Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
Sci Rep ; 14(1): 21391, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271728

RESUMEN

Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Despite this, genetic drivers of BPD are poorly understood. The objective of this study is to better understand the impact of single nucleotide polymorphisms (SNPs) previously associated with BPD by examining associations with other phenotypes. We drew pediatric subjects from the biorepository at the Center for Applied Genomics to identify associations between these SNPs and 2,146 imputed phenotypes. Methylation data, external cohorts, and in silico validation methods were used to corroborate significant associations. We identified 60 SNPs that were previously associated with BPD. We found a significant association between rs3771150 and rs3771171 and mean eosinophil percentage in a European cohort of 6,999 patients and replicated this in external cohorts. Both SNPs were also associated with asthma, COPD and FEV1/FVC ratio. These SNPs displayed associations with methylation probes and were functionally linked to ST2 (IL1RL1) levels in blood and lung tissue. Our findings support a genetic justification for the epidemiological link between BPD and asthma. Given the well-established link between ST2 and type 2 inflammation in asthma, these findings provide a rationale for future studies exploring the role of type 2 inflammation in the pathogenesis of BPD.


Asunto(s)
Asma , Displasia Broncopulmonar , Eosinofilia , Fenotipo , Polimorfismo de Nucleótido Simple , Humanos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Masculino , Femenino , Eosinofilia/genética , Niño , Asma/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Predisposición Genética a la Enfermedad , Recién Nacido , Estudio de Asociación del Genoma Completo , Preescolar , Metilación de ADN , Lactante
2.
Stem Cell Res Ther ; 15(1): 295, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256862

RESUMEN

BACKGROUND: Premature infants requiring mechanical ventilation and supplemental oxygen for respiratory support are at increased risk for bronchopulmonary dysplasia (BPD), wherein inflammation have been proposed as a driver of hyperoxia-induced injuries, including persistent loss of endothelial progenitor cells (EPCs), impaired vascularization and eventual alveolar simplification in BPD lungs. However, the underlying mechanisms linking these phenomena remain poorly defined. METHODS: We used clodronate liposomes to deplete macrophages in a mouse model of neonatal hyperoxia-induced lung injury to evaluate if EPC loss in BPD lungs could be an effect of macrophage infiltration. We further generated in vitro culture systems initiated with cord blood (CB)-derived CD34+ EPCs and neonatal macrophages either polarized from CB-derived monocytes or isolated from tracheal aspirates of human preterm infants requiring mechanical ventilation and oxygen supplementation, to identify EV-transmitted molecular mechanism that is critical for inhibitory actions of hyperoxic macrophages on EPCs. RESULTS: Initial experiments using mouse model identified the crucial role of macrophage infiltration in eliciting significant reduction of c-Kit+ EPCs in BPD lungs. Further examination of this concept in human system, we found that hyperoxia-exposed neonatal macrophages hamper human CD34+ EPC maintenance and impair endothelial function in the differentiated progeny via the EV transmission of miR-23a-3p. Notably, treatment with antagomiR-23a-3p to silence miR-23a-3p in vivo enhances c-Kit+ EPC maintenance, and increases capillary density, and consequently mitigates simplified alveolarization in BPD lungs. CONCLUSION: Our findings highlight the importance of pulmonary intercellular communication in the pathophysiology of BPD, by identifying a linkage through vesicle transfer of miR-23a-3p from hyperoxic macrophages to EPCs, and thus demonstrating potential for novel therapeutic target in BPD.


Asunto(s)
Células Progenitoras Endoteliales , Vesículas Extracelulares , Hiperoxia , Lesión Pulmonar , Macrófagos , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Células Progenitoras Endoteliales/metabolismo , Hiperoxia/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , Macrófagos/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Recién Nacido , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/genética , Animales Recién Nacidos , Modelos Animales de Enfermedad
3.
Mol Med ; 30(1): 135, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227783

RESUMEN

Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in infants and the most frequent adverse outcome of premature birth, despite major efforts to minimize injury. It is thought to result from aberrant repair response triggered by either prenatal or recurrent postnatal injury to the lungs during development. Intrauterine inflammation is an important risk factor for prenatal lung injury, which is also increasingly linked to BPD. However, the specific mechanisms remain unclear. This review summarizes clinical and animal research linking intrauterine inflammation to BPD. We assess how intrauterine inflammation affects lung alveolarization and vascular development. In addition, we discuss prenatal therapeutic strategies targeting intrauterine inflammation to prevent or treat BPD.


Asunto(s)
Displasia Broncopulmonar , Inflamación , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/patología , Humanos , Animales , Inflamación/patología , Femenino , Embarazo , Pulmón/patología , Feto , Recién Nacido
4.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39337630

RESUMEN

Bronchopulmonary dysplasia (BPD) is the most common lung complication of prematurity. Despite extensive research, our understanding of its pathophysiology remains limited, as reflected by the stable prevalence of BPD. Prematurity is the primary risk factor for BPD, with oxidative stress (OS) and inflammation playing significant roles and being closely linked to premature birth. Understanding the interplay and temporal relationship between OS and inflammation is crucial for developing new treatments for BPD. Animal studies suggest that OS and inflammation can exacerbate each other. Clinical trials focusing solely on antioxidants or anti-inflammatory therapies have been unsuccessful. In contrast, vitamin A and caffeine, with antioxidant and anti-inflammatory properties, have shown some efficacy, reducing BPD by about 10%. However, more than one-third of very preterm infants still suffer from BPD. New therapeutic agents are needed. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), is a reversible myeloperoxidase inhibitor and a systems pharmacology agent. It reduces BPD severity by inhibiting MPO, enhancing antioxidative proteins, and alleviating endoplasmic reticulum stress and cellular senescence in a hyperoxia rat model. KYC represents a promising new approach to BPD treatment.


Asunto(s)
Displasia Broncopulmonar , Inflamación , Estrés Oxidativo , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Humanos , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Recién Nacido , Recien Nacido Prematuro , Ratas , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología
5.
Sci Rep ; 14(1): 20089, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209930

RESUMEN

Bronchopulmonary dysplasia (BPD) is the most common sequela of prematurity and is characterized by alveolar simplification and lung angiogenesis failure. The aim of this study was to explore the immune signatures of BPD. Differentially expressed gene analysis and immune infiltration analysis were conducted to identify key immune cell types and related genes by using the mRNA-seq dataset GSE25286. The expression patterns of key genes were validated in the scRNA-seq dataset GSE209664 and in experiments. The cell-cell crosstalk of key immune cells was explored with CellChat. We found that differentially expressed genes between BPD mice and controls were mostly enriched in leukocyte migration and M1 macrophages were highly enriched in BPD lungs. Hub genes (Cybb, Papss2, F7 and Fpr2) were validated at the single-cell level, among which the downregulation of Cybb was most closely related to macrophage infiltration. The reduced mRNA and protein levels of Cybb were further validated in animal experiments. Colocalization analysis of Cybb and macrophage markers demonstrated a significant decrease of Cybb in M1 macrophages. Cell-cell crosstalk found that alveolar epithelial cells interacted actively with macrophages through MIF-(CD74 + CD44) signalling. In conclusion, M1 macrophages played important roles in promoting BPD-like lung injury, which was correlated with a specific reduction of Cybb in macrophages and the potential activation of MIF signalling.


Asunto(s)
Displasia Broncopulmonar , Biología Computacional , Regulación hacia Abajo , Hiperoxia , Macrófagos , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/genética , Animales , Biología Computacional/métodos , Hiperoxia/metabolismo , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Humanos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Pulmón/patología , Pulmón/metabolismo , Pulmón/inmunología , Perfilación de la Expresión Génica
6.
Sci Rep ; 14(1): 18133, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103397

RESUMEN

To study a new method for establishing animal models of prenatal bronchopulmonary dysplasia (BPD), we used lung ultrasound score (LUS) to semi-quantitatively assess the severity of lung lesions in model rats. Lipopolysaccharide (LPS) was injected into the right lung of the fetus of the rat under ultrasound-guided, and the right lung of the neonates were scanning for LUS. Specimens were collected for pathological scoring and detection of pulmonary surfactant-associated glycoprotein (SP)-C and vascular endothelial growth factor (VEGF) expression quantity. The correlation between LUS and pathological scores was analyzed. (1) The animal models were consistent with the pathological manifestations of BPD. (2) It showed a strong positive correlation between LUS and pathological scores in animal models (r = 0.84, P < 0.005), and the expression quantity of SP-C and VEGF in lung tissue were decreased (both P < 0.05). Animal models established by ultrasound-guided puncture of the lung of rats and injection of LPS were consistent with the manifestation of BPD. This method could be used to establish animal models of BPD before birth, and the severity of BPD could be assessed by using LUS.


Asunto(s)
Displasia Broncopulmonar , Modelos Animales de Enfermedad , Pulmón , Factor A de Crecimiento Endotelial Vascular , Animales , Displasia Broncopulmonar/diagnóstico por imagen , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Ratas , Femenino , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Pulmón/patología , Embarazo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Lipopolisacáridos , Animales Recién Nacidos , Índice de Severidad de la Enfermedad , Ratas Sprague-Dawley , Ultrasonografía Prenatal/métodos
7.
Redox Biol ; 75: 103296, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39098263

RESUMEN

The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.


Asunto(s)
Animales Recién Nacidos , Hiperoxia , Macrófagos Alveolares , Femenino , Animales , Masculino , Macrófagos Alveolares/metabolismo , Ratones , Hiperoxia/metabolismo , Humanos , Transcriptoma , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/etiología , Caracteres Sexuales , Factores Sexuales , Modelos Animales de Enfermedad , Recién Nacido , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/etiología
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 765-773, 2024 Jul 15.
Artículo en Chino | MEDLINE | ID: mdl-39014955

RESUMEN

OBJECTIVES: To investigate the role and mechanism of epithelial-mesenchymal transition (EMT) in a rat model of bronchopulmonary dysplasia (BPD). METHODS: The experiment consisted of two parts. (1) Forty-eight preterm rats were randomly divided into a normoxia group and a hyperoxia group, with 24 rats in each group. The hyperoxia group was exposed to 85% oxygen to establish a BPD model, while the normoxia group was kept in room air at normal pressure. Lung tissue samples were collected on days 1, 4, 7, and 14 of the experiment. (2) Rat type II alveolar epithelial cells (RLE-6TN) were randomly divided into a normoxia group (cultured in air) and a hyperoxia group (cultured in 95% oxygen), and cell samples were collected 12, 24, and 48 hours after hyperoxia exposure. Hematoxylin-eosin staining was used to observe alveolarization in preterm rat lungs, and immunofluorescence was used to detect the co-localization of surfactant protein C (SPC) and α-smooth muscle actin (α-SMA) in preterm rat lung tissue and RLE-6TN cells. Quantitative real-time polymerase chain reaction and protein immunoblotting were used to detect the expression levels of EMT-related mRNA and proteins in preterm rat lung tissue and RLE-6TN cells. RESULTS: (1) Compared with the normoxia group, the hyperoxia group showed blocked alveolarization and simplified alveolar structure after 7 days of hyperoxia exposure. Co-localization of SPC and α-SMA was observed in lung tissue, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 7 and 14 days of hyperoxia exposure compared to the normoxia group. In the hyperoxia group, the mRNA and protein levels of TGF-ß1, α-SMA, and N-cadherin were increased, while the mRNA and protein levels of SPC and E-cadherin were decreased at 7 and 14 days of hyperoxia exposure compared to the normoxia group (P<0.05). (2) SPC and α-SMA was observed in RLE-6TN cells, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 24 and 48 hours of hyperoxia exposure compared to the normoxia group. Compared to the normoxia group, the mRNA and protein levels of SPC and E-cadherin in the hyperoxia group were decreased, while the mRNA and protein levels of TGF-ß1, α-SMA, and E-cadherin in the hyperoxia group increased at 48 hours of hyperoxia exposure (P<0.05). CONCLUSIONS: EMT disrupts the tight connections between alveolar epithelial cells in a preterm rat model of BPD, leading to simplified alveolar structure and abnormal development, and is involved in the development of BPD. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 765-773.


Asunto(s)
Displasia Broncopulmonar , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Hiperoxia , Ratas Sprague-Dawley , Animales , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/metabolismo , Hiperoxia/complicaciones , Ratas , Actinas/análisis , Actinas/metabolismo , Actinas/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/análisis , Animales Recién Nacidos , Femenino , Proteína C Asociada a Surfactante Pulmonar/genética , Pulmón/patología , Pulmón/metabolismo , Masculino
9.
Am J Respir Cell Mol Biol ; 71(4): 464-480, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38959416

RESUMEN

Bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment are among the most common morbidities affecting preterm infants. Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently uncertain how BPD contributes to brain injury in preterm infants. Extracellular vesicles (EVs) are involved in interorgan communication in diverse pathological processes. ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) is pivotal in inflammasome assembly and activation of inflammatory response. We assessed expression profiles of the alveolar macrophage (AM) markers CD11b, CD11c, and CD206 as well as ASC in EVs isolated from the plasma of preterm infants at risk for BPD at 1 week of age. We found that infants on higher fraction of inspired oxygen therapy (HO2⩾30%) had increased concentrations of AM-derived EV-ASC compared with infants on lower fraction of inspired oxygen (LO2<30%). To assess the function of these EVs, we performed adoptive transfer experiments by injecting them into the circulation of newborn mice. We discovered that mice that received EVs from infants on HO2 had increased lung inflammation, decreased alveolarization, and disrupted vascular development, the hallmarks of BPD. Importantly, these EVs crossed the blood-brain barrier, and the EVs from infants on HO2 caused inflammation, reduced cell survival, and increased cell death, with features of pyroptosis and necroptosis in the hippocampus. These results highlight a novel role for AM-derived EV-ASC in mediating the lung-to-brain cross-talk that is critical in the pathogenesis of BPD and brain injury and identify potential novel targets for preventing and treating BPD and brain injury in preterm infants.


Asunto(s)
Lesiones Encefálicas , Proteínas Adaptadoras de Señalización CARD , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Animales , Humanos , Recién Nacido , Ratones , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Recien Nacido Prematuro , Femenino , Macrófagos Alveolares/metabolismo , Masculino , Encéfalo/metabolismo , Encéfalo/patología , Animales Recién Nacidos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Ratones Endogámicos C57BL
10.
Pathol Res Pract ; 261: 155482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067173

RESUMEN

BACKGROUND: BPD is a refractory disease affecting preterm infants with alveolar dysplasia and declined pulmonary function. However, the molecular mechanism underlying BPD is largely unknown. To explore the pathogenic mechanism of BPD and to facilitate better diagnosis and treatment of this disease. METHOD: The DEMs and DEGs in BPD vs. Control samples from the miRNA expression data in GSE108754 and mRNA expression data in the GSE108755 were screened, followed by the construction of the miRNA-mRNA regulatory network. DEGs PPI network and hub DEGs analysis were constructed by using the STRING database and Cytoscape software. Functional and pathway enrichment analyses were then performed for these DEGs and DEMs based on the ClusterProfiler package in the R and the miRWalk database. The k-mean algorithm is used to perform clustering analysis of DEGs. Cellular experiments (flow cytometry, western blot, RT-PCR, dual-luciferase reporter assay) were used to validate the results of bioinformatics. RESULTS: We obtained 20 DEMs and 262 DEGs. A 15 DEMs-11 DEGs regulatory network was constructed. miR-3202-RAG1 is a core sub-network. Hyperoxia induced a cell model of BPD. The upregulation of RAG1 and downregulation of miR-3202 were observed in BPD cells. Furthermore, siRNA targeting RAG1 was transfected into BEAS-2B cells to inhibit its expression and miR-3202 mimics was transfected into the cells to increase its expression. Inhibition of RAG1 and elevation of miR-3202 inhibit cell apoptosis and reduce ROS level caused by hyperoxia. A double-luciferase reporter assay revealed that miR-3202 directly targets RAG1. CONCLUSION: The miRNA-3202/RAG1 axis contributes into BPD-induced cell apoptosis and ROS production. The present study provides a probable target for the treatment of BPD.


Asunto(s)
Apoptosis , Displasia Broncopulmonar , Células Epiteliales , MicroARNs , Estrés Oxidativo , Humanos , Recién Nacido , Apoptosis/genética , Bronquios/patología , Bronquios/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo/genética
11.
Clin Chest Med ; 45(3): 639-650, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069327

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic lung disease, associated with premature birth, that arises during the infantile period. It is an evolving disease process with an unchanged incidence due to advancements in neonatal care which allow for the survival of premature infants of lower gestational ages and birth weights. Currently, there are few effective interventions to prevent BPD. However, careful attention to BPD phenotypes and comprehensive care provided by an interdisciplinary team have improved care. Interventions early in the disease course hold promise for improving long-term survival and outcomes in adulthood for this high-risk population.


Asunto(s)
Displasia Broncopulmonar , Nacimiento Prematuro , Recién Nacido , Displasia Broncopulmonar/complicaciones , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/terapia , Pulmón/diagnóstico por imagen , Pulmón/crecimiento & desarrollo , Pulmón/patología , Terapia Respiratoria , Síndromes de la Apnea del Sueño/etiología
12.
Genes (Basel) ; 15(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927741

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which Adm influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice. Bulk RNA sequencing of Adm-sufficient (wild-type or Adm+/+) and Adm-haplodeficient (Adm+/-) mice lungs, integrated with single-cell RNA sequencing data, revealed distinct gene expression patterns and cell type alterations associated with Adm deficiency and LPS exposure. Notably, computational integration with cell atlas data revealed that Adm-haplodeficient mouse lungs exhibited gene expression signatures characteristic of increased inflammation, natural killer (NK) cell frequency, and decreased endothelial cell and type II pneumocyte frequency. Furthermore, in silico human BPD patient data analysis supported our cell type frequency finding, highlighting elevated NK cells in BPD infants. These results underscore the protective role of Adm in experimental BPD and emphasize that it is a potential therapeutic target for BPD infants with an inflammatory phenotype.


Asunto(s)
Adrenomedulina , Displasia Broncopulmonar , Adrenomedulina/genética , Adrenomedulina/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/metabolismo , Animales , Ratones , Humanos , Análisis de Secuencia de ARN/métodos , Modelos Animales de Enfermedad , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Transcriptoma
13.
Am J Respir Cell Mol Biol ; 71(4): 481-494, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38869353

RESUMEN

Bronchopulmonary dysplasia (BPD) is characterized by impaired lung alveolar and vascular growth. We investigated the hypothesis that neonatal exposure to hyperoxia leads to persistent BPD phenotype caused by decreased expression of liver kinase B1 (LKB1), a key regulator of mitochondrial function. We exposed mouse pups from Postnatal Day (P)1 through P10 to 21% or 75% oxygen. Half of the pups in each group received metformin or saline intraperitoneally from P1 to P10. Pups were killed at P4 or P10 or recovered in 21% O2 until euthanasia at P21. Lung histology and morphometry, immunofluorescence, and immunoblots were performed to detect changes in lung structure and expression of LKB1; downstream targets AMPK, PGC-1α, and electron transport chain (ETC) complexes; and Notch ligands Jagged 1 and delta-like 4. LKB1 signaling and in vitro angiogenesis were assessed in human pulmonary artery endothelial cells (exposed to 21% or 95% O2 for 36 hours. Levels of LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes were decreased in lungs at P10 and P21 in hyperoxia. Metformin increased LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes at P10 and P21 in pups exposed to hyperoxia. Radial alveolar count was decreased, and mean linear intercept increased in pups exposed to hyperoxia at P10 and P21; these were improved by metformin. Lung capillary density was decreased in hyperoxia at P10 and P21 and was increased by metformin. In vitro angiogenesis was decreased in human pulmonary artery endothelial cells by 95% O2 and was improved by metformin. Decreased LKB1 signaling may contribute to decreased alveolar and vascular growth in a mouse model of BPD.


Asunto(s)
Animales Recién Nacidos , Displasia Broncopulmonar , Modelos Animales de Enfermedad , Hiperoxia , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/enzimología , Humanos , Hiperoxia/metabolismo , Hiperoxia/patología , Pulmón/patología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/enzimología , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Metformina/farmacología , Transducción de Señal , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Neovascularización Patológica/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/efectos de los fármacos , Fosforilación , Angiogénesis
14.
PLoS One ; 19(6): e0291583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875180

RESUMEN

OBJECTIVE: We aimed to study the involvement of ferroptosis in the pathogenesis of bronchopulmonary dysplasia (BPD) by conducting bioinformatics analyses and identifying and validating the associated ferroptosis-related genes to explore new directions for treating BPD. METHODS: The dataset GSE32472 on BPD was downloaded from the public genome database. Using R language, differentially expressed genes (DEGs) between the BPD and normal group were screened. In the present study, we adopted weighted gene correlation network analysis (WGCNA) for identifying BPD-related gene modules and ferroptosis-related genes were extracted from FerrDb. Their results were intersected to obtain the hub genes. After that, to explore the hub gene-related signaling pathways, the hub genes were exposed to gene ontology enrichment analysis. With the purpose of verifying the mRNA expression of the hub genes, a single-gene gene set enrichment analysis and quantitative reverse transcription polymerase chain reaction were conducted. Immune cell infiltration in BPD was analyzed using the CIBERSORT inverse fold product algorithm. RESULTS: A total of 606 DEGs were screened. WGCNA provided the BPD-related gene module darkgreen4. The intersection of DEGs, intramodular genes, and ferroptosis-related genes revealed six ferroptosis-associated hub genes (ACSL1, GALNT14, WIPI1, MAPK14, PROK2, and CREB5). Receiver operating characteristic curve analysis demonstrated that the hub genes screened for BPD were of good diagnostic significance. According to the results of immune infiltration analysis, the proportions of CD8, CD4 naive, and memory resting T cells and M2 macrophage were elevated in the normal group, and the proportions of M0 macrophage, resting mast cell, and neutrophils were increased in the BPD group. CONCLUSIONS: A total of six ferroptosis-associated hub genes in BPD were identified in this study, and they may be potential new therapeutic targets for BPD.


Asunto(s)
Displasia Broncopulmonar , Biología Computacional , Ferroptosis , Redes Reguladoras de Genes , Ferroptosis/genética , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Humanos , Biología Computacional/métodos , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Ontología de Genes
15.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L114-L125, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772902

RESUMEN

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.


Asunto(s)
Displasia Broncopulmonar , Quimiocina CXCL12 , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales , Hiperoxia , Macrófagos Alveolares , Animales , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patología , Células Progenitoras Endoteliales/trasplante , Células Progenitoras Endoteliales/metabolismo , Macrófagos Alveolares/metabolismo , Ratones , Quimiocina CXCL12/metabolismo , Hiperoxia/terapia , Ratones Endogámicos C57BL , Animales Recién Nacidos , Pulmón/patología , Pulmón/metabolismo , Humanos , Traslado Adoptivo/métodos , Trasplante de Células Madre/métodos
16.
Int J Biochem Cell Biol ; 172: 106587, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740281

RESUMEN

Bronchopulmonary dysplasia (BPD) remains a significant challenge in neonatal care, the pathogenesis of which potentially involves altered lipid metabolism. Given the critical role of lipids in lung development and the injury response, we hypothesized that specific lipid species could serve as therapeutic agents in BPD. This study aimed to investigate the role of the lipid Phosphatidylcholine (PC) (16:0/14:0) in modulating BPD pathology and to elucidate its underlying mechanisms of action. Our approach integrated in vitro and in vivo methodologies to assess the effects of PC (16:0/14:0) on the histopathology, cellular proliferation, apoptosis, and molecular markers in lung tissue. In a hyperoxia-induced BPD rat model, we observed a reduction in alveolar number and an enlargement in alveolar size, which were ameliorated by PC (16:0/14:0) treatment. Correspondingly, in BPD cell models, PC (16:0/14:0) intervention led to increased cell viability, enhanced proliferation, reduced apoptosis, and elevated surfactant protein C (SPC) expression. RNA sequencing revealed significant gene expression differences between BPD and PC (16:0/14:0) treated groups, with a particular focus on Cldn1 (encoding claudin 1), which was significantly enriched in our analysis. Our findings suggest that PC (16:0/14:0) might protect against hyperoxia-induced alveolar type II cell damage by upregulating CLDN1 expression, potentially serving as a novel therapeutic target for BPD. This study not only advances our understanding of the role of lipids in BPD pathogenesis, but also highlights the significance of PC (16:0/14:0) in the prevention and treatment of BPD, offering new avenues for future research and therapeutic development.


Asunto(s)
Células Epiteliales Alveolares , Displasia Broncopulmonar , Claudina-1 , Hiperoxia , Fosfatidilcolinas , Regulación hacia Arriba , Animales , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/etiología , Hiperoxia/metabolismo , Hiperoxia/complicaciones , Hiperoxia/patología , Ratas , Claudina-1/metabolismo , Claudina-1/genética , Fosfatidilcolinas/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Ratas Sprague-Dawley , Apoptosis , Proliferación Celular , Humanos , Alveolos Pulmonares/patología , Alveolos Pulmonares/metabolismo , Animales Recién Nacidos , Modelos Animales de Enfermedad
17.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L770-L785, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563994

RESUMEN

Novel therapies are needed for bronchopulmonary dysplasia (BPD) because no effective treatment exists. Mesenchymal stromal cell extracellular vesicles (MSC-sEVs) have therapeutic efficacy in a mouse pup neonatal hyperoxia BPD model. We tested the hypothesis that MSC-sEVs will improve lung functional and structural development in mechanically ventilated preterm lambs. Preterm lambs (∼129 days; equivalent to human lung development at ∼28 wk gestation) were exposed to antenatal steroids, surfactant, caffeine, and supported by mechanical ventilation for 6-7 days. Lambs were randomized to blinded treatment with either MSC-sEVs (human bone marrow MSC-derived; 2 × 1011 particles iv; n = 8; 4 F/4 M) or vehicle control (saline iv; 4 F/4 M) at 6 and 78 h post delivery. Physiological targets were pulse oximetry O2 saturation 90-94% ([Formula: see text] 60-90 mmHg), [Formula: see text] 45-60 mmHg (pH 7.25-7.35), and tidal volume 5-7 mL/kg. MSC-sEVs-treated preterm lambs tolerated enteral feedings compared with vehicle control preterm lambs. Differences in weight patterns were statistically significant. Respiratory severity score, oxygenation index, A-a gradient, distal airspace wall thickness, and smooth muscle thickness around terminal bronchioles and pulmonary arterioles were significantly lower for the MSC-sEVs group. S/F ratio, radial alveolar count, secondary septal volume density, alveolar capillary surface density, and protein abundance of VEGF-R2 were significantly higher for the MSC-sEVs group. MSC-sEVs improved respiratory system physiology and alveolar formation in mechanically ventilated preterm lambs. MSC-sEVs may be an effective and safe therapy for appropriate functional and structural development of the lung in preterm infants who require mechanical ventilation and are at risk of developing BPD.NEW & NOTEWORTHY This study focused on potential treatment of preterm infants at risk of developing bronchopulmonary dysplasia (BPD), for which no effective treatment exists. We tested treatment of mechanically ventilated preterm lambs with human mesenchymal stromal cell extracellular vesicles (MSC-sEVs). The results show improved respiratory gas exchange and parenchymal growth of capillaries and epithelium that are necessary for alveolar formation. Our study provides new mechanistic insight into potential efficacy of MSC-sEVs for preterm infants at risk of developing BPD.


Asunto(s)
Animales Recién Nacidos , Displasia Broncopulmonar , Vesículas Extracelulares , Pulmón , Células Madre Mesenquimatosas , Respiración Artificial , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Ovinos , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/metabolismo , Humanos , Femenino
18.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L517-L523, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469633

RESUMEN

Extracellular vesicle (EV) biology in neonatal lung development and disease is a rapidly growing area of investigation. Although EV research in the neonatal population lags behind EV research in adult lung diseases, recent discoveries demonstrate promise in furthering our understanding of the pathophysiology of bronchopulmonary dysplasia and the potential use of EVs in the clinical setting, as both biomarkers and therapeutic agents. This review article explores some of the recent advances in this field and our evolving knowledge of the role of EVs in bronchopulmonary dysplasia.


Asunto(s)
Displasia Broncopulmonar , Vesículas Extracelulares , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Animales , Recién Nacido , Pulmón/patología , Pulmón/metabolismo , Biomarcadores/metabolismo
19.
Redox Biol ; 72: 103115, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38554522

RESUMEN

BACKGROUND: Premature infants often require oxygen supplementation, which can elicit bronchopulmonary dysplasia (BPD) and lead to mitochondrial dysfunction. Mitochondria play important roles in lung development, in both normal metabolism and apoptosis. Enhancing our comprehension of the underlying mechanisms in BPD development can facilitate the effective treatments. METHODS: Plasma samples from BPD and non-BPD infants were collected at 36 weeks post-menstrual age and used for metabolomic analysis. Based on hyperoxia-induced animal and cell models, changes in mitophagy and apoptosis were evaluated following treatment with itaconic acid (ITA). Finally, the mechanism of action of ITA in lung development was comprehensively demonstrated through rescue strategies and administration of corresponding inhibitors. RESULTS: An imbalance in the tricarboxylic acid (TCA) cycle significantly affected lung development, with ITA serving as a significant metabolic marker for the outcomes of lung development. ITA improved the morphological changes in BPD rats, promoted SP-C expression, and inhibited the degree of alveolar type II epithelial cells (AEC II) apoptosis. Mechanistically, ITA mainly promotes the nuclear translocation of transcription factor EB (TFEB) to facilitate dysfunctional mitochondrial clearance and reduces apoptosis in AEC II cells by regulating autophagic flux. CONCLUSION: The metabolic imbalance in the TCA cycle is closely related to lung development. ITA can improve lung development by regulating autophagic flux and promote the nuclear translocation of TFEB, implying its potential therapeutic utility in the treatment of BPD.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Displasia Broncopulmonar , Hiperoxia , Succinatos , Succinatos/farmacología , Animales , Autofagia/efectos de los fármacos , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/patología , Ratas , Humanos , Hiperoxia/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Ciclo del Ácido Cítrico/efectos de los fármacos , Femenino , Mitofagia/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Recién Nacido
20.
Stem Cell Res Ther ; 15(1): 80, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486338

RESUMEN

BACKGROUND: Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS: Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS: Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION: This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.


Asunto(s)
Displasia Broncopulmonar , Vesículas Extracelulares , Hiperoxia , Células Madre Pluripotentes Inducidas , Lesión Pulmonar , Animales , Ratones , Humanos , Recién Nacido , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hiperoxia/patología , Animales Recién Nacidos , Células Madre Pluripotentes Inducidas/metabolismo , Lesión Pulmonar/terapia , Lesión Pulmonar/etiología , Antioxidantes/metabolismo , Proteómica , Recien Nacido Prematuro , Pulmón/patología , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA