Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
1.
Respir Physiol Neurobiol ; 326: 104282, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782084

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos , Distrofia Muscular de Duchenne , Animales , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Ratones , Humanos , Masculino , Distrofina/genética , Distrofina/deficiencia , Ratones Endogámicos mdx , Diafragma/fisiopatología , Diafragma/patología , Insuficiencia Respiratoria/etiología , Unión Neuromuscular/patología , Unión Neuromuscular/metabolismo , Ratones Endogámicos C57BL
2.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770680

RESUMEN

Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Receptores de Glucocorticoides , Animales , Ratones , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Distrofina/metabolismo , Distrofina/genética , Distrofina/deficiencia , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Receptores de Glucocorticoides/metabolismo
3.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38721692

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Asunto(s)
Ratones Endogámicos mdx , Distrofia Muscular de Duchenne , Vaina de Mielina , Oligodendroglía , Animales , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferación Celular , Distrofina/metabolismo , Distrofina/deficiencia , Distrofina/genética , Cuerpo Calloso/patología , Cuerpo Calloso/metabolismo , Ratones Endogámicos C57BL , Ratones , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Ventrículos Laterales/patología , Ventrículos Laterales/metabolismo , Modelos Animales de Enfermedad , Diferenciación Celular , Masculino
4.
Physiol Rep ; 12(8): e16004, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658324

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.


Asunto(s)
Arritmias Cardíacas , Distrofina , Contracción Miocárdica , Animales , Masculino , Distrofina/genética , Distrofina/deficiencia , Ratones , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/metabolismo , Ratones Endogámicos mdx , Ratones Endogámicos C57BL
5.
Hum Mol Genet ; 33(13): 1107-1119, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38507070

RESUMEN

The dystrophin-glycoprotein complex (DGC) plays a crucial role in maintaining the structural integrity of the plasma membrane and the neuromuscular junction. In this study, we investigated the impact of the deficiency of α-dystrobrevin (αdbn), a component of the DGC, on the homeostasis of intracellular organelles, specifically mitochondria and the sarcoplasmic reticulum (SR). In αdbn deficient muscles, we observed a significant increase in the membrane-bound ATP synthase complex levels, a marker for mitochondria in oxidative muscle fiber types compared to wild-type. Furthermore, examination of muscle fibers deficient in αdbn using electron microscopy revealed profound alterations in the organization of mitochondria and the SR within certain myofibrils of muscle fibers. This included the formation of hyper-branched intermyofibrillar mitochondria with extended connections, an extensive network spanning several myofibrils, and a substantial increase in the number/density of subsarcolemmal mitochondria. Concurrently, in some cases, we observed significant structural alterations in mitochondria, such as cristae loss, fragmentation, swelling, and the formation of vacuoles and inclusions within the mitochondrial matrix cristae. Muscles deficient in αdbn also displayed notable alterations in the morphology of the SR, along with the formation of distinct anomalous concentric SR structures known as whorls. These whorls were prevalent in αdbn-deficient mice but were absent in wild-type muscles. These results suggest a crucial role of the DGC αdbn in regulating intracellular organelles, particularly mitochondria and the SR, within muscle cells. The remodeling of the SR and the formation of whorls may represent a novel mechanism of the unfolded protein response (UPR) in muscle cells.


Asunto(s)
Proteínas Asociadas a la Distrofina , Distrofina , Mitocondrias , Retículo Sarcoplasmático , Animales , Ratones , Distrofina/genética , Distrofina/metabolismo , Distrofina/deficiencia , Proteínas Asociadas a la Distrofina/genética , Proteínas Asociadas a la Distrofina/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/deficiencia , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mitocondrias/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestructura
6.
Am J Pathol ; 194(2): 264-279, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37981219

RESUMEN

Dystrophin deficiency alters the sarcolemma structure, leading to muscle dystrophy, muscle disuse, and ultimately death. Beyond limb muscle deficits, patients with Duchenne muscular dystrophy have numerous transit disorders. Many studies have highlighted the strong relationship between gut microbiota and skeletal muscle. The aims of this study were: i) to characterize the gut microbiota composition over time up to 1 year in dystrophin-deficient mdx mice, and ii) to analyze the intestine structure and function and expression of genes linked to bacterial-derived metabolites in ileum, blood, and skeletal muscles to study interorgan interactions. Mdx mice displayed a significant reduction in the overall number of different operational taxonomic units and their abundance (α-diversity). Mdx genotype predicted 20% of ß-diversity divergence, with a large taxonomic modification of Actinobacteria, Proteobacteria, Tenericutes, and Deferribacteres phyla and the included genera. Interestingly, mdx intestinal motility and gene expressions of tight junction and Ffar2 receptor were down-regulated in the ileum. Concomitantly, circulating inflammatory markers related to gut microbiota (tumor necrosis factor, IL-6, monocyte chemoattractant protein-1) and muscle inflammation Tlr4/Myd88 pathway (Toll-like receptor 4, which recognizes pathogen-associated molecular patterns) were up-regulated. Finally, in mdx mice, adiponectin was reduced in blood and its receptor modulated in muscles. This study highlights a specific gut microbiota composition and highlights interorgan interactions in mdx physiopathology with gut microbiota as the potential central metabolic organ.


Asunto(s)
Distrofina , Microbioma Gastrointestinal , Distrofia Muscular de Duchenne , Animales , Humanos , Ratones , Distrofina/deficiencia , Distrofina/genética , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología
7.
FASEB J ; 35(12): e22034, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34780665

RESUMEN

Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.


Asunto(s)
Conducta Animal , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Condicionamiento Físico Animal , Estrés Psicológico/complicaciones , Animales , Modelos Animales de Enfermedad , Distrofina/deficiencia , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular Animal/etiología , Distrofia Muscular Animal/psicología , Distrofia Muscular de Duchenne/etiología , Distrofia Muscular de Duchenne/psicología , Factores Sexuales
8.
J Neuromuscul Dis ; 8(s2): S205-S222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602497

RESUMEN

BACKGROUND: Myogenesis is a dynamic process involving temporal changes in the expression of many genes. Lack of dystrophin protein such as in Duchenne muscular dystrophy might alter the natural course of gene expression dynamics during myogenesis. OBJECTIVE: To gain insight into the dynamic temporal changes in protein expression during differentiation of normal and dystrophin deficient myoblasts to myotubes. METHOD: A super SILAC spike-in strategy in combination and LC-MS/MS was used for temporal proteome profiling of normal and dystrophin deficient myoblasts during differentiation. The acquired data was analyzed using Proteome Discoverer 2.2. and data clustering using R to define significant temporal changes in protein expression. RESULTS: sFour major temporal protein clusters that showed sequential dynamic expression profiles during myogenesis of normal myoblasts were identified. Clusters 1 and 2, consisting mainly of proteins involved mRNA splicing and processing expression, were elevated at days 0 and 0.5 of differentiation then gradually decreased by day 7 of differentiation, then remained lower thereafter. Cluster 3 consisted of proteins involved contractile muscle and actomyosin organization. They increased in their expression reaching maximum at day 7 of differentiation then stabilized thereafter. Cluster 4 consisting of proteins involved in skeletal muscle development glucogenesis and extracellular remodeling had a lower expression during myoblast stage then gradually increased in their expression to reach a maximum at days 11-15 of differentiation. Lack of dystrophin expression in DMD muscle myoblast caused major alteration in temporal expression of proteins involved in cell adhesion, cytoskeleton, and organelle organization as well as the ubiquitination machinery. CONCLUSION: Time series proteome profiling using super SILAC strategy is a powerful method to assess temporal changes in protein expression during myogenesis and to define the downstream consequences of lack of dystrophin on these temporal protein expressions. Key alterations were identified in dystrophin deficient myoblast differentiation compared to normal myoblasts. These alterations could be an attractive therapeutic target.


Asunto(s)
Distrofina/deficiencia , Mioblastos/metabolismo , Proteómica/métodos , Adulto , Preescolar , Perfilación de la Expresión Génica , Humanos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Factores de Tiempo
9.
Am J Physiol Cell Physiol ; 321(4): C704-C720, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34432537

RESUMEN

Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration. Previously, using the mdx mouse model of DMD, we have proposed that once the number and complexity of branched fibers present in dystrophic fast-twitch EDL muscle surpasses a stable level, we term the "tipping point," the branches, in and of themselves, mechanically weaken the muscle by rupturing when subjected to high forces during eccentric contractions. Here, we use the slow-twitch soleus muscle from the dystrophic mdx mouse to study prediseased "periambulatory" dystrophy at 2-3 wk, the peak regenerative "adult" phase at 6-9 wk, and "old" at 58-112 wk. Using isolated mdx soleus muscles, we examined contractile function and response to eccentric contraction correlated with the amount and complexity of regenerated branched fibers. The intact muscle was enzymatically dispersed into individual fibers in order to count fiber branching and some muscles were optically cleared to allow laser scanning confocal microscopy. We demonstrate throughout the lifespan of the mdx mouse that dystrophic slow-twitch soleus muscle is no more susceptible to eccentric contraction-induced injury than age-matched littermate controls and that this is correlated with a reduction in the number and complexity of branched fibers compared with fast-twitch dystrophic EDL muscles.


Asunto(s)
Distrofina/deficiencia , Contracción Muscular , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Cinética , Masculino , Ratones Endogámicos mdx , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Fuerza Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Mutación
10.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34445659

RESUMEN

Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also be efficiently targeted within the heart in the widest patient population. New perspectives are clearly required to effectively address the unanswered questions concerning the identification of authentic and effectual readouts of DAC occurrence and severity. A potential way forward to achieve further therapy breakthroughs lies in combining multiomic analysis with advanced preclinical precision models. This review presents the fundamental discoveries made using relevant models of DAC and how omics approaches have been incorporated to date.


Asunto(s)
Cardiomiopatías/patología , Biología Computacional/métodos , Distrofina/deficiencia , Genoma , Proteoma/análisis , Transcriptoma , Animales , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Humanos
11.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260377

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage. This allows us to recapitulate classical DMD phenotypes (mislocalization of proteins of the dystrophin-associated glycoprotein complex, increased fusion, myofiber branching, force contraction defects, and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can dramatically rescue force contraction, fusion, and branching defects in DMD iPSC lines. This argues that prednisolone acts directly on myofibers, challenging the largely prevalent view that its beneficial effects are caused by antiinflammatory properties. Our work introduces a human in vitro model to study the onset of DMD pathology and test novel therapeutic approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Prednisolona/farmacología , Fenómenos Biomecánicos , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Distrofina/deficiencia , Distrofina/metabolismo , Glicoproteínas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/genética , Mutación/genética , Optogenética , Fenotipo
12.
Cell Rep Med ; 2(6): 100298, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34195678

RESUMEN

Duchenne muscular dystrophy (DMD) is a muscle degenerating disease caused by dystrophin deficiency, for which therapeutic options are limited. To facilitate drug development, it is desirable to develop in vitro disease models that enable the evaluation of DMD declines in contractile performance. Here, we show MYOD1-induced differentiation of hiPSCs into functional skeletal myotubes in vitro with collagen gel and electrical field stimulation (EFS). Long-term EFS training (0.5 Hz, 20 V, 2 ms, continuous for 2 weeks) mimicking muscle overuse recapitulates declines in contractile performance in dystrophic myotubes. A screening of clinically relevant drugs using this model detects three compounds that ameliorate this decline. Furthermore, we validate the feasibility of adapting the model to a 96-well culture system using optogenetic technology for large-scale screening. Our results support a disease model using patient-derived iPSCs that allows for the recapitulation of the contractile pathogenesis of DMD and a screening strategy for drug development.


Asunto(s)
Distrofina/genética , Estimulación Eléctrica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Compuestos de Boro/farmacología , Sistemas CRISPR-Cas , Diferenciación Celular , Colágeno/química , Creatina/farmacología , Dantroleno/farmacología , Distrofina/deficiencia , Geles , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Biológicos , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Optogenética , Cultivo Primario de Células , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
Am J Physiol Cell Physiol ; 321(2): C288-C296, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191629

RESUMEN

Impaired oxidative capacity and mitochondrial function contribute to the dystrophic pathology in muscles of patients with Duchenne muscular dystrophy (DMD) and in relevant mouse models of the disease. Emerging evidence suggests an association between disrupted core clock expression and mitochondrial quality control, but this has not been established in muscles lacking dystrophin. We examined the diurnal regulation of muscle core clock and mitochondrial quality control expression in dystrophin-deficient C57BL/10ScSn-Dmdmdx (mdx) mice, an established model of DMD. Male C57BL/10 (BL/10; n = 18) and mdx mice (n = 18) were examined every 4 h beginning at the dark cycle. Throughout the entire light-dark cycle, extensor digitorum longus (EDL) muscles from mdx mice had decreased core clock mRNA expression (Arntl, Cry1, Cry2, Nr1d2; P < 0.05) and disrupted mitochondrial quality control mRNA expression related to biogenesis (decreased; Ppargc1a, Esrra; P < 0.05), fission (increased; Dnm1l; P < 0.01), fusion (decreased; Opa1, Mfn1; P < 0.05), and autophagy/mitophagy (decreased: Bnip3; P < 0.05; increased: Becn1; P < 0.05). Cosinor analysis revealed a decrease in the rhythmicity parameters mesor and amplitude for Arntl, Cry1, Cry2, Per2, and Nr1d1 (P < 0.001) in mdx mice. Diurnal oscillations in Esrra, Sirt1, Map1lc3b, and Sqstm1 were absent in mdx mice, along with decreased mesor and amplitude of Ppargc1a mRNA expression (P < 0.01). The expression of proteins involved in mitochondrial biogenesis (decreased: PPARGC1A, P < 0.05) and autophagy/mitophagy (increased: MAP1LC3BII, SQSTM1, BNIP3; P < 0.05) were also dysregulated in tibialis anterior muscles of mdx mice. These findings suggest that dystrophin deficiency in mdx mice impairs the regulation of the core clock and mitochondrial quality control, with relevance to DMD and related disorders.


Asunto(s)
Distrofina/deficiencia , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/metabolismo , Utrofina/deficiencia
14.
Int J Mol Sci ; 22(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068508

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.


Asunto(s)
Cardiomiopatía Dilatada/genética , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Daño del ADN/genética , Modelos Animales de Enfermedad , Distrofina/deficiencia , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos mdx/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Células Madre/metabolismo , Células Madre/patología
15.
Am J Physiol Cell Physiol ; 321(1): C94-C103, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979211

RESUMEN

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by cell cycle inhibitory proteins such as p16, p21, and p53. When cells enter senescence, they secrete a host of proinflammatory factors known as the senescence-associated secretory phenotype, which has deleterious effects on surrounding cells and tissues. Little is known of the role of senescence in Duchenne muscular dystrophy (DMD), the fatal X-linked neuromuscular disorder typified by chronic inflammation, extracellular matrix remodeling, and a progressive loss in muscle mass and function. Here, we demonstrate using C57-mdx (8-wk-old) and D2-mdx (4-wk-old and 8-wk-old) mice, two mouse models of DMD, that cells displaying canonical markers of senescence are found within the skeletal muscle. Eight-week-old D2-mdx mice, which display severe muscle pathology, had greater numbers of senescent cells associated with areas of inflammation, which were mostly Cdkn1a-positive macrophages, whereas in C57-mdx muscle, senescent populations were endothelial cells and macrophages localized to newly regenerated myofibers. Interestingly, this pattern was similar to cardiotoxin (CTX)-injured wild-type (WT) muscle, which experienced a transient senescent response. Dystrophic muscle demonstrated significant upregulations in senescence pathway genes [Cdkn1a (p21), Cdkn2a (p16INK4A), and Trp53 (p53)], which correlated with the quantity of senescence-associated ß-galactosidase (SA-ß-Gal)-positive cells. These results highlight an underexplored role for cellular senescence in murine dystrophic muscle.


Asunto(s)
Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células Endoteliales/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Distrofina/deficiencia , Distrofina/genética , Células Endoteliales/patología , Regulación de la Expresión Génica , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miofibrillas/metabolismo , Miofibrillas/patología , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
16.
Am J Physiol Cell Physiol ; 321(2): C230-C246, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979214

RESUMEN

The MDX mouse is an animal model of Duchenne muscular dystrophy, a human disease marked by an absence of the cytoskeletal protein, dystrophin. We hypothesized that 1) dystrophin serves a complex mechanical role in skeletal muscles by contributing to passive compliance, viscoelastic properties, and contractile force production and 2) age is a modulator of passive mechanics of skeletal muscles of the MDX mouse. Using an in vitro biaxial mechanical testing apparatus, we measured passive length-tension relationships in the muscle fiber direction as well as transverse to the fibers, viscoelastic stress-relaxation curves, and isometric contractile properties. To avoid confounding secondary effects of muscle necrosis, inflammation, and fibrosis, we used very young 3-wk-old mice whose muscles reflected the prefibrotic and prenecrotic state. Compared with controls, 1) muscle extensibility and compliance were greater in both along fiber direction and transverse to fiber direction in MDX mice and 2) the relaxed elastic modulus was greater in dystrophin-deficient diaphragms. Furthermore, isometric contractile muscle stress was reduced in the presence and absence of transverse fiber passive stress. We also examined the effect of age on the diaphragm length-tension relationships and found that diaphragm muscles from 9-mo-old MDX mice were significantly less compliant and less extensible than those of muscles from very young MDX mice. Our data suggest that the age of the MDX mouse is a determinant of the passive mechanics of the diaphragm; in the prefibrotic/prenecrotic stage, muscle extensibility and compliance, as well as viscoelasticity, and muscle contractility are altered by loss of dystrophin.


Asunto(s)
Distrofina/deficiencia , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Modelos Animales de Enfermedad , Contracción Isométrica/fisiología , Ratones Transgénicos , Distrofia Muscular de Duchenne/fisiopatología
17.
J Pathol ; 254(5): 589-605, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33999411

RESUMEN

Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by dystrophin deficiency. Vascular dysfunction has been suggested as an underlying pathogenic mechanism in DMD. However, this has not been thoroughly studied in a large animal model. Here we investigated structural and functional changes in the vascular smooth muscle and endothelium of the canine DMD model. The expression of dystrophin and endothelial nitric oxide synthase (eNOS), neuronal NOS (nNOS), and the structure and function of the femoral artery from 15 normal and 16 affected adult dogs were evaluated. Full-length dystrophin was detected in the endothelium and smooth muscle in normal but not affected dog arteries. Normal arteries lacked nNOS but expressed eNOS in the endothelium. NOS activity and eNOS expression were reduced in the endothelium of dystrophic dogs. Dystrophin deficiency resulted in structural remodeling of the artery. In affected dogs, the maximum tension induced by vasoconstrictor phenylephrine and endothelin-1 was significantly reduced. In addition, acetylcholine-mediated vasorelaxation was significantly impaired, whereas exogenous nitric oxide-induced vasorelaxation was significantly enhanced. Our results suggest that dystrophin plays a crucial role in maintaining the structure and function of vascular endothelium and smooth muscle in large mammals. Vascular defects may contribute to DMD pathogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Distrofina/deficiencia , Endotelio Vascular/fisiopatología , Músculo Liso Vascular/fisiopatología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Animales , Modelos Animales de Enfermedad , Perros
18.
Hum Mol Genet ; 30(11): 1006-1019, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33822956

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness because of the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum, but its activity is decreased in dystrophic muscle. Here, we show that an allosteric SERCA activator, CDN1163, ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. The administration of CDN1163 prevented exercise-induced muscular damage and restored mitochondrial function. In addition, treatment with CDN1163 for 7 weeks enhanced muscular strength and reduced muscular degeneration and fibrosis in mdx mice. Our findings provide preclinical proof-of-concept evidence that pharmacological activation of SERCA could be a promising therapeutic strategy for DMD. Moreover, CDN1163 improved muscular strength surprisingly in wild-type mice, which may pave the new way for the treatment of muscular dysfunction.


Asunto(s)
Distrofina/genética , Distrofia Muscular de Duchenne/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Distrofina/deficiencia , Humanos , Ratones , Ratones Endogámicos mdx , Contracción Muscular/genética , Debilidad Muscular/genética , Debilidad Muscular/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Distrofia Muscular de Duchenne/patología , Fenotipo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
19.
FASEB J ; 35(4): e21489, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33734502

RESUMEN

Psychosocial stressors can cause physical inactivity, cardiac damage, and hypotension-induced death in the mdx mouse model of Duchenne muscular dystrophy (DMD). Because repeated exposure to mild stress can lead to habituation in wild-type mice, we investigated the response of mdx mice to a mild, daily stress to determine whether habituation occurred. Male mdx mice were exposed to a 30-sec scruff restraint daily for 12 weeks. Scruff restraint induced immediate physical inactivity that persisted for at least 60 minutes, and this inactivity response was just as robust after 12 weeks as it was after one day. Physical inactivity in the mdx mice was not associated with acute skeletal muscle contractile dysfunction. However, skeletal muscle of mdx mice that were repeatedly stressed had slow-twitch and tetanic relaxation times and trended toward high passive stiffness, possibly due to a small but significant increase in muscle fibrosis. Elevated urinary corticosterone secretion, adrenal hypertrophy, and a larger adrenal cortex indicating chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis were measured in 12-week stressed mdx mice relative to those unstressed. However, pharmacological inhibition of the HPA axis did not affect scruff-induced physical inactivity and acute corticosterone injection did not recapitulate the scruff-induced phenotype, suggesting the HPA axis is not the driver of physical inactivity. Our results indicate that the response of mdx mice to an acute mild stress is non-habituating and that when that stressor is repeated daily for weeks, it is sufficient to exacerbate some phenotypes associated with dystrophinopathy in mdx mice.


Asunto(s)
Distrofina/deficiencia , Sistema Hipotálamo-Hipofisario/fisiopatología , Fenotipo , Animales , Modelos Animales de Enfermedad , Corazón/fisiopatología , Ratones Endogámicos mdx , Ratones Transgénicos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/genética , Sistema Hipófiso-Suprarrenal/fisiopatología
20.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627403

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfuro de Hidrógeno/farmacología , Mitocondrias Musculares/efectos de los fármacos , Morfolinas/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Compuestos Organotiofosforados/farmacología , Tionas/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Distrofina/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos mdx , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Compuestos Organofosforados/metabolismo , Compuestos Organotiofosforados/metabolismo , Prednisona/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Tionas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Utrofina/deficiencia , Utrofina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA