Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 913
Filtrar
1.
J Environ Sci (China) ; 147: 74-82, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003085

RESUMEN

Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.


Asunto(s)
Compuestos de Bencidrilo , Enzimas Inmovilizadas , Lacasa , Fenoles , Polietilenglicoles , Contaminantes Químicos del Agua , Lacasa/química , Lacasa/metabolismo , Fenoles/química , Contaminantes Químicos del Agua/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Polietilenglicoles/química , Quitosano/química , Hidrogeles/química , Biodegradación Ambiental , Disruptores Endocrinos/química
2.
Food Chem Toxicol ; 190: 114787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838754

RESUMEN

Lignin-derivable bisguaiacols/bissyringols are viable alternatives to commercial bisphenols; however, many bisguaiacols/bissyringols (e.g., bisguaiacol F [BGF]) have unsubstituted bridging carbons between the aromatic rings, making them more structurally similar to bisphenol F (BPF) than bisphenol A (BPA) - both of which are suspected endocrine disruptors. Herein, we investigated the estrogenic activity (EA) and developmental toxicity of dimethyl-substituted bridging carbon-based lignin-derivable bisphenols (bisguaiacol A [BGA] and bissyringol A [BSA]). Notably, BSA showed undetectable EA at seven test concentrations (from 10-12 M to 10-6 M) in the MCF-7 cell proliferation assay, whereas BPA had detectable EA at five concentrations (from 10-10 M to 10-6 M). In silico results indicated that BSA had the lowest binding affinity with estrogen receptors. Moreover, in vivo chicken embryonic assay results revealed that lignin-derivable monomers had minimal developmental toxicity vs. BPA at environmentally relevant test concentrations (8.7-116 µg/kg). Additionally, all lignin-derivable compounds showed significantly lower expression fold changes (from ∼1.81 to ∼4.41) in chicken fetal liver tests for an estrogen-response gene (apolipoprotein II) in comparison to BPA (fold change of ∼11.51), which was indicative of significantly reduced estrogenic response. Altogether, the methoxy substituents on lignin-derivable bisphenols appeared to be a positive factor in reducing the EA of BPA alternatives.


Asunto(s)
Compuestos de Bencidrilo , Estrógenos , Lignina , Fenoles , Animales , Fenoles/toxicidad , Fenoles/química , Humanos , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/química , Lignina/química , Embrión de Pollo , Estrógenos/toxicidad , Estrógenos/química , Células MCF-7 , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Proliferación Celular/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/efectos de los fármacos , Pollos
3.
J Environ Manage ; 363: 121437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852419

RESUMEN

Membrane-based water treatment has emerged as a promising solution to address global water challenges. Graphene oxide (GO) has been successfully employed in membrane filtration processes owing to its reversible properties, large-scale production potential, layer-to-layer stacking, great oxygen-based functional groups, and unique physicochemical characteristics, including the creation of nano-channels. This review evaluates the separation performance of various GO-based membranes, manufactured by coating or interfacial polymerization with different support layers such as polymer, metal, and ceramic, for endocrine-disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs). In most studies, the addition of GO significantly improved the removal efficiency, flux, porosity, hydrophilicity, stability, mechanical strength, and antifouling performance compared to pristine membranes. The key mechanisms involved in contaminant removal included size exclusion, electrostatic exclusion, and adsorption. These mechanisms could be ascribed to the physicochemical properties of compounds, such as molecular size and shape, hydrophilicity, and charge state. Therefore, understanding the removal mechanisms based on compound characteristics and appropriately adjusting the operational conditions are crucial keys to membrane separation. Future research directions should explore the characteristics of the combination of GO derivatives with various support layers, by tailoring diverse operating conditions and compounds for effective removal of EDCs and PhACs. This is expected to accelerate the development of surface modification strategies for enhanced contaminant removal.


Asunto(s)
Disruptores Endocrinos , Grafito , Membranas Artificiales , Contaminantes Químicos del Agua , Purificación del Agua , Grafito/química , Disruptores Endocrinos/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Filtración , Adsorción , Agua/química
4.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892053

RESUMEN

This study reports the first application of in silico methods to assess the toxicity of 4-chloromethcathinone (4-CMC), a novel psychoactive substance (NPS). Employing advanced toxicology in silico tools, it was possible to predict crucial aspects of the toxicological profile of 4-CMC, including acute toxicity (LD50), genotoxicity, cardiotoxicity, and its potential for endocrine disruption. The obtained results indicate significant acute toxicity with species-specific variability, moderate genotoxic potential suggesting the risk of DNA damage, and a notable cardiotoxicity risk associated with hERG channel inhibition. Endocrine disruption assessment revealed a low probability of 4-CMC interacting with estrogen receptor alpha (ER-α), suggesting minimal estrogenic activity. These insights, derived from in silico studies, are critical in advancing the understanding of 4-CMC properties in forensic and clinical toxicology. These initial toxicological findings provide a foundation for future research and aid in the formulation of risk assessment and management strategies in the context of the use and abuse of NPSs.


Asunto(s)
Simulación por Computador , Psicotrópicos , Psicotrópicos/toxicidad , Psicotrópicos/química , Humanos , Animales , Cardiotoxicidad/etiología , Propiofenonas/toxicidad , Propiofenonas/química , Receptor alfa de Estrógeno/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Daño del ADN/efectos de los fármacos
5.
Food Chem ; 455: 139875, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823145

RESUMEN

Bisphenol A (BPA), an endocrine disruptor, is widely used in food packaging materials, including drink containers. Sensitive detection of BPA is crucial to food safety. Herein, we have developed a novel optical-driven hydrogel film sensor for sensitive BPA detection based on the displacement of spiropyran (SP) from ß-cyclodextrin (ß-CD) cavity by BPA followed by the photochromism of the released SP. The released SP converts to the ring-opened merocyanine form which shows an enhanced red fluorescence in the dark. The sensor demonstrates a linear detection range from 0.1 to 20 µg mL-1 with a limit of detection at 0.027 µg mL-1 and a limit of quantification at 0.089 µg mL-1. Notably, the proposed ß-CD/SP hydrogel can be reused due to the reversible isomerization of SP and the reversible host-guest interaction. This sensor also shows good performance for BPA determination in real samples, indicating its great potential for food safety monitoring.


Asunto(s)
Compuestos de Bencidrilo , Benzopiranos , Contaminación de Alimentos , Embalaje de Alimentos , Hidrogeles , Indoles , Nitrocompuestos , Fenoles , beta-Ciclodextrinas , Fenoles/química , Fenoles/análisis , beta-Ciclodextrinas/química , Hidrogeles/química , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/análisis , Embalaje de Alimentos/instrumentación , Benzopiranos/química , Indoles/química , Nitrocompuestos/química , Contaminación de Alimentos/análisis , Límite de Detección , Disruptores Endocrinos/análisis , Disruptores Endocrinos/química
6.
Talanta ; 277: 126339, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823321

RESUMEN

Bisphenols and benzophenones are two typical kinds of endocrine-disrupting compounds (EDCs) that have been extensively detected in water environments, posing unanticipated risks to aquatic organisms and humans. It is urgent to develop efficient sample pretreatment methods for precise measurement of such EDCs. In this study, a magnetic and multi-shelled metal-organic framework derivative material has been prepared to extract and enrich trace bisphenols and benzophenones from water. Via a solvothermal reaction induced by sodium citrate followed by a carbonization treatment, a ZIF-67@ZIF-8 derived CoZn-magnetic hierarchical carbon (CoZn-MHC) material has been synthesized as a high-performance magnetic solid-phase extraction (MSPE) adsorbent. This adsorbent exhibited a good specific surface area (213.80 m2⋅g-1) and a saturation magnetization of 63.2 emu·g-1. After the optimization of several parameters (including adsorbent dosage, extraction time, pH, ionic strength, desorption solvent, and solvent volume), an efficient MSPE method for several EDCs (comprising bisphenols and benzophenones) was developed with a good linear range (R2 ≥ 0.990), a high sensitivity range (LODs: 0.793-5.37 ng⋅L-1), and good reusability (RSD ≤4.67 % in five consecutive tests). Furthermore, the material exhibited commendable resistance to matrix interference in natural water samples with the recovery rates of target compounds ranging from 74.8 % to 107 %. We envision that the preparation strategy of this functional metal-organic framework (MOF)-based adsorbent for EDCs may provide insights for relevant research in the future.


Asunto(s)
Disruptores Endocrinos , Estructuras Metalorgánicas , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Disruptores Endocrinos/análisis , Disruptores Endocrinos/aislamiento & purificación , Disruptores Endocrinos/química , Estructuras Metalorgánicas/química , Adsorción , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Fenoles/análisis , Fenoles/aislamiento & purificación , Fenoles/química , Benzofenonas/química , Benzofenonas/aislamiento & purificación
7.
J Hazard Mater ; 474: 134852, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852250

RESUMEN

Pharmaceuticals, personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have seen a recent sustained increase in usage, leading to increasing discharge and accumulation in wastewater. Conventional water treatment and disinfection processes are somewhat limited in effectively addressing this micropollutant issue. Ultrasonication (US), which serves as an advanced oxidation process, is based on the principle of ultrasound irradiation, exposing water to high-frequency waves, inducing thermal decomposition of H2O while using the produced radicals to oxidize and break down dissolved contaminants. This review evaluates research over the past five years on US-based technologies for the effective degradation of EDCs and PPCPs in water and assesses various factors that can influence the removal rate: solution pH, temperature of water, presence of background common ions, natural organic matter, species that serve as promoters and scavengers, and variations in US conditions (e.g., frequency, power density, and reaction type). This review also discusses various types of carbon/non-carbon catalysts, O3 and ultraviolet processes that can further enhance the degradation efficiency of EDCs and PPCPs in combination with US processes. Furthermore, numerous types of EDCs and PPCPs and recent research trends for these organic contaminants are considered.


Asunto(s)
Cosméticos , Disruptores Endocrinos , Contaminantes Químicos del Agua , Purificación del Agua , Disruptores Endocrinos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Preparaciones Farmacéuticas/química , Cosméticos/química , Purificación del Agua/métodos , Ultrasonido , Ondas Ultrasónicas
8.
Chem Biol Interact ; 398: 111109, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871163

RESUMEN

Environmental contaminants, such as polycyclic aromatic hydrocarbons (PAHs), have raised concerns regarding their potential endocrine-disrupting effects on aquatic organisms, including fish. In this study, molecular docking and molecular dynamics techniques were employed to evaluate the endocrine-disrupting potential of PAHs in zebrafish, as a model organism. A virtual screening with 72 PAHs revealed a correlation between the number of PAH aromatic rings and their binding affinity to proteins involved in endocrine regulation. Furthermore, PAHs with the highest binding affinities for each protein were identified: cyclopenta[cd]pyrene for AR (-9.7 kcal/mol), benzo(g)chrysene for ERα (-11.5 kcal/mol), dibenzo(a,e)pyrene for SHBG (-8.7 kcal/mol), dibenz(a,h)anthracene for StAR (-11.2 kcal/mol), and 2,3-benzofluorene for TRα (-9.8 kcal/mol). Molecular dynamics simulations confirmed the stability of the protein-ligand complexes formed by the PAHs with the highest binding affinities throughout the simulations. Additionally, the effectiveness of the protocol used in this study was demonstrated by the receiver operating characteristic curve (ROC) analysis, which effectively distinguished decoys from true ligands. Therefore, this research provides valuable insights into the endocrine-disrupting potential of PAHs in fish, highlighting the importance of assessing their impact on aquatic ecosystems.


Asunto(s)
Disruptores Endocrinos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Hidrocarburos Policíclicos Aromáticos , Pez Cebra , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Animales , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/toxicidad , Unión Proteica , Sitios de Unión , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Ligandos , Curva ROC , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/química
9.
J Mol Graph Model ; 131: 108785, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38820705

RESUMEN

Endocrine-disrupting chemicals (EDCs) are substances that can disrupt the normal functioning of hormones.Using aptamers, which are biological recognition elements, biosensors can quickly and accurately detect EDCs in environmental samples. However, the elucidation of aptamer structures by conventional methods is highly challenging due to their complexity. This has led to the development of three-dimensional aptamer structures based on different models and techniques. To do this, we developed a way to predict the 3D structures of the SS DNA needed for this sequence by starting with an aptamer sequence that has biosensor properties specific to bisphenol-A (BPA), one of the chemicals found in water samples that can interfere with hormones. In addition, we will elucidate the intermolecular mechanisms and binding affinity between aptamers and endocrine disruptors using bioinformatics techniques such as molecular docking, molecular dynamics simulation, and binding energies. The outcomes of our study are to compare modeling programs and force fields to see how reliable they are and how well they agree with results found in the existing literature, to understand the intermolecular mechanisms and affinity of aptamer-based biosensors, and to find a new way to make aptamers that takes less time and costs less.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Biología Computacional , Disruptores Endocrinos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fenoles , Disruptores Endocrinos/química , Disruptores Endocrinos/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Biología Computacional/métodos , Fenoles/química , Fenoles/análisis , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/análisis
10.
Food Chem Toxicol ; 188: 114713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702036

RESUMEN

Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Células de la Granulosa , Mitocondrias , Fenoles , Especies Reactivas de Oxígeno , Humanos , Fenoles/toxicidad , Fenoles/química , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/química , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Femenino , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Sulfonas/toxicidad , Sulfonas/química , Línea Celular , Calcio/metabolismo , Fluorocarburos
11.
Toxicol In Vitro ; 98: 105838, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710238

RESUMEN

Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Simulación del Acoplamiento Molecular , Fenoles , Receptores Androgénicos , Fenoles/toxicidad , Fenoles/química , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/química , Receptores Androgénicos/metabolismo , Receptores Androgénicos/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Humanos , Simulación por Computador , Sulfonas/toxicidad , Sulfonas/química , Andrógenos/química
12.
Chemosphere ; 358: 142204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704044

RESUMEN

Bisphenol A (BPA) is a typical endocrine disruptor, which can be used as an industrial raw material for the synthesis of polycarbonate and epoxy resins, etc. Recently, BPA has appeared on the list of priority new pollutants for control in various countries and regions. In this study, phenolic resin waste was utilized as a multi-carbon precursor for the electrocatalytic cathode and loaded with cobalt/nitrogen (Co/N) on its surface to form qualitative two-dimensional carbon nano-flakes (Co/NC). The onset potentials, half-wave potentials, and limiting current densities of the nitrogen-doped composite carbon material Co/NC in oxygen saturated 0.5 mol H2SO4 were -0.08 V, -0.61 V, and -0.41 mA cm-2; and those of alkaline conditions were -0.65 V, -2.51 V, and -0.38 mA cm-2, and the corresponding indexes were improved compared with those of blank titanium electrodes, which indicated that the constructed nitrogen-doped composite carbon material Co/NC was superior in oxygen reduction ability. The catalysis by metallic cobalt as well as the N-hybridized active sites significantly improved the efficiency of electrocatalytic degradation of BPA. In the electro-Fenton system, the yield of hydrogen peroxide generated by cathodic reduction of oxygen was 4.012 mg L-1, which effectively promoted the activation of hydroxyl radicals. The removal rate of BPA was above 95% within 180 min. This work provides a new insight for the design and development of novel catalyst to degrade organic pollutants.


Asunto(s)
Compuestos de Bencidrilo , Cobalto , Nitrógeno , Fenoles , Compuestos de Bencidrilo/química , Fenoles/química , Cobalto/química , Catálisis , Nitrógeno/química , Contaminantes Químicos del Agua/química , Electrodos , Carbono/química , Peróxido de Hidrógeno/química , Técnicas Electroquímicas/métodos , Disruptores Endocrinos/química
13.
Chemosphere ; 360: 142457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810799

RESUMEN

In this study, chemically activated fat-free powdered Moringa oleifera seed biomass (MOSB) was synthesized, characterized, and utilized as a cost-effective biosorbent for the abstraction of progesterone (PGT) hormone from synthetic wastewater. Natural PGT is a human steroid hormone from the progestogen family. Synthetic PGT is approved for the regulation of the menstrual cycle, aiding contraception, and is administered as a hormone replacement therapy in menopausal and post-menopausal women. PGT is an endocrine disrupting chemical (EDC) with negative health impacts on biota. The X-ray diffractogram (XRD), Scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) analyses displayed a porous, amorphous biosorbent with an elemental composition of 72.5% carbon and 22.5% oxygen and a specific surface area of 210.0 m2 g-1. The process variables including temperature (298-338 K), pH (2-10), contact time (10-180 min), adsorbate concentration (20-500 µg L-1), and adsorbent dosage (0.1-2.0 g) were optimized using response surface methodology (RSM) to obtain the greatest efficacy of MOSB during biosorption of PGT. The optimum parameters for PGT biosorption onto MOSB were: 86.8 min, 500 µg L-1 adsorbate concentration, 298 K, and 0.1 g adsorbent dosage. PGT removal from aqueous solutions was pH-independent. The Langmuir isotherm best fitted the equilibrium data with maximal monolayer biosorption capacity of 135.8 µg g-1. The biosorption rate followed the pseudo-first-order (PFO) kinetic law. The thermodynamic functions (ΔG < 0, ΔH = -9.258 kJ mol-1 and ΔS = +44.16 J mol-1) confirmed that the biosorption of PGT onto MOSB is a spontaneous and exothermic process with increased randomness at the adsorbent surface. The biosorption mechanism was physisorption and was devoid of electrostatic interactions. The findings from this study indicate that MOSB is an inexpensive, low-carbon, and environmentally friendly biosorbent that can effectively scavenge PGT from aqueous solutions.


Asunto(s)
Biomasa , Moringa oleifera , Progesterona , Semillas , Contaminantes Químicos del Agua , Moringa oleifera/química , Adsorción , Progesterona/metabolismo , Progesterona/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Semillas/química , Aguas Residuales/química , Cinética , Concentración de Iones de Hidrógeno , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/química
14.
J Hazard Mater ; 472: 134458, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703679

RESUMEN

Diclofenac (DCF) is an environmentally persistent, nonsteroidal anti-inflammatory drug (NSAID) with thyroid disrupting properties. Electrochemical advanced oxidation processes (eAOPs) can efficiently remove NSAIDs from wastewater. However, eAOPs can generate transformation products (TPs) with unknown chemical and biological characteristics. In this study, DCF was electrochemically degraded using a boron-doped diamond anode. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry was used to analyze the TPs of DCF and elucidate its potential degradation pathways. The biological impact of DCF and its TPs was evaluated using the Xenopus Eleutheroembryo Thyroid Assay, employing a transgenic amphibian model to assess thyroid axis activity. As DCF degradation progressed, in vivo thyroid activity transitioned from anti-thyroid in non-treated samples to pro-thyroid in intermediately treated samples, implying the emergence of thyroid-active TPs with distinct modes of action compared to DCF. Molecular docking analysis revealed that certain TPs bind to the thyroid receptor, potentially triggering thyroid hormone-like responses. Moreover, acute toxicity occurred in intermediately degraded samples, indicating the generation of TPs exhibiting higher toxicity than DCF. Both acute toxicity and thyroid effects were mitigated with a prolonged degradation time. This study highlights the importance of integrating in vivo bioassays in the environmental risk assessment of novel degradation processes.


Asunto(s)
Antiinflamatorios no Esteroideos , Diclofenaco , Glándula Tiroides , Contaminantes Químicos del Agua , Animales , Diclofenaco/toxicidad , Diclofenaco/química , Diclofenaco/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Antiinflamatorios no Esteroideos/química , Medición de Riesgo , Técnicas Electroquímicas , Simulación del Acoplamiento Molecular , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo , Xenopus laevis , Diamante/química , Oxidación-Reducción , Boro/toxicidad , Boro/química
15.
Environ Sci Technol ; 58(16): 6913-6923, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38593436

RESUMEN

4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.


Asunto(s)
Fenoles , Humanos , Fenoles/química , Fenoles/metabolismo , Receptor de Androstano Constitutivo/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Disruptores Endocrinos/química , Simulación de Dinámica Molecular
16.
Chemosphere ; 357: 142043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626810

RESUMEN

Emerging pollutants are toxic and harmful chemical substances characterized by environmental persistence, bioaccumulation and biotoxicity, which can harm the ecological environment and even threaten human health. There are four categories of emerging pollutants that are causing widespread concern, namely, persistent organic pollutants, endocrine disruptors, antibiotics, and microplastics. The distribution of emerging pollutants has spatial and temporal heterogeneity, which is influenced by factors such as geographical location, climatic conditions, population density, emission amount, etc. Steroidal estrogens (SEs) discussed in this paper belong to the category of endocrine disruptors. There are generally three types of fate for SEs in the soil environment: sorption, degradation and humification. Humification is a promising pathway for the removal of SEs, especially for those that are difficult to degrade. Through humification, these difficult-to-degrade SEs can be effectively transferred or fixed, thus reducing their impact on the environment and organisms. Contrary to the well-studied process of sorption and degradation, the role and promise of the humification process for the removal of SEs has been underestimated. Based on the existing research, this paper reviews the sources, classification, properties, hazards and environmental behaviors of SEs in soil, and focuses on the degradation and humification processes of SEs and the environmental factors affecting their processes, such as temperature, pH, etc. It aims to provide references for the follow-up research of SEs, and advocates further research on the humification of organic pollutants in future studies.


Asunto(s)
Disruptores Endocrinos , Estrógenos , Contaminantes del Suelo , Suelo , Estrógenos/química , Estrógenos/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Disruptores Endocrinos/química , Disruptores Endocrinos/análisis , Suelo/química , Sustancias Húmicas/análisis , Biodegradación Ambiental , Contaminantes Orgánicos Persistentes/química , Monitoreo del Ambiente
17.
J Hazard Mater ; 471: 134240, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678700

RESUMEN

Surface and treated wastewater are contaminated with highly complex mixtures of micropollutants, which may cause numerous adverse effects, often mediated by endocrine disruption. However, there is limited knowledge regarding some important modes of action, such as interference with thyroid hormone (TH) regulation, and the compounds driving these effects. This study describes an effective approach for the identification of compounds with the potential to bind to transthyretin (TTR; protein distributing TH to target tissues), based on their specific separation in a pull-down assay followed by non-target analysis (NTA). The method was optimized with known TTR ligands and applied to complex water samples. The specific separation of TTR ligands provided a substantial reduction of chromatographic features from the original samples. The applied NTA workflow resulted in the identification of 34 structures. Twelve compounds with available standards were quantified in the original extracts and their TH-displacement potency was confirmed. Eleven compounds were discovered as TTR binders for the first time and linear alkylbenzene sulfonates (LAS) were highlighted as contaminants of concern. Pull-down assay combined with NTA proved to be a well-functioning approach for the identification of unknown bioactive compounds in complex mixtures with great application potential across various biological targets and environmental compartments.


Asunto(s)
Disruptores Endocrinos , Prealbúmina , Contaminantes Químicos del Agua , Prealbúmina/química , Prealbúmina/metabolismo , Prealbúmina/análisis , Disruptores Endocrinos/química , Disruptores Endocrinos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Ligandos , Espectrometría de Masas/métodos , Aguas Residuales/química
18.
Environ Sci Technol ; 58(21): 9416-9426, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38662937

RESUMEN

The polyamide (PA) nanofiltration (NF) membrane has the potential to remove endocrine-disrupting compounds (EDCs) from water and wastewater to prevent risks to both the aquatic ecosystem and human health. However, our understanding of the EDC removal-water permeance trade-off by the PA NF membrane is still limited, although the salt selectivity-water permeance trade-off has been well illustrated. This constrains the precise design of a high-performance membrane for removing EDCs. In this study, we manipulated the PA nanostructures of NF membranes by altering piperazine (PIP) monomer concentrations during the interfacial polymerization (IP) process. The upper bound coefficient for EDC selectivity-water permeance was demonstrated to be more than two magnitudes lower than that for salt selectivity-water permeance. Such variations were derived from the different membrane-solute interactions, in which the water/EDC selectivity was determined by the combined effects of steric exclusion and the hydrophobic interaction, while the electrostatic interaction and steric exclusion played crucial roles in water/salt selectivity. We further highlighted the role of the pore number and residual groups during the transport of EDC molecules across the PA membrane via molecular dynamics (MD) simulations. Fewer pores decreased the transport channels, and the existence of residual groups might cause steric hindrance and dynamic disturbance to EDC transport inside the membrane. This study elucidated the trade-off phenomenon and mechanisms between EDC selectivity and water permeance, providing a theoretical reference for the precise design of PA NF membranes for effective removal of EDCs in water reuse.


Asunto(s)
Disruptores Endocrinos , Filtración , Membranas Artificiales , Nylons , Contaminantes Químicos del Agua , Disruptores Endocrinos/química , Nylons/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Agua/química , Nanoestructuras/química
19.
Eur J Dermatol ; 34(1): 40-50, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557457

RESUMEN

There is growing concern about the presence of endocrine disrupting chemicals (EDCs) in cosmetics. We aimed to identify the main cosmetic ingredients with suspected endocrine-disrupting properties, and analyse their presence in current marketed products. Particular attention was given to products intended for susceptible (due to physiological status) and vulnerable (due to specific pathologies) groups with a view to informing cosmetologists and related health professionals of the scientific basis and current status of any concerns. Suspected EDCs used as cosmetic ingredients, included in lists published by regulatory agencies, were documented and investigated by weight of evidence analysis based on endocrine-related toxicity studies. In total, 49 suspected EDCs were identified from a sample of over a thousand cosmetic products marketed in the European Union. Suspected EDCs were found in approximately one third of products, with a similar frequency in products intended for susceptible and vulnerable groups. Avobenzone (CAS number:70356-09-1), octisalate (CAS number: 118-60-5), and butylated hydroxytoluene (CAS number: 128-37-0) were mostly commonly identified. The presence of EDCs was particularly high for sun care cosmetic products. Our results highlight potentially significant exposure through cosmetics to substances currently studied by regulatory institutions as suspected endocrine disrupters. EDCs are not yet universally regulated, and informing health professionals and educating the population as a precaution are options to reduce individual exposure levels, especially in vulnerable and susceptible groups. Special recommendations are needed for products intended for oncological patients.


Asunto(s)
Cosméticos , Disruptores Endocrinos , Humanos , Disruptores Endocrinos/química , Disruptores Endocrinos/toxicidad , Cosméticos/efectos adversos , Cosméticos/química , Hidroxitolueno Butilado
20.
J Environ Sci (China) ; 143: 1-11, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644008

RESUMEN

Potential health risks related to environmental endocrine disruptors (EEDs) have aroused research hotspots at the forefront of water treatment technologies. Herein, nitrogen-doped titanium dioxide/schwertmannite nanocomposites (N-TiO2/SCH) have been successfully developed as heterogeneous catalysts for the degradation of typical EEDs via photo-Fenton processes. Due to the sustainable Fe(III)/Fe(II) conversion induced by photoelectrons, as-prepared N-TiO2/SCH nanocomposites exhibit much enhanced efficiency for the degradation of bisphenol A (BPA; ca. 100% within 60 min under visible irradiation) in a wide pH range of 3.0-7.8, which is significantly higher than that of the pristine schwertmannite (ca. 74.5%) or N-TiO2 (ca. 10.8%). In this photo-Fenton system, the efficient degradation of BPA is mainly attributed to the oxidation by hydroxyl radical (•OH) and singlet oxygen (1O2). Moreover, the possible catalytic mechanisms and reaction pathway of BPA degradation are systematically investigated based on analytical and photoelectrochemical analyses. This work not only provides a feasible means for the development of novel heterogeneous photo-Fenton catalysts, but also lays a theoretical foundation for the potential application of mineral-based materials in wastewater treatment.


Asunto(s)
Compuestos de Bencidrilo , Compuestos de Hierro , Nanocompuestos , Nitrógeno , Fenoles , Titanio , Contaminantes Químicos del Agua , Titanio/química , Compuestos de Bencidrilo/química , Fenoles/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Nitrógeno/química , Catálisis , Hierro/química , Peróxido de Hidrógeno/química , Disruptores Endocrinos/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA