Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2405018121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39264741

RESUMEN

The transport of biopolymers across nanopores is an important biological process currently under investigation for the rapid analysis of DNA and proteins. While the transport of DNA is generally understood, methods to induce unfolded protein translocation have only recently been discovered (Yu et al., 2023, Sauciuc et al., 2023). Here, we found that during electroosmotically driven translocation of polypeptides, blob-like structures typically form inside nanopores, often obstructing their transport and preventing addressing individual amino acids. This is in contrast with the electrophoretic transport of DNA, where the formation of such structures has not been reported. Comparisons between different nanopore sizes and shapes and modifications by different surface chemistries allowed formulating a mechanism for blob formation. We also show that single-file transport can be achieved by using 1) nanopores that have an entry and an internal diameter smaller than the persistence length of the polymer, 2) nanopores with a nonsticky (i.e., nonaromatic) inner surface, and 3) moderate translocation velocities. These experiments provide a basis for understanding polypeptide transport under confinement and for improving the design and engineering of nanopores for protein analysis.


Asunto(s)
Nanoporos , Transporte de Proteínas , Proteínas/química , Proteínas/metabolismo , Péptidos/química , Péptidos/metabolismo , ADN/química , ADN/metabolismo , Electroósmosis
2.
Anal Chim Acta ; 1328: 343162, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39266194

RESUMEN

BACKGROUND: Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has become a valuable analytical technique in top-down proteomics (TDP). CZE-MS/MS-based TDP typically employs separation capillaries with neutral coatings (i.e., linear polyacrylamide, LPA). However, issues related to separation resolution and reproducibility remain with the LPA-coated capillaries due to the unavoidable non-specific protein adsorption onto the capillary wall. Cationic coatings can be critical alternatives to LPA coating for CZE-MS/MS-based TDP due to the electrostatic repulsion between the positively charged capillary inner wall and proteoform molecules in the acidic separation buffer. Unfortunately, there are only very few studies using cationic coating-based CZE-MS/MS for TDP studies. RESULTS: In this work, we aimed to develop a simple and efficient approach for preparing separation capillaries with a cationic coating, i.e., poly (acrylamide-co-(3-acrylamidopropyl) trimethylammonium chloride [PAMAPTAC]) for CZE-MS/MS-based TDP. The PAMAPTAC coating-based CZE-MS produced significantly better separation resolution of proteoforms compared to the traditionally used LPA-coated approach. It achieved reproducible separation and measurement of a simple proteoform mixture and a complex proteome sample (i.e., a yeast cell lysate) regarding migration time, proteoform intensity, and the number of proteoform identifications. The PAMAPTAC coating-based CZE-MS enabled the detection of large proteoforms (≥30 kDa) from the yeast cell lysate reproducibly without any size-based prefractionation. Interestingly, the mobility of proteoforms using the PAMAPTAC coating can be predicted accurately using a simple semi-empirical model. SIGNIFICANCE: The results render the PAMAPTAC coating as a valuable alternative to the LPA coating to advance CZE-MS-based TDP towards high-resolution separation and highly reproducible measurement of proteoforms in complex samples.


Asunto(s)
Cationes , Electroósmosis , Electroforesis Capilar , Proteómica , Electroforesis Capilar/métodos , Proteómica/métodos , Cationes/química , Espectrometría de Masas en Tándem/métodos , Saccharomyces cerevisiae/química
3.
Nanotechnology ; 35(47)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39173646

RESUMEN

Biomimetic artificial olfactory cilia have demonstrated potential in identifying specific volatile organic compounds linked to various diseases, including certain cancers, metabolic disorders, and respiratory conditions. These sensors may facilitate non-invasive disease diagnosis and monitoring. Cilia Motility is the coordinated movement of cilia, which are hair-like projections present on the surface of particular cells in different species. Cilia serve an important part in several biological functions, including motility, fluid movement, and sensory reception. Cilia motility is a complicated process that requires the coordinated interaction of structural components and molecular pathways. Cilia are made up of a highly structured structure known as the axoneme, which is made up of microtubules grouped in a unique pattern. The axoneme is made up of nine outer doublet microtubules and a core pair of singlet microtubules. This arrangement offers structural support and serves as a scaffold for the proteins involved in ciliary movement. Our latest endeavors investigate these Multiphysics phenomena in ciliary beating flows that are inspired by biology, utilizing copper, gold, and titania nanoparticles. We examine their functions in biological systems such as peristaltic transport computationally. Our models give precise two- and three-dimensional velocity, temperature, and concentration solutions by integrating transverse magnetohydrodynamics with laser heating. Furthermore, at the channel wall expressions, the skin friction coefficient, Sherwood number, Nusselt number and optimization of entropy generation are acquired and analyzed. Important properties of the velocity and scalar profiles are revealed by a thorough analysis of dimensionless parameters. The simplified examination provides more insight into the trapping patterns that result from the complex interaction between nanofluid rheology and optics. These findings greatly contribute to our knowledge and improvement of nanofluidic transport technologies in a variety of fields supporting industry, sustainability, and medicine. Our combined computational and experimental methodology clarifies the complex dynamics in these systems and provides design guidance for the engineering of improved fluidic devices that make use of multifunctional nanomaterial interfaces and peristaltic motion.


Asunto(s)
Cilios , Cilios/metabolismo , Cilios/fisiología , Entropía , Materiales Biomiméticos/química , Electroósmosis , Cobre/química , Biomimética/métodos , Oro/química , Titanio/química
4.
Chemosphere ; 363: 142873, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019187

RESUMEN

Electro-osmosis has been valued as a promising technology to enhance the dewatering of waste sludge, stabilization and environmental remediation of soils with low permeability. However, the coefficient of electro-osmotic permeability (keo) is commonly taken as constant value which is particularly not the case in variable charge soil. As a result, the nonlinearity of the electro-osmotic flow (EOF) and the direction reverse could not be interpreted. Herein, the electro-chemical parameters were monitored in electro-osmotic experiment with natural variable charge soil. It was observed that the evolutions showed significant nonlinear behavior and were correlated. The comprehensive Zeta potential model proposed by the authors was applied to simulate the nonlinear keo induced by the variable pH and electrolyte concentration. The agreement between tested and simulated flow rate variation and excess pore water pressure distribution demonstrated the reliability of the theory. The error rate of the simulations through coupling nonlinear keo and voltage gradient Ex was reduced to 29.4% from 381.9% of calculations with constant parameters. The direction reverse of EOF was innovatively interpreted. Hence, the numerical model would act as a useful tool to connect these electro-chemical parameters and provide guidance to evaluate contributions of commonly used pH conditioning measurements.


Asunto(s)
Ósmosis , Suelo , Suelo/química , Concentración de Iones de Hidrógeno , Electroósmosis/métodos , Permeabilidad , Modelos Teóricos , Restauración y Remediación Ambiental/métodos , Electrólitos/química
5.
ACS Appl Mater Interfaces ; 16(30): 40100-40110, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39038810

RESUMEN

Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore. We demonstrated an efficient tool of controlling the ssDNA translocation time, via the interplay between the nanopore-ssDNA surface electrostatic interactions and electroosmotic flow, all mediated by the pH-dependent ionization of amino acids lining the nanopore's translocation pathway. Our data also reveal the nonmonotonic, pH-induced alteration of ssDNA average translocation time. Unlike mildly acidic conditions (pH ∼ 4.7), at a pH ∼ 2.8 maintained symmetrically or asymmetrically across the WT α-HL, we evidenced the manifestation of a dominant electroosmotic flow, determining the speeding up of the ssDNA translocation across the nanopore by counteracting the ssDNA-nanopore attractive electrostatic interactions. We envision potential applications of the presented approach by enabling easy-to-use, real-time detection of short ssDNA sequences, without the need for complex biochemical modifications to the nanopore to mitigate the fast translocation of such sequences.


Asunto(s)
ADN de Cadena Simple , Electroósmosis , Proteínas Hemolisinas , Mutagénesis Sitio-Dirigida , Nanoporos , Concentración de Iones de Hidrógeno , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Electricidad Estática
6.
Anal Chem ; 96(28): 11172-11180, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946102

RESUMEN

Improving separation efficiency in capillary electrophoresis (CE) requires systematic study of the influence of the electric field (or solute linear velocity) on plate height for a better understanding of the critical parameters controlling peak broadening. Even for poly(diallyldimethylammonium chloride) (PDADMAC)/poly(sodium styrenesulfonate) (PSS) successive multiple ionic-polymer layer (SMIL) coatings, which lead to efficient and reproducible separations of proteins, plate height increases with migration velocity, limiting the use of high electric fields in CE. Solute adsorption onto the capillary wall was generally considered as the main source of peak dispersion, explaining this plate height increase. However, experiments done with Taylor dispersion analysis and CE in the same conditions indicate that other phenomena may come into play. Protein adsorption with slow kinetics and few adsorption sites was established as a source of peak broadening for specific proteins. Surface charge inhomogeneity was also identified as a contribution to plate height due to local electroosmotic fluctuations. A model was proposed and applied to partial PDADMAC/poly(ethylene oxide) capillary coatings as well as PDADMAC/PSS SMIL coatings. Atomic force microscopy with topography and recognition imaging enabled the determination of roughness and charge distribution of the PDADMAC/PSS SMIL surface.


Asunto(s)
Electroósmosis , Electroforesis Capilar , Polietilenos , Electroforesis Capilar/métodos , Adsorción , Polietilenos/química , Proteínas/aislamiento & purificación , Proteínas/química , Proteínas/análisis , Compuestos de Amonio Cuaternario/química , Animales , Propiedades de Superficie
7.
Chemosphere ; 362: 142661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906191

RESUMEN

Electro-osmosis offers an effective method for dewatering and remediating low permeability soil. Long-term observations on nonlinear behavior of electro-osmosis and the influencing factors are not commonly reported. Connection between cessation and direction reversal of electro-osmotic flow (EOF), and the evolution of electro-chemical parameters inside of the soil mass thus remains unclear. The dynamic response of EOF in variable charge soil could be significant, whereas the investigations on which are currently lacking. A series of electro-osmotic experiments were performed with two natural variable charge soils. The results indicated that initial electro-osmotic rate was positively proportional to electric current and initial electrical conductivity of the pore fluid, which could be explained by the ion migration model. The dynamic evolution of electro-osmotic rate and electro-chemical parameters corresponding to the solute and pH conditionings at the electrode compartments demonstrated that: 1) coupling effects of non-uniform distribution of voltage gradient and pH determined the magnitude and direction of EOF rate; 2) compared to the final pHIEP value, the bigger, close and smaller values of the novel index "voltage gradient weighed mean of spatial pH″ represented the forward, terminated and reversed EOF respectively; 3) the classical Helmholtz-Smoluchowski model are proved to be more applicable interpreting the coupled nonlinearity of electro-osmosis during the later steady phase. This work would facilitate future research for a comprehensive electro-osmotic model, and provide guidance to condition the initial and boundary conditions in application of electro-osmotic dewatering and electrokinetic remediation.


Asunto(s)
Conductividad Eléctrica , Electroósmosis , Suelo , Suelo/química , Electroósmosis/métodos , Ósmosis , Concentración de Iones de Hidrógeno
8.
Comput Biol Med ; 176: 108617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772055

RESUMEN

In the modern era, the utilization of electro-kinetic-driven microfluidic pumping procedures spans various biomedical and physiological domains. The present study introduces a mathematical framework for characterizing the hemodynamics of peristaltic blood flow within a porous tube infused with ZrO2 nanoparticles. This model delves into the interactions between buoyancy, electro-osmotic forces, and aggregated nanoparticles to discern their influence on blood flow. We employ a third-grade fluid model to elucidate the rheological behavior of the pseudoplastic fluid which refers to its response to applied shear stress, specifically the relationship between shear rate and viscosity. The collective influence of accommodating heat convection, joule heating and aggregated nanoparticles contributes to the thermal behavior of fluids. The distribution of electric potential within the electric double layer (EDL) is predicted by solving the Poisson-Boltzmann equation. The rescaled equations are simplified using the lubrication and Debye-Hückel models as the underlying frameworks. The novel homotopy perturbation method is employed to obtain solutions for the finalized non-linear partial differential equation. Theoretical assessment of hemodynamic impacts involves plotting graphical configurations for various emerging parameters. As electro-osmotic parameter increase, the bloodstream encounters greater impedance, thereby enhancing the effectiveness of electro-osmotic assistance. Concurrently, elevated convective heat markedly reduces the rate of heat transfer, potentially resulting in a drop in blood temperature. It is important to note that maximum shear stress occurs when the artery is positioned horizontally, underscoring the significant impact of arterial alignment on wall shear stress. Skin friction intensifies with the increasing wall permeability as aggregated nanofluids pass through the arterial conduit. Therefore, aggregation of nanoparticles into the bloodstream yields a broader spectrum of distinctive physiological features. In summary, these findings enable more effective tool and device designs for addressing medication administration challenges and electro-therapies.


Asunto(s)
Nanopartículas , Nanopartículas/química , Humanos , Porosidad , Electroósmosis , Peristaltismo/fisiología , Ósmosis , Circonio/química
9.
J Phys Chem Lett ; 15(19): 5120-5129, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38709198

RESUMEN

In the past few decades, nanometer-scale pores have been employed as powerful tools for sensing biological molecules. Owing to its unique structure and properties, solid-state nanopores provide interesting opportunities for the development of DNA sequencing technology. Controlling DNA translocation in nanopores is an important means of improving the accuracy of sequencing. Here we present a proof of principle study of accelerating DNA captured across targeted graphene nanopores using surface charge density and find the intrinsic mechanism of the combination of electroosmotic flow induced by charges of nanopore and electrostatic attraction/repulsion between the nanopore and ssDNA. The theoretical study performed here provides a new means for controlling DNA transport dynamics and makes better and cheaper application of graphene in molecular sequencing.


Asunto(s)
ADN , Grafito , Nanoporos , Electricidad Estática , Grafito/química , ADN/química , ADN de Cadena Simple/química , Electroósmosis , Análisis de Secuencia de ADN/métodos
10.
Adv Healthc Mater ; 13(22): e2401181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38734966

RESUMEN

Here, a novel porous microneedle (PMN) device with bilaterally aligned electroosmotic flow (EOF) enabling controllable dual-mode delivery of molecules is developed. The PMNs placed at anode and cathode compartments are modified with anionic poly-2-acrylamido-2-methyl-1-propanesulfonic acid and cationic poly-(3-acrylamidopropyl) trimethylammonium, respectively. The direction of EOF generated by PMN at the cathode compartment is, therefore, reversed from cathode to anode, countering the unwanted cathodal suctioning of interstitial fluid caused by reverse iontophoresis. With the bilateral alignment of EOF, the versatility of the proposed device is evaluated by delivering molecules with different charges and sizes using Franz cell. In addition, a 3D printed probe device is developed to ease practical handling and minimize electrical stimulation by integrating two PMNs in closed proximity. Finally, the performance of the integrated probe device is demonstrated by dual delivery of a variety of molecules (methylene blue, rhodamine B, and fluorescein isothiocyanate-dextran) using pig skin and vaccination using mice with delivered ovalbumin.


Asunto(s)
Electroósmosis , Agujas , Rodaminas , Animales , Porcinos , Ratones , Electroósmosis/instrumentación , Rodaminas/química , Porosidad , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Dextranos/química , Azul de Metileno/química , Ovalbúmina/administración & dosificación , Ovalbúmina/química , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Microinyecciones/instrumentación , Microinyecciones/métodos , Impresión Tridimensional
11.
Chemphyschem ; 25(15): e202400281, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38686913

RESUMEN

The correct characterization and identification of different kinds of proteins is crucial for the survival and development of living organisms, and proteomics research promotes the analysis and understanding of future genome functions. Nanopore technique has been proved to accurately identify individual nucleotides. However, accurate and rapid protein sequencing is difficult due to the variability of protein structures that contains more than 20 amino acids, and it remains very challenging especially for uncharged peptides as they can not be electrophoretically driven through the nanopore. Graphene nanopores have the advantages of high accuracy, sensitivity and low cost in identifying protein phosphorylation modifications. Here, by using all-atom molecular dynamics simulations, charged graphene nanopores are employed to electroosmotically capture and sense uncharged peptides. By further mimicking AFM manipulation of single molecules, it is also found that the uncharged peptides and their phosphorylated states could also be differentiated by both the ionic current and pulling force signals during their pulling processes through the nanopore with a slow and constant velocity. The results shows ability of using nanopores to detect and discriminate single amino acid and its phosphorylation, which is essential for the future low-cost and high-throughput sequencing of protein residues and their post-translational modifications.


Asunto(s)
Simulación de Dinámica Molecular , Nanoporos , Péptidos , Fosforilación , Péptidos/química , Electroósmosis , Grafito/química
12.
PLoS One ; 19(4): e0302150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625994

RESUMEN

Electroosmosis has been proposed as a technique to reduce moisture and thus increase the stability of soft clay. However, its high energy consumption and uneven reinforcement effect has limited its popularization and application in practical engineering. This paper presents the results of some electrokinetic tests performed on clayey specimens with different electrification time and anode boundary conditions. The results indicate that the timing of the formation of electroosmotic flow (EF) by the water originally contained in different soil cross sections, from the anode to the cathode, varies. The measuring soil cross section nearest the anode first reached the limiting water content of 22%±3% and electroosmosis had to be stopped. Water injection into the anode during electroosmosis enhanced further drainage of other four measuring soil cross sections until the second soil cross section from the anode reached the limiting water content of 30%±2%. Electroosmosis with water injection into the anode technique provides more uniform reinforcement, increasing EF, and environmental protection. The experimental results highlighted the relevant and expected contribution of water injection into the anode on the effectiveness of the electroosmotic treatment as a soft clay improvement technique.


Asunto(s)
Electroósmosis , Contaminantes del Suelo , Arcilla , Electroósmosis/métodos , Contaminantes del Suelo/análisis , Suelo , Agua
13.
Langmuir ; 40(18): 9622-9629, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652583

RESUMEN

The detection and identification of nanoscale molecules are crucial, but traditional technology comes with a high cost and requires skilled operators. Solid-state nanopores are new powerful tools for discerning the three-dimensional shape and size of molecules, enabling the translation of molecular structural information into electric signals. Here, DNA molecules with different shapes were designed to explore the effects of electroosmotic forces (EOF), electrophoretic forces (EPF), and volume exclusion on electric signals within solid-state nanopores. Our results revealed that the electroosmotic force was the main driving force for single-stranded DNA (ssDNA), whereas double-stranded DNA (dsDNA) was primarily dominated by electrophoretic forces in nanopores. Moreover, dsDNA caused greater amplitude signals and moved faster through the nanopore due to its larger diameter and carrying more charges. Furthermore, at the same charge level and amount of bases, circular dsDNA exhibited a tighter structure compared to brush DNA, resulting in a shorter length. Consequently, circular dsDNA caused higher current-blocking amplitudes and faster passage speeds. The characterization approach based on nanopores allows researchers to get molecular information about size and shape in real time. These findings suggest that nanopore detection has the potential to streamline nanoscale characterization and analysis, potentially reducing both the cost and complexity.


Asunto(s)
ADN , Nanoporos , ADN/química , Conformación de Ácido Nucleico , ADN de Cadena Simple/química , Electroósmosis/métodos
14.
Electrophoresis ; 45(11-12): 1054-1064, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506142

RESUMEN

Numerical modeling of Taylor dispersion analysis (TDA) was performed using COMSOL Multiphysics to facilitate better and faster optimization of the experimental conditions. Parameters, such as pressure, electric field, diameter, and length of capillary on the TDA conditions, were examined for particles with hydrodynamic radius (Rh) of 2.5-250 Å. The simulations were conducted using 25, 50, and 100 cm length tubes with diameters of 25, 50, and 100 µm. It was shown that particles with larger diffusion coefficients gave more accurate results at higher velocities, and in longer and wider columns; particles with smaller diffusion coefficients gave more accurate results at smaller velocities, and in shorter and thinner columns. Moreover, the effect of electric field on the validity and the applicability of TDA was studied using TDA in conjunction with capillary electrophoresis. Diffusion coefficients were obtained using a pressure and the TDA equation and compared with those obtained with a pressure in combination of an electric field for fluorescein, FD4, FD20, FD70, and FD500. We found that TDA can be used with the presence of moderate electrophoretic migration and electroosmotic flow, when appropriate conditions were met.


Asunto(s)
Electroforesis Capilar , Electroforesis Capilar/métodos , Simulación por Computador , Difusión , Modelos Teóricos , Electroósmosis/métodos , Electricidad , Hidrodinámica , Tamaño de la Partícula , Presión
15.
Front Biosci (Landmark Ed) ; 29(3): 110, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38538264

RESUMEN

BACKGROUND: The purpose of this study is to investigate the electroosmotic flow of a hybrid nanofluid (Al2O3-Cu/Blood) with gyrotactic microorganisms through a bifurcated artery with mild stenosis in both parent and daughter arteries. The flow is subjected to a uniform magnetic field, viscous dissipation, and a heat source. METHODS: The governing equations undergo the non-dimensional transformation and coordinate conversion to regularize irregular boundaries, then solve the resulting system using the Crank-Nicolson method. RESULTS: In both sections of the bifurcated artery (parent and daughter artery), the wall shear stress (WSS) profile decreases with increasing stenotic depth. Nusselt profile increases with an increase in the heat source parameter. CONCLUSIONS: The present endeavour can be beneficial for designing better biomedical devices and gaining insight into the hemodynamic flow for therapeutic applications in the biomedical sciences.


Asunto(s)
Electroósmosis , Hemodinámica , Humanos , Constricción Patológica , Arterias , Calor
16.
J Phys Chem B ; 128(11): 2792-2798, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38471969

RESUMEN

The transport behavior of biomolecules at the confined nanoscale is very different from that of the bulk state. Numerous disease diagnostics and targeted drug treatments are performed based on nanochannels in cells. The specific structure and shape of nanochannels play an important role in the behavior and efficiency of substance transport. In this paper, we fabricated nanopores with different tilt angles and the same diameters using focused ion beam. The capture frequency and the blocking current amplitude of λ-DNA within large-angle nanopores decrease obviously, suggesting an increase in the energy barrier of large-angle nanopores and the fact that they stretch biomolecules to thinness. Most importantly, large-angle nanopores slow down λ-DNA transport by 2-4 times. MD simulations find that the sloped electroosmotic flow inside the tilted nanopores is the main factor contributing to the transport phenomena. The increase in the capture time of biomolecules by nanopores assists in obtaining more biological information from the current trajectories. Our study provides a new understanding of substance transport in specially shaped nanopores, which can be instrumental in providing fresh inspiration and approaches to the biomedical field.


Asunto(s)
Nanoporos , ADN/química , Transporte Biológico , Electroósmosis
17.
Biosensors (Basel) ; 14(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38534219

RESUMEN

The rotation of cells is of significant importance in various applications including bioimaging, biophysical analysis and microsurgery. Current methods usually require complicated fabrication processes. Herein, we proposed an induced charged electroosmosis (ICEO) based on a chip manipulation method for rotating cells. Under an AC electric field, symmetric ICEO flow microvortexes formed above the electrode surface can be used to trap and rotate cells. We have discussed the impact of ICEO and dielectrophoresis (DEP) under the experimental conditions. The capabilities of our method have been tested by investigating the precise rotation of yeast cells and K562 cells in a controllable manner. By adjusting the position of cells, the rotation direction can be changed based on the asymmetric ICEO microvortexes via applying a gate voltage to the gate electrode. Additionally, by applying a pulsed signal instead of a continuous signal, we can also precisely and flexibly rotate cells in a stepwise way. Our ICEO-based rotational manipulation method is an easy to use, biocompatible and low-cost technique, allowing rotation regardless of optical, magnetic or acoustic properties of the sample.


Asunto(s)
Electricidad , Electroósmosis , Acústica , Electrodos , Electroósmosis/métodos , Rotación , Humanos
18.
J Biomech Eng ; 146(9)2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511298

RESUMEN

Immunoassays based on reactions between target pathogen (antigen; Ag) and antibody (Ab) are frequently used for Ag detection. An external magnetic field was used to immobilize magnetic microbeads-tagged-antibodies (mMB-Ab) on the surface of a microchannel in the capture zone. The mMB-Ab was subsequently used for Ag detection. The objective of this numerical study, with experimental validation, is to assess the surface reaction between mMB-Ab and Ag in the presence of electro-osmotic flow (EOF). First, immobilization of mMB-Ab complex in the wall of the capture zone was achieved. Subsequently, the Ag was transported by EOF toward the capture zone to bind with the immobilized mMB-Ab. Lastly, mMB-Ab:Ag complex was formed and immobilized in the capture zone. A finite volume solver was used to implement the above steps. The surface reaction between the mMB-Ab and Ag was investigated in the presence of electric fields (E): 150 V/cm-450 V/cm and Ag concentrations: 0.001 M-1000 M. The depletion of mMB-Ab increases with time as the E decreases. Furthermore, as the concentration of Ag decreases, the depletion of mMB-Ab increases with time. These results quantify the detection of Ag using the EOF device; thus, signifying its potential for rapid throughput screening of Ag. This platform technology can lead to the development of portable devices for the detection of target cells, pathogens, and biomolecules for testing water systems, biological fluids, and biochemicals.


Asunto(s)
Anticuerpos Inmovilizados , Electroósmosis , Microesferas , Anticuerpos , Fenómenos Magnéticos
19.
Electrophoresis ; 45(15-16): 1307-1315, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38342679

RESUMEN

Cationic surfactant coatings (e.g., CTAB) are commonly used in CE to control EOF and thereby improve separation efficiencies. However, our understanding of surfactant adsorption and desorption dynamics under EOF conditions is limited. Here, we apply automated zeta potential analysis to study the adsorption and desorption kinetics of CTAB in a capillary under different transport conditions: diameter, length, voltage alternation pattern and frequency, and applied pressure. In contrast to other studies, we observe slower kinetics at distinct capillary wall zeta potential ranges. Within these ranges, which we call "stagnant regimes," the EOF mobility significantly counteracts the electrophoretic (EP) mobility of CTA+ and hinders the net transport. By constructing a numerical model to compare with our experiments and recasting our experimental data in terms of the net CTA+ transport volume normalized by surface area, we reveal that the EP mobility of CTA+ and the capillary surface-area-to-volume ratio dictate the zeta potential range and the duration of the stagnant regime and thereby govern the overall reaction kinetics. Our results indicate that further transport-oriented studies can significantly aid in the understanding and design of electrokinetic systems utilizing CTAB and other charged surfactants.


Asunto(s)
Compuestos de Cetrimonio , Cetrimonio , Electroforesis Capilar , Cetrimonio/química , Adsorción , Electroforesis Capilar/métodos , Compuestos de Cetrimonio/química , Cinética , Tensoactivos/química , Modelos Químicos , Electroósmosis/métodos
20.
Electrophoresis ; 45(7-8): 676-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350722

RESUMEN

Understanding electrokinetic transport in nanochannels and nanopores is essential for emerging biological and electrochemical applications. The viscoelectric effect is an important mechanism implicated in the increase of local viscosity due to the polarization of a solvent under a strong electric field. However, most analyses of the viscoelectric effect have been limited to numerical analyses. In this work, we present a set of analytical solutions applicable to the physical description of viscoelectric effects in nanochannel electrokinetic systems. To achieve such closed-form solutions, we employ the Debye-Hückel approximation of small diffuse charge layer potentials compared to the thermal potential. We analyze critical parameters, including electroosmotic flow profiles, electroosmotic mobility, flow rate, and channel conductance. We compare and benchmark our analytical solutions with published predictions from numerical models. Importantly, we leverage these analytical solutions to identify essential thermophysical and nondimensional parameters that govern the behavior of these systems. We identify scaling parameters and relations among surface charge density, ionic strength, and nanochannel height.


Asunto(s)
Electroósmosis , Electroósmosis/métodos , Viscosidad , Nanotecnología/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Nanoporos , Concentración Osmolar , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA