Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Anal Chim Acta ; 1307: 342620, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719413

RESUMEN

BACKGROUND: Pharmacokinetic studies are pivotal in drug development, focusing on absorption, distribution, and excretion of active compounds. Effective sample preparation methods play a crucial role in these studies. Traditional techniques like protein precipitation and liquid-liquid extraction often involve toxic solvents and are time-consuming. Recently, deep eutectic solvent (DES) has emerged as an eco-friendly alternative due to its high efficiency, low cost, and low toxicity. This study introduces a novel sample pretreatment method using CO2-switchable DES in liquid-liquid microextraction (LLME) to enhance speed, accuracy, and sensitivity in complex biological samples analysis. RESULTS: A liquid-liquid microextraction sample pretreatment method based on switchable DES combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for the analysis of urine and tissue samples. The method was optimized through systematic investigation of key parameters, including DES type, volume, molar ratio, pH, vortex time, gas purge time, and salt addition. The resulting procedure exhibited satisfying linearity (r2 ≥ 0.9958), good precision (RSD ≤6.01 %), desirable recovery (52.44%-98.12 %) and matrix effect (86.22%-119.30 %), and the accuracy and precision of stability were within the ±15 % limit. The proven methods were further applied to urinary excretion study and tissue distribution study of Nelumbinis plumula (NP) extract. The results indicated that the total cumulative excretion of liensinine, isoliensinine and neferine in urine within 240 h was 4.96 %, 0.66 % and 0.44 %, respectively. The tissue distribution study showed that alkaloids mainly distribute in liver, kidney, and spleen. SIGNIFICANCE: This research introduces a groundbreaking technique distinguished by its simplicity, speed, cost-effectiveness, and environmental friendliness. This approach, utilizing CO2-switchable DES as an extraction solvent for LLME, integrates deproteinization and removal of interfering molecules into a single step. This integration showcases its efficiency and convenience, demonstrating significant promise for various applications in the analysis of biological samples. Additionally, this study provides the first report on urinary excretion and tissue distribution of alkaloids from NP using a DES-LLME method. These findings offer valuable insights into the in vivo behavior of herbal medicine, enhancing understanding of pharmacological actions and facilitating clinical rational administration.


Asunto(s)
Dióxido de Carbono , Disolventes Eutécticos Profundos , Microextracción en Fase Líquida , Espectrometría de Masas en Tándem , Microextracción en Fase Líquida/métodos , Dióxido de Carbono/química , Disolventes Eutécticos Profundos/química , Animales , Distribución Tisular , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Masculino , Ratas , Ratas Sprague-Dawley
2.
J Sep Sci ; 47(9-10): e2400122, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772731

RESUMEN

In this study, several amino acids deep eutectic solvents were prepared using L-valine and L-leucine as hydrogen bond acceptors, and L-lactic acid and glycerol as hydrogen bond donors. These amino acids' deep eutectic solvents were first used as buffer additives to construct several synergistic systems along with maltodextrin in capillary electrophoresis for the enantioseparations of four racemic drugs. Compared with single maltodextrin system, the separations of model drugs in the synergistic systems were significantly improved. Some key parameters affecting chiral separation such as maltodextrin concentration, deep eutectic solvent concentration, buffer pH, and applied voltage were optimized. In order to further understand the specific mechanism of the amino acids deep eutectic solvents in improving chiral separation, we first calculated the binding constants of maltodextrin with enantiomers using the capillary electrophoresis method in the two separation modes, respectively. We also used molecular simulation to calculate the binding free energy of maltodextrin with enantiomers. It is the first time that amino acids deep eutectic solvents were used for enantioseparation in capillary electrophoresis, which will greatly promote the development of deep eutectic solvents in the field of chiral separation.


Asunto(s)
Aminoácidos , Electroforesis Capilar , Polisacáridos , Estereoisomerismo , Aminoácidos/química , Aminoácidos/aislamiento & purificación , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Enlace de Hidrógeno
3.
Food Res Int ; 187: 114334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763634

RESUMEN

Red-fleshed apple cultivars with an enhanced content of polyphenolic compounds have attracted increasing interest due to their promising health benefits. Here, we have analysed the polyphenolic content of young, red-fleshed apples (RFA) and optimised extraction conditions of phenolics by utilising natural deep eutectic solvents (NDES). We also compare the antioxidant, neuroprotective and antimicrobial activities of NDES- and methanol-extracted phenolics from young RFA. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was used for phenolics identification and quantification. Besides young RFA, ripe red-fleshed, young and ripe white-fleshed apples were analysed, revealing that young RFA possess the highest phenolic content (2078.4 ± 4.0 mg gallic acid equivalent/100 g), and that ripe white-fleshed apples contain the least amount of phenolics (545.0 ± 32.0 mg gallic acid equivalent/100 g). The NDES choline chloride-glycerol containing 40 % w/w H2O gave similar yields at 40 °C as methanol. In addition, the polyphenolics profile, and bioactivities of the NDES extract from young RFA were comparable that of methanol extracts. Altogether, our data show that NDES extracts of young RFA are a promising source of bioactive polyphenolics with potential applications in diverse sectors, e.g., for functional food production, smart material engineering and natural therapies.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Frutas , Malus , Polifenoles , Malus/química , Polifenoles/análisis , Polifenoles/aislamiento & purificación , Antioxidantes/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Frutas/química , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Colina/química , Glicerol/química , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/química , Espectrometría de Masas
4.
Carbohydr Polym ; 338: 122199, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763725

RESUMEN

Deep eutectic solvents (DES) emerge as promising alternatives to conventional solvents, offering outstanding extraction capabilities, low toxicity, eco-friendliness, straightforward synthesis procedures, broad applicability, and impressive recyclability. DES are synthesized by combining two or more components through various synthesis procedures, such as heat-assisted mixing/stirring, grinding, freeze drying, and evaporation. Polysaccharides, as abundant natural materials, are highly valued for their biocompatibility, biodegradability, and sustainability. These versatile biopolymers can be derived from various natural sources such as plants, algae, animals, or microorganisms using diverse extraction techniques. This review explores the synthesis procedures of DES, their physicochemical properties, characterization analysis, and their application in polysaccharide extraction. The extraction optimization strategies, parameters affecting DES-based polysaccharide extraction, and separation mechanisms are comprehensively discussed. Additionally, this review provides insights into recently developed molecular guides for DES screening and the utilization of artificial neural networks for optimizing DES-based extraction processes. DES serve as excellent extraction media for polysaccharides from different sources, preserving their functional features. They are utilized both as extraction solvents and as supporting media to enhance the extraction abilities of other solvents. Continued research aims to improve DES-based extraction methods and achieve selective, energy-efficient processes to meet the demands of this expanding field.


Asunto(s)
Disolventes Eutécticos Profundos , Polisacáridos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Animales , Solventes/química , Fraccionamiento Químico/métodos , Plantas/química
5.
Int J Biol Macromol ; 268(Pt 2): 131997, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697420

RESUMEN

Hybrid ionic fluids (HIFs) are one of the emerging and fascinating sustainable solvent media, a novel environment-friendly solvent for biomolecules. The HIFs have been synthesized by combining a deep eutectic solvent (DES), an ionic liquid (IL) having a common ion. The stability and activity of hen's egg white lysozyme (Lyz) in the presence of a recently designed new class of biocompatible solvents, HIFs have been explored by UV-visible, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) along with dynamic light scattering (DLS) measurements. This work emphasizes the effect of DES synthesized by using 1:2 choline chloride and glycerol [Glyn], ILs (1-butly-3-methylimidazolium chloride [BMIM]Cl and choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moving forward, we also studied the secondary structure, thermal stability and enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5) M of [BMIM]Cl, [Chn][Ac] ILs, [Glyn] DES and [Glyn][BMIM]Cl (hybrid ionic fluid1) as well as [Glyn][Chn][Ac] (hybrid ionic fluid2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz, whereas the stability and activity are increased by DES and are maintained by HIFs at all the studied concentrations. Overall, the experimental results studied elucidate expressly that the properties of Lyz are maintained in the presence of hybrid ionic fluid1 while these properties are intensified in hybrid ionic fluid2. This work has elucidated expressly biocompatible green solvents in protein stability and functionality due to the alluring properties of DES, which can counteract the negative effect of ILs in HIFs.


Asunto(s)
Líquidos Iónicos , Muramidasa , Líquidos Iónicos/química , Muramidasa/química , Disolventes Eutécticos Profundos/química , Estabilidad de Enzimas , Animales , Colina/química , Termodinámica , Imidazoles/química , Glicerol/química , Solventes/química , Estructura Secundaria de Proteína , Concentración de Iones de Hidrógeno
6.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731583

RESUMEN

Xanthorrhizol, an important marker of Curcuma xanthorrhiza, has been recognized for its different pharmacological activities. A green strategy for selective xanthorrhizol extraction is required. Herein, natural deep eutectic solvents (NADESs) based on glucose and organic acids (lactic acid, malic acid, and citric acid) were screened for the extraction of xanthorrhizol from Curcuma xanthorrhiza. Ultrasound-assisted extraction using glucose/lactic acid (1:3) (GluLA) gave the best yield of xanthorrhizol. The response surface methodology with a Box-Behnken Design was used to optimize the interacting variables of water content, solid-to-liquid (S/L) ratio, and extraction to optimize the extraction. The optimum conditions of 30% water content in GluLA, 1/15 g/mL (S/L), and a 20 min extraction time yielded selective xanthorrhizol extraction (17.62 mg/g) over curcuminoids (6.64 mg/g). This study indicates the protective effect of GluLA and GluLA extracts against oxidation-induced DNA damage, which was comparable with those obtained for ethanol extract. In addition, the stability of the xanthorrhizol extract over 90 days was revealed when stored at -20 and 4 °C. The FTIR and NMR spectra confirmed the hydrogen bond formation in GluLA. Our study reported, for the first time, the feasibility of using glucose/lactic acid (1:3, 30% water v/v) for the sustainable extraction of xanthorrhizol.


Asunto(s)
Antioxidantes , Curcuma , Fenoles , Extractos Vegetales , Rizoma , Curcuma/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Rizoma/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Disolventes Eutécticos Profundos/química , Ondas Ultrasónicas
7.
Phys Chem Chem Phys ; 26(20): 14766-14776, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716816

RESUMEN

Hybrid ionic fluids (HIFs) are newly emerging and fascinating sustainable solvent media, which are attracting a great deal of scientific interest in protecting the native structure of proteins. For a few decades, there has been a demand to consider ionic liquids (ILs) and deep eutectic solvents (DESs) as biocompatible solvent media for enzymes; however, in some cases, these solvent media also show limitations. Therefore, this work focuses on synthesising novel HIFs to intensify the properties of existing ILs and DESs by mixing them. Herein, HIFs have been synthesised by the amalgamation of a deep eutectic solvent (DES) and an ionic liquid (IL) with a common cation or anion. Later on, the stability and activity of hen's egg white lysozyme (Lyz) in the presence of biocompatible solvent media and HIFs were studied by various techniques such as UV-vis, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and dynamic light scattering (DLS) measurements. This work emphasises the effect of a DES (synthesised using 1 : 2 choline chloride and malonic acid) [Maline], ILs (1-butyl-3-methylimidazolium chloride [BMIM]Cl or choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moreover, we also studied the secondary structure, thermal stability, enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5 M) of [BMIM]Cl and [Chn][Ac] ILs, Maline as a DES, and Maline [BMIM]Cl (HIF1) and Maline [Chn][Ac] (HIF2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz. In contrast, the stability and activity are inhibited by DES and are enhanced by HIFs at all the studied concentrations. Overall, the experimental results studied explicitly elucidate that the structure and stability of Lyz are maintained in the presence of HIF1 while these properties are intensified in HIF2. This study shows various applications in biocompatible green solvents, particularly in the stability and functionality of proteins, due to their unique combination where the properties counteract the negative effect of either DESs or ILs in HIFs.


Asunto(s)
Disolventes Eutécticos Profundos , Estabilidad de Enzimas , Líquidos Iónicos , Muramidasa , Líquidos Iónicos/química , Muramidasa/química , Muramidasa/metabolismo , Disolventes Eutécticos Profundos/química , Solventes/química , Animales , Pollos , Colina/química
8.
Carbohydr Polym ; 337: 122165, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710577

RESUMEN

This research intended to remove residual protein from chitin with proteases in deep eutectic solvents (DESs). The activities of some proteases in several DESs, including choline chloride/p-toluenesulfonic acid, betaine/glycerol (Bet/G), choline chloride/malic acid, choline chloride/lactic acid, and choline chloride/urea, which are capable of dissolving chitin, were tested, and only in Bet/G some proteases were found to be active, with subtilisin A, ficin, and bromelain showing higher activity than other proteases. However, the latter two proteases caused degradation of chitin molecules. Further investigation revealed that subtilisin A in Bet/G did not exhibit "pH memory", which is a universal characteristic displayed by enzymes dispersed in organic phases, and the catalytic characteristics of subtilisin A in Bet/G differed significantly from those in aqueous phase. The conditions for protein removal from chitin by subtilisin A in Bet/G were determined: Chitin dissolved in Bet/G with 0.5 % subtilisin A (442.0 U/mg, based on the mass of chitin) was hydrolyzed at 45 °C for 30 min. The residual protein content in chitin decreased from 5.75 % ± 0.10 % to 1.01 % ± 0.12 %, improving protein removal by 57.20 % compared with protein removal obtained by Bet/G alone. The crystallinity and deacetylation degrees of chitin remained unchanged after the treatment.


Asunto(s)
Betaína , Quitina , Disolventes Eutécticos Profundos , Glicerol , Quitina/química , Betaína/química , Glicerol/química , Disolventes Eutécticos Profundos/química , Hidrólisis , Subtilisina/metabolismo , Subtilisina/química , Concentración de Iones de Hidrógeno , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/química , Colina/química
9.
J Sep Sci ; 47(9-10): e2300925, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726740

RESUMEN

Deep eutectic solvents (DESs), as a new type of eco-friendly solvent, have attracted increasing attention on the extraction and separation of flavonoid compounds from various samples, owing to their excellent properties such as biodegradability and ease of handling with very low toxicity. This article provides a status review of the applications of DESs in the extraction of flavonoids, including the introduction of flavonoid compounds, the properties and superiority of DESs, and extraction methods (ultrasonic-assisted extraction, heating reflux extraction, matrix solid-phase dispersion, and solid-phase extraction). Finally, prospects and challenges in the application of DESs on extraction and separation are extensively elucidated and critically reviewed.


Asunto(s)
Disolventes Eutécticos Profundos , Flavonoides , Extracción en Fase Sólida , Flavonoides/aislamiento & purificación , Flavonoides/química , Disolventes Eutécticos Profundos/química , Solventes/química
10.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792157

RESUMEN

Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.


Asunto(s)
Disolventes Eutécticos Profundos , Ibuprofeno , Cetoprofeno , Aprendizaje Automático , Solubilidad , Cetoprofeno/química , Ibuprofeno/química , Disolventes Eutécticos Profundos/química , Inhibidores de la Ciclooxigenasa/química , Enlace de Hidrógeno , Solventes/química
11.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792205

RESUMEN

This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.


Asunto(s)
Ácido Acético , Catequina , Disolventes Eutécticos Profundos , Interacciones Hidrofóbicas e Hidrofílicas , Extracción en Fase Sólida , Cromatografía Líquida de Alta Presión/métodos , Extracción en Fase Sólida/métodos , Ácido Acético/química , Catequina/química , Catequina/análisis , Disolventes Eutécticos Profundos/química , Adsorción
12.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792212

RESUMEN

Lignanoids are an active ingredient exerting powerful antioxidant and anti-inflammatory effects in the treatment of many diseases. In order to improve the efficiency of the resource utilization of traditional Chinese medicine waste, Magnolia officinalis Rehder & E.H.Wilson residue (MOR) waste biomass was used as raw material in this study, and a series of deep eutectic solvents (ChUre, ChAce, ChPro, ChCit, ChOxa, ChMal, ChLac, ChLev, ChGly and ChEG) were selected to evaluate the extraction efficiency of lignanoids from MORs. The results showed that the best conditions for lignanoid extraction were a liquid-solid ratio of 40.50 mL/g, an HBD-HBA ratio of 2.06, a water percentage of 29.3%, an extract temperature of 337.65 K, and a time of 107 min. Under these conditions, the maximum lignanoid amount was 39.18 mg/g. In addition, the kinetics of the extraction process were investigated by mathematic modeling. In our antioxidant activity study, high antioxidant activity of the lignanoid extract was shown in scavenging four different types of free radicals (DPPH, ·OH, ABTS, and superoxide anions). At a concentration of 3 mg/mL, the total antioxidant capacity of the lignanoid extract was 1.795 U/mL, which was equal to 0.12 mg/mL of Vc solution. Furthermore, the antibacterial activity study found that the lignanoid extract exhibited good antibacterial effects against six tested pathogens. Among them, Staphylococcus aureus exerted the strongest antibacterial activity. Eventually, the correlation of the lignanoid extract with the biological activity and physicochemical properties of DESs is described using a heatmap, along with the evaluation of the in vitro hypoglycemic, in vitro hypolipidemic, immunomodulatory, and anti-inflammatory activity of the lignanoid extract. These findings can provide a theoretical foundation for the extraction of high-value components from waste biomass by deep eutectic solvents, as well as highlighting its specific significance in natural product development and utilization.


Asunto(s)
Antioxidantes , Biomasa , Magnolia , Magnolia/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Lignina/química , Lignina/farmacología , Lignina/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Animales
13.
Molecules ; 29(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38792246

RESUMEN

Natural deep eutectic solvents (NADESs), as emerging green solvents, can efficiently extract natural products from natural resources. However, studies on the extraction of phenolic compounds from celtuce (Lactuca sativa var. augustana) leaves (CLs) by NADESs are still lacking. This study screened the NADES L-proline-lactic acid (Pr-LA), combined it with ultrasound-assisted extraction (UAE) to extract phenolic compounds from CLs, and conducted a comparative study on the extraction effect with traditional extraction solvents. Both SEM and FT-IR confirmed that Pr-LA can enhance the degree of fragmentation of cell structures and improve the extraction rate of phenolic compounds. Molecular dynamics simulation results show that Pr-LA can improve the solubility of phenolic compounds and has stronger hydrogen bonds and van der Waals interactions with phenolic compounds. Single-factor and Box-Behnken experiments optimized the process parameters for the extraction of phenolic compounds from CLs. The second-order kinetic model describes the extraction process of phenolic compounds from CLs under optimal process parameters and provides theoretical guidance for actual industrial production. This study not only provides an efficient and green method for extracting phenolic compounds from CLs but also clarifies the mechanism of improved extraction efficiency, which provides a basis for research on the NADES extraction mechanism.


Asunto(s)
Disolventes Eutécticos Profundos , Lactuca , Fenoles , Hojas de la Planta , Fenoles/química , Fenoles/aislamiento & purificación , Hojas de la Planta/química , Lactuca/química , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Ondas Ultrasónicas , Espectroscopía Infrarroja por Transformada de Fourier , Simulación de Dinámica Molecular , Solventes/química
14.
Food Chem ; 451: 139500, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696941

RESUMEN

Deep eutectic solvent (DES) combined with ultrasonic-assisted extraction was employed as an environmentally friendly technique for extracting antioxidant phenolic compounds from Neem leaves in place of organic solvents. Choline chloride-Ethylene glycol (1:2) with 40% V/V water content (DES-1) was investigated as a potential total phenolic content extractant (38.2 ± 1.2 mg GAE/g DW, where GAE: gallic acid equivalent, DW: dry weight). The optimal operational parameters assessed using single-factor experiments to maximize the total phenolic compounds content were as follows: extraction time of 30 min, 40% V/V water content, liquid-solid ratio of 15:1, and room temperature. Additionally, the in-vitro antioxidant experiments (2,2-diphenyl-1- picrylhydrazyl radical scavenging assay and ferric reducing antioxidant power assay) demonstrated the DES-1-based extract of Neem leaves as a potent antioxidant agent, compared to traditional solvents. Moreover, microscopic morphological analysis supported the effectiveness of DES-1 for the noticeable alteration in the fiber surface structure of Neem leaves after extraction which benefited in the release of polyphenols from these leaves. Eventually, the mass analysis of the extract disclosed the presence of eleven polyphenols in the extract. The Green Analytical Procedure Index revealed the greenness of the extraction method.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Tecnología Química Verde , Fenoles , Extractos Vegetales , Hojas de la Planta , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Fenoles/química , Fenoles/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Azadirachta/química , Fraccionamiento Químico/métodos , Ultrasonido , Solventes/química
15.
Food Chem ; 451: 139538, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704991

RESUMEN

In this paper, a green, cost-effective sample preparation method based on air assisted liquid phase microextraction (AA-LPME) was developed for the simultaneous extraction of As(III) and Sb(III) ions from vegetable samples using hydrophilic/hydrophobic natural deep eutectic solvents (NADESs). Central composite design was used for the optimization of extraction factors including NADES volume, extraction cycle, pH, and curcumin concentration. Limits of detection for As(III) and Sb(III) were 1.5 ng L-1 and 0.06 ng L-1, respectively. Working ranges for As(III) and Sb(III) were 0.2-300 ng L-1 (coefficient of determination (R2 = 0.9978) and 5-400 ng L-1 (R2 = 0.9996), respectively. Relative standard deviations for As(III) and Sb(III) were 2.2-2.8% and 2.9-3.2%, respectively. Enrichment factor of the method was 184 for As(III) and 172 for Sb(III). The accuracy and precision of the AA-NADES-LPME method were investigated by intraday/interday studies and standard reference material analysis, respectively. Finally, the AA-NADES-LPME method was successfully applied to microwave digested vegetable samples using the standard addition approach and acceptable recoveries were achieved.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Microextracción en Fase Líquida , Verduras , Verduras/química , Microextracción en Fase Líquida/métodos , Contaminación de Alimentos/análisis , Disolventes Eutécticos Profundos/química
16.
Int J Biol Macromol ; 269(Pt 1): 132005, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777686

RESUMEN

To enhance the mechanics performance, sensitivity and response range of multi-responsive photonic films, herein, a facile method for fabricating multi-responsive films is demonstrated using the evaporative self-assembly of a mixture of grape skin red (GSR), cellulose nanocrystal (CNC), polyvinyl alcohol (PVA) and deep eutectic solvent (DES). The prepared materials exhibited excellent thermal stability, strain properties, solvent resistance, ultraviolet (UV) resistance and antioxidant activity. Compared to a pure PVA film, the presence of GSR strengthened the antioxidant property of the film by 240.1 % and provided excellent UV barrier capability. The additional cross-linking of DES and CNC promoted more efficient phase fusion, yielding a film strain of 41.5 %. The addition of hydrophilic compound GSR, wetting and swelling due to the DES and the surface inhomogeneity of the films rendered the multi-responsive films high sensitivity, wide response range and multi-cyclic stability in environments with varying pH and humidity. A sample application showed that a PVA/CNC/DES film has the potential to differentiate between fresh, sub-fresh and fully spoiled shrimps. The above results help in designing intelligent thin film materials that integrate antioxidant properties, which help in monitoring the changes in food freshness and food packaging.


Asunto(s)
Antioxidantes , Celulosa , Nanopartículas , Alcohol Polivinílico , Alcohol Polivinílico/química , Celulosa/química , Nanopartículas/química , Antioxidantes/química , Disolventes Eutécticos Profundos/química , Embalaje de Alimentos/métodos , Vitis/química , Análisis de los Alimentos/métodos , Concentración de Iones de Hidrógeno
17.
Int J Biol Macromol ; 269(Pt 2): 132144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729476

RESUMEN

Herein, we investigated the synergistic effects of jet milling (JM) and deep eutectic solvent (DES) pretreatment on the fractionation of grapevine lignin and the consequent enhancement of enzymatic hydrolysis. Grapevine, a substantial byproduct of the wine industry, was subjected to JM pretreatment to produce finely powdered particles (median diameter D50 = 98.90), which were then further treated with acidic ChCl-LA and alkaline K2CO3-EG DESs. The results revealed that the combined JM + ChCl-LA pretreatment significantly increased the cellulose preservation under optimal conditions (110 °C, 4 h, and 20 % water content), achieving removal rates of 74.18 % xylan and 66.05 % lignin, respectively. The pretreatment temperature and inhibitor production were reduced, resulting in a remarkable threefold increase in glucose yield compared to untreated samples. Moreover, the structural analysis of the pretreated lignin indicated an enrichment of phenolic units, leading to enhanced antioxidant and antibacterial activities, particularly in the JM pretreated samples. These findings underscore the promising potential of the synergistic JM and DES pretreatment in facilitating the efficient utilization of grapevine lignocellulosic biomass for sustainable biorefinery technologies.


Asunto(s)
Disolventes Eutécticos Profundos , Lignina , Vitis , Lignina/química , Vitis/química , Hidrólisis , Disolventes Eutécticos Profundos/química , Fraccionamiento Químico/métodos , Antioxidantes/química , Antioxidantes/farmacología , Biomasa , Celulosa/química , Celulasa/química , Celulasa/metabolismo , Solventes/química , Temperatura
18.
Water Res ; 257: 121654, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701552

RESUMEN

Volatile fatty acids (VFAs) derived from arrested anaerobic digestion (AD) can be recovered as a valuable commodity for value-added synthesis. However, separating VFAs from digestate with complex constituents and a high-water content is an energy-prohibitive process. This study developed an innovative technology to overcome this barrier by integrating deep eutectic solvents (DESs) with an omniphobic membrane into a membrane contactor for efficient extraction of anhydrous VFAs with low energy consumption. A kinetic model was developed to elucidate the mechanistic differences between this novel omniphobic membrane-enabled DES extraction and the previous hydrophobic membrane-enabled NaOH extraction. Experimental results and mechanistic modeling suggested that VFA extraction by the DES is a reversible adsorption process facilitating subsequent VFA separation via anhydrous distillation. High vapor pressure of shorter-chain VFAs and low Nernst distribution coefficients of longer-chain VFAs contributed to DES-driven extraction, which could enable continuous and in-situ recovery and conversion of VFAs from AD streams.


Asunto(s)
Ácidos Grasos Volátiles , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Disolventes Eutécticos Profundos/química , Solventes/química , Cinética , Anaerobiosis
19.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791538

RESUMEN

Various studies have shown that Hypogymnia physodes are a source of many biologically active compounds, including lichen acids. These lichen-specific compounds are characterized by antioxidant, antiproliferative, and antimicrobial properties, and they can be used in the cosmetic and pharmaceutical industries. The main aim of this study was to optimize the composition of natural deep eutectic solvents based on proline or betaine and lactic acid for the extraction of metabolites from H. physodes. The design of the experimental method and the response surface approach allowed the optimization of the extraction process of specific lichen metabolites. Based on preliminary research, a multivariate model of the experiment was developed. For optimization, the following parameters were employed in the experiment to confirm the model: a proline/lactic acid/water molar ratio of 1:2:2. Such a mixture allowed the efficient extraction of three depsidones (i.e., physodic acid, physodalic acid, 3-hydroyphysodic acid) and one depside (i.e., atranorin). The developed composition of the solvent mixtures ensured good efficiency when extracting the metabolites from the thallus of H. physodes with high antioxidant properties.


Asunto(s)
Depsidos , Lactonas , Depsidos/química , Depsidos/aislamiento & purificación , Depsidos/farmacología , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/farmacología , Disolventes Eutécticos Profundos/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Prolina/química , Líquenes/química , Ácido Láctico/química , Tecnología Química Verde/métodos , Betaína/química , Betaína/análogos & derivados , Betaína/farmacología , Solventes/química , Dibenzoxepinas , Hidroxibenzoatos
20.
Int J Biol Macromol ; 269(Pt 1): 132055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704073

RESUMEN

Pretreatment is the key step to convert lignocelluloses to sustainable biofuels, biochemicals or biomaterials. In this study, a green pretreatment method based on choline chloride-lactic acid deep eutectic solvent (ChCl-LA) and niobium-based single-atom catalyst (Nb/CN) was developed for the fractionation of corn straw and further enzymatic hydrolysis of cellulose. With this strategy, significant lignin removal of 96.5 % could be achieved when corn straw was pretreated by ChCl-LA (1:2) DES over Nb/CN under 120 °C for 6 h. Enzymatic hydrolysis of the cellulose-enriched fraction (CEF) presented high glucose yield of 92.7 % and xylose yield of 67.5 %. In-depth investigations verified that the high yields of fractions and monosaccharides was attributed to the preliminary fractionation by DES and the deep fractionation by Nb/CN. Significantly, compared to other reported soluble catalysts, the synthesized single-atom catalyst displayed excellent reusability by simple filtration and enzymatic hydrolysis. The recyclability experiments showed that the combination of ChCl-LA DES and Nb/CN could be repeated at least three times for corn straw fractionation, moreover, the combination displayed remarkable feedstock adaptability.


Asunto(s)
Colina , Disolventes Eutécticos Profundos , Ácido Láctico , Lignina , Niobio , Lignina/química , Niobio/química , Catálisis , Colina/química , Hidrólisis , Disolventes Eutécticos Profundos/química , Ácido Láctico/química , Zea mays/química , Fraccionamiento Químico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA