescolar
9.
Arch Endocrinol Metab ; 67(1): 143-149, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36468928

RESUMEN

Congenital hypothyroidism (CH) may be caused by biallelic variants in the TSHR gene. CH due to thyroid dysgenesis has also been linked to pathogenic variants of the nucleotide kinase 2, homeobox 5 (NKX2-5) gene, which can also cause sudden cardiac death from ventricular arrhythmia. In particular, the NKX2-5 p.Arg25Cys missense variant has been repeatedly reported in patients with congenital heart defects and, more rarely, with hypogonadism. We report the case of a 7 year old boy with ventricular arrhythmias, thyroid dysgenesis and intellectual disability, born from consanguineous Tunisian parents. Exome sequencing and segregation analysis revealed two potentially relevant variants: the NKX2-5 p.Arg25Cys variant (maternally inherited), as well as a single heterozygous TSHR p.Gln90Pro variant (paternally inherited). Of note, a male sibling of the proband, presenting with intellectual disability only, carried the same two variants. No other TSHR variants, or other potentially relevant variants were identified. In this proband, despite the identification of variants in two genes potentially correlated to the phenotype, a definite genetic diagnosis could not be reached. This case report highlights the complexity of exome data interpretation, especially when dealing with families presenting complex phenotypes and variable expression of clinical traits.


Asunto(s)
Hipotiroidismo Congénito , Discapacidad Intelectual , Disgenesias Tiroideas , Masculino , Humanos , Hipotiroidismo Congénito/diagnóstico , Disgenesias Tiroideas/genética , Fenotipo , Arritmias Cardíacas , Mutación
10.
Eur J Med Genet ; 65(10): 104591, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35963604

RESUMEN

Bamforth-Lazarus syndrome is a rare autosomal recessive disease caused by biallelic loss-of-function variants in the FOXE1 gene. The condition is characterized by congenital hypothyroidism due to thyroid agenesis or thyroid hypoplasia, cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. To date, seven pathogenic variants have been reported in the FOXE1 gene causing Bamforth-Lazarus syndrome. Here we report a novel homozygous loss-of-function variant in the FOXE1 gene NM_004473.4:c.141dupC:p.(Leu49Profs*75) leading to congenital hypothyroidism due to thyroid agenesis, scalp hair abnormalities, cleft palate, small areola, cafe-au-lait spots, mild bilateral hearing loss, skin abnormalities, and facial dysmorphism. We describe the evolving phenotype in the patient with age and review previous variants reported in FOXE1. This report further expands the clinical and molecular spectrum of Bamforth-Lazarus syndrome.


Asunto(s)
Fisura del Paladar , Hipotiroidismo Congénito , Disgenesias Tiroideas , Anomalías Múltiples , Fisura del Paladar/genética , Factores de Transcripción Forkhead/genética , Enfermedades del Cabello , Humanos , Hipotiroidismo , Fenotipo , Disgenesias Tiroideas/genética
11.
Thyroid ; 32(8): 1000-1002, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611983

RESUMEN

We report a 10-month-old girl with familial congenital hypothyroidism harboring a novel heterozygous pathogenic variant in the paired DNA-binding domain of PAX8 (NM_003466:c.110T>C:p.Leu37Pro). Genotype-phenotype correlation revealed complete penetrance of this PAX8 defect in this family, in which the affected father and half-brother carry the same mutation. This deleterious variant has not been reported in any of the available databases [MAFgnomAD = 0, dbSNP (-)], and the amino acid leucine at position 37 is highly conserved across species. Establishing the molecular diagnosis expands our knowledge on the cause of thyroid dysgenesis and provides a guide for counseling and early treatment.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , Hipotiroidismo Congénito/genética , Femenino , Humanos , Lactante , Masculino , Mutación , Factor de Transcripción PAX8/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Disgenesias Tiroideas/genética
12.
Hum Mol Genet ; 31(23): 3967-3974, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35535691

RESUMEN

Congenital hypothyroidism due to thyroid dysgenesis (TD), presented as thyroid aplasia, hypoplasia or ectopia, is one of the most prevalent rare diseases with an isolated organ malformation. The pathogenesis of TD is largely unknown, although a genetic predisposition has been suggested. We performed a genome-wide association study (GWAS) with 142 Japanese TD cases and 8380 controls and found a significant locus at 2q33.3 (top single nucleotide polymorphism, rs9789446: P = 4.4 × 10-12), which was replicated in a German patient cohort (P = 0.0056). A subgroup analysis showed that rs9789446 confers a risk for thyroid aplasia (per allele odds ratio = 3.17) and ectopia (3.12) but not for hypoplasia. Comprehensive epigenomic characterization of the 72-kb disease-associated region revealed that it was enriched for active enhancer signatures in human thyroid. Analysis of chromosome conformation capture data showed long-range chromatin interactions of this region with promoters of two genes, FZD5 and CCNYL1, mediating Wnt signaling. Moreover, rs9789446 was found to be a thyroid-specific quantitative trait locus, adding further evidence for a cis-regulatory function of this region in thyroid tissue. Specifically, because the risk rs9789446 allele is associated with increased thyroidal expression of FDZ5 and CCNYL1 and given the recent demonstration of perturbed early thyroid development following overactivation of Wnt signaling in zebrafish embryos, an enhanced Wnt signaling in risk allele carriers provides a biologically plausible TD mechanism. In conclusion, our work found the first risk locus for TD, exemplifying that in rare diseases with relatively low biological complexity, GWAS may provide mechanistic insights even with a small sample size.


Asunto(s)
Estudio de Asociación del Genoma Completo , Disgenesias Tiroideas , Animales , Humanos , Pez Cebra/genética , Vía de Señalización Wnt/genética , Enfermedades Raras , Disgenesias Tiroideas/genética , Predisposición Genética a la Enfermedad
13.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328834

RESUMEN

Thyroid hemiagenesis (THA) is an inborn absence of one thyroid lobe of largely unknown etiopathogenesis. The aim of the study was to reveal genetic factors responsible for thyroid maldevelopment in two siblings with THA. None of the family members presented with congenital heart defect. The samples were subjected to whole-exome sequencing (WES) (Illumina, TruSeq Exome Enrichment Kit, San Diego, CA 92121, USA). An ultra-rare variant c.839C>T (p.Pro280Leu) in NKX2-5 gene (NM_004387.4) was identified in both affected children and an unaffected father. In the mother, the variant was not present. This variant is reported in population databases with 0.0000655 MAF (GnomAD v3, dbSNP rs761596254). The affected amino acid position is moderately conserved (positive scores in PhyloP: 1.364 and phastCons: 0.398). Functional prediction algorithms showed deleterious impact (dbNSFP v4.1, FATHMM, SIFT) or benign (CADD, PolyPhen-2, Mutation Assessor). According to ACMG criteria, variant is classified as having uncertain clinical significance. For the first time, NKX2-5 gene variants were found in two siblings with THA, providing evidence for its potential contribution to the pathogenesis of this type of thyroid dysgenesis. The presence of the variant in an unaffected parent, carrier of p.Pro280Leu variant, suggests potential contribution of yet unidentified additional factors determining the final penetrance and expression.


Asunto(s)
Hermanos , Disgenesias Tiroideas , Niño , Exoma , Proteína Homeótica Nkx-2.5/genética , Humanos , Mutación , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/patología
14.
Med Sci (Paris) ; 38(3): 263-273, 2022 Mar.
Artículo en Francés | MEDLINE | ID: mdl-35333163

RESUMEN

Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). DH accounts for about 35% of CH and a genetic cause is identified in 50% of patients. However, TD accounts for about 65% of CH, and a genetic cause is identified in less than 5% of patients. The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development and function. We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.


Title: Génétique de l'hypothyroïdie congénitale. Abstract: L'hypothyroïdie congénitale (HC) est la maladie endocrinienne néonatale la plus fréquente. Elle peut être due à des défauts de développement ou de la fonction de la thyroïde (HC primaire ou périphérique) ou d'origine hypothalamo-hypophysaire (HC centrale). L'HC primaire est causée dans la majorité des cas par une anomalie du développement de la glande (dysgénésie thyroïdienne, DT) ou par un défaut de synthèse des hormones thyroïdiennes (dyshormonogenèse, DH). Une origine génétique est identifiée chez 50 % des patients présentant une HCDH mais dans moins de 5 % des patients présentant une HCDT. Cette revue fait le point sur l'ensemble des causes génétiques des HC et sur les différents modes de transmission. L'HC n'est plus simplement une maladie dominante pour les dysgénésies thyroïdiennes et récessive pour les dyshormonogenèses, mais est devenue une maladie plus complexe.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , Hipotiroidismo Congénito/genética , Bases de Datos Genéticas , Humanos , Mutación , Disgenesias Tiroideas/genética , Hormonas Tiroideas
15.
Thyroid ; 32(5): 486-495, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35272499

RESUMEN

Context: Congenital hypothyroidism due to thyroid dysgenesis (CHTD) is a predominantly sporadic and nonsyndromic (NS) condition of unknown etiology. NS-CHTD shows a 40-fold increase in relative risk among first-degree relatives (1 in 100 compared with a birth prevalence of 1 in 4000 in the general population), but a discordance rate between monozygotic (MZ) twins of 92%. This suggests a two-hit mechanism, combining a genetic predisposition (incomplete penetrance of inherited variants) with postzygotic events (accounting for MZ twin discordance). Objective: To evaluate whether whole-exome sequencing (WES) allows to identify new predisposing genes in NS-CHTD. Methods: We performed a case-control study by comparing the whole exome of 36 nonconsanguineous cases of NS-CHTD (33 with lingual thyroid ectopy and 3 with athyreosis, based on technetium pertechnetate scintigraphy at diagnosis) with that of 301 unaffected controls to assess for enrichment in rare protein-altering variants. We performed an unbiased approach using a gene-based burden with a false discovery rate correction. Moreover, we identified all rare pathogenic and likely pathogenic variants, based on in silico prediction tools, in 27 genes previously associated with congenital hypothyroidism (CH) (thyroid dysgenesis [TD] and dyshormonogenesis). Results: After correction for multiple testing, no enrichment in rare protein-altering variants was observed in NS-CHTD. Pathogenic or likely pathogenic variants (21 variants in 12 CH genes) were identified in 42% of cases. Eight percent of cases had variants in more than one gene (oligogenic group); these were not more severely affected than monogenic cases. Moreover, cases with protein-altering variants in dyshormonogenesis-related genes were not more severely affected than those without. Conclusions: No new predisposing genes were identified following an unbiased analysis of WES data in a well-characterized NS-CHTD cohort. Nonetheless, the discovery rate of rare pathogenic or likely pathogenic variants was 42%. Eight percent of the cases harbored multiple variants in genes associated with TD or dyshormonogenesis, but these variants did not explain the variability of hypothyroidism observed in dysgenesis. WES did not identify a genetic cause in NS-CHTD cases, confirming the complex etiology of this disease. Additional studies in larger cohorts and/or novel discovery approaches are required.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , Estudios de Casos y Controles , Hipotiroidismo Congénito/genética , Hipotiroidismo Congénito/patología , Exoma , Humanos , Mutación , Disgenesias Tiroideas/complicaciones , Disgenesias Tiroideas/genética , Secuenciación del Exoma
16.
Clin Endocrinol (Oxf) ; 96(4): 617-626, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34374102

RESUMEN

OBJECTIVE: Congenital hypothyroidism (CH) is known to be due to thyroid dyshormonogenesis (DH), which is mostly inherited in an autosomal recessive inheritance pattern or thyroid dysgenesis (TD), whose inheritance pattern is controversial and whose molecular etiology remains poorly understood. DESIGN AND METHODS: The variants in 37 candidate genes of CH, including 25 genes related to TD, were screened by targeted exon sequencing in 205 Chinese patients whose CH cannot be explained by biallelic variants in genes related to DH. The inheritance pattern of the genes was analyzed in family trios or quartets. RESULTS: Of the 205 patients, 83 patients carried at least one variant in 19 genes related to TD, and 59 of those 83 patients harbored more than two variants in distinct candidate genes for CH. Biallelic or de novo variants in the genes related to TD in Chinese patients are rare. We also found nine probands carried only one heterozygous variant in the genes related to TD that were inherited from a euthyroid either paternal or maternal parent. These findings did not support the monogenic inheritance pattern of the genes related to TD in CH patients. Notably, in family trio or quartet analysis, of 36 patients carrying more than two variants in distinct genes, 24 patients carried these variants inherited from both their parents, which indicated that the oligogenic inheritance pattern of the genes related to TD should be considered in CH. CONCLUSIONS: Our study expanded the variant spectrum of the genes related to TD in Chinese CH patients. It is rare that CH in Chinese patients could be explained by monogenic germline variants in genes related to TD. The hypothesis of an oligogenic origin of the CH should be considered.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , China , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación/genética , Disgenesias Tiroideas/genética
17.
Am J Med Genet A ; 188(1): 89-98, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34545694

RESUMEN

Thyroid dysgenesis (TD) accounts for 80% cases of congenital hypothyroidism, which is the most common neonatal disorder. Until now, the gene mutations have been reported associated with TD can only account for 5% cases, suggesting the genetic heterogeneity of the pathology. Nicotinamide nucleotide transhydrogenase (NNT) plays a crucial role in regulating redox homeostasis, patients carrying NNT mutations have been described with a clinical phenotype of hypothyroidism. As TD risk is increased in the context of several syndromes and redox homeostasis is vital for thyroid development and function, NNT might be a candidate gene involved in syndromic TD. Therefore, we performed target sequencing (TS) in 289 TD patients for causative mutations in NNT and conducted functional analysis of the gene mutations. TS and Sanger sequence were used to screen the novel mutations. For functional analysis, we performed western blot, measurement of NADPH/NADPtotal and H2 O2 generation, cell proliferation, and wounding healing assay. As a result, three presumably pathogenic mutations (c.811G > A, p.Ala271Ser; c.2078G > A, p.Arg693His; and c.2581G > A, p.Val861Met) in NNT had been identified. Our results showed the damaging effect of NNT mutations on stability and catalytic activity of proteins and redox balance of cells. In conclusion, our findings provided novel insights into the role of the NNT isotype in thyroid physiopathology and broaden the spectrum of pathogenic genes associated with TD. However, the pathogenic mechanism of NNT in TD is still need to be investigated in further study.


Asunto(s)
Hipotiroidismo Congénito , NADP Transhidrogenasas , Disgenesias Tiroideas , China , Hipotiroidismo Congénito/genética , Humanos , Proteínas Mitocondriales , Mutación , NADP Transhidrogenasa AB-Específica , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Disgenesias Tiroideas/genética
19.
Endocrine ; 71(3): 696-705, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33650047

RESUMEN

INTRODUCTION: Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder and one of the most common preventable forms of mental retardation worldwide. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). TD accounts for about 65% of CH, however a genetic cause is identified in less than 5% of patients. PURPOSE: The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development, function and pathways. RESULTS AND CONCLUSION: We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , Hipotiroidismo Congénito/genética , Bases de Datos Genéticas , Humanos , Recién Nacido , Mutación , Disgenesias Tiroideas/genética , Hormonas Tiroideas
20.
Medicine (Baltimore) ; 100(2): e24237, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33466206

RESUMEN

RATIONALE: Mutations of the v-Raf murine sarcoma viral oncogene homolog B (BRAF) oncogene and telomerase reverse transcriptase (TERT) promoter region are indicators of poor prognosis in papillary thyroid carcinoma (PTC) and might predict future occurrences of distant metastases. However, the clinical significance of these genetic aberrancies in PTCs arising in ectopic locations is not well established. PATIENT CONCERNS: We describe a patient with a previous history of radioiodine (RAI)-treated hyperthyroidism and a surgically resected right-sided follicular thyroid adenoma. In 2013, a 6 mm follicular variant papillary thyroid carcinoma was diagnosed following a left-sided thyroid lobectomy. The central compartment displayed 9 tumor-free lymph nodes, and no adjuvant treatment was planned. DIAGNOSES: Three years later, a 26 mm pre-tracheal relapse was noted, however, the excised lesion was consistent with a tall cell variant of papillary thyroid carcinoma (TCV-PTC) arising in ectopic thyroid tissue. RAI treatment was commenced. Four years later, a 5 mm subcutaneous lesion in the anterior neck was surgically removed and diagnosed as metastatic TCV-PTC with a codon 600 BRAF mutation and a C228T TERT promoter mutation. INTERVENTIONS: RAI treatment was re-initiated. Molecular re-examination of the primary follicular variant papillary thyroid carcinoma demonstrated a codon 600 BRAF mutation and a TERT promoter wildtype sequence, while the primary TCV-PTC was positive for mutations in both codon 600 of BRAF as well as the TERT promoter. OUTCOMES: The patient is alive and well without signs of relapse 7 months after the latest round of RAI. LESSONS: We conclude that the occurrence of combined BRAF and TERT promoter mutations in the primary lesion from 2016 was associated to the manifestation of distant metastases 4 years later, strengthening the benefit of mutational screening of these genes in clinical routine for thyroid carcinomas arising in aberrant locations.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/genética , Telomerasa/genética , Cáncer Papilar Tiroideo/genética , Disgenesias Tiroideas/genética , Neoplasias de la Tiroides/genética , Anciano , Femenino , Humanos , Mutación , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA