Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.247
Filtrar
1.
Nano Lett ; 24(32): 9946-9952, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101944

RESUMEN

The utilization of biomaterials for the separation of rare earth elements (REEs) has attracted considerable interest due to their inherent advantages, including diverse molecular structures for selective binding and the use of eco-friendly materials for sustainable systems. We present a pioneering methodology for developing a safe virus to selectively bind REEs and facilitate their release through pH modulation. We engineered the major coat protein of M13 bacteriophage (phage) to incorporate a lanthanide-binding peptide. The engineered lanthanide-binding phage (LBPh), presenting ∼3300 copies of the peptide, serves as an effective biological template for REE separation. Our findings demonstrate the LBPh's preferential binding for heavy REEs over light REEs. Moreover, the LBPh exhibits remarkable robustness with excellent recyclability and stability across multiple cycles of separations. This study underscores the potential of genetically integrating virus templates with selective binding motifs for REE separation, offering a promising avenue for environmentally friendly and energy-efficient separation processes.


Asunto(s)
Bacteriófago M13 , Metales de Tierras Raras , Metales de Tierras Raras/química , Metales de Tierras Raras/aislamiento & purificación , Bacteriófago M13/química , Bacteriófago M13/genética , Elementos de la Serie de los Lantanoides/química , Proteínas de la Cápside/química , Proteínas de la Cápside/aislamiento & purificación , Proteínas de la Cápside/genética , Péptidos/química , Concentración de Iones de Hidrógeno
2.
Mikrochim Acta ; 191(9): 531, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134877

RESUMEN

Tetracycline (TC) has been widely used in clinical medicine and animal growth promotion due to its broad-spectrum antibacterial properties and affordable prices. Unfortunately, the high toxicity and difficult degradation rate of TC molecules make them easy to accumulate in the environment, which breaks the ecological balance and seriously threatens human health. Rapid and accurate detection of TC residue levels is important for ensuring water quality and food safety. Recently, fluorescence detection technology of TC residues has developed rapidly. Lanthanide nanomaterials, based on the high luminescence properties of lanthanide ions and the high matching with TC energy levels, are favored in the real-time trace detection of TC due to their advantages of high sensitivity, rapidity, and high selectivity. Therefore, they are considered potential substitutes for traditional detection methods. This review summarizes the synthesis strategy, TC response mechanism, removal mechanism, and applications in intelligent sensing. Finally, the development of lanthanide nanomaterials for TC fluorescence detection and removal is reasonably summarized and prospected. This review provides a reference for the establishment of a method for the accurate determination of TC content in complex food matrices.


Asunto(s)
Colorantes Fluorescentes , Elementos de la Serie de los Lantanoides , Tetraciclina , Elementos de la Serie de los Lantanoides/química , Tetraciclina/análisis , Tetraciclina/química , Colorantes Fluorescentes/química , Nanoestructuras/química , Antibacterianos/análisis , Antibacterianos/química , Humanos , Espectrometría de Fluorescencia/métodos , Contaminación de Alimentos/análisis
3.
Sci Rep ; 14(1): 18113, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103434

RESUMEN

Tracer antibodies, which are labelled with fluorescent or other type of reporter molecules, are widely employed in diagnostic immunoassays. Time-resolved fluorescence immunoassay (TRFIA), recognized as one of the most sensitive immunoassay techniques, utilizes tracers labelled with lanthanide ion (Ln) chelates. The conventional approach for conjugating isothiocyanate (ITC) Ln-chelates to antibodies involves random chemical targeting of the primary amino group of Lys residues, requiring typically overnight exposure to an elevated pH of 9-9.3 and leading to heterogeneity. Moreover, efforts to enhance the sensitivity of the assays by introducing a higher number of Ln-chelates per tracer antibody are associated with an elevated risk of targeting critical amino acid residues in the binding site, compromising the binding properties of the antibody. Herein, we report a method to precisely label recombinant antibodies with a defined number of Ln-chelates in a well-controlled manner by employing the SpyTag/SpyCatcher protein ligation technology. We demonstrate the functionality of the method with a full-length recombinant antibody (IgG) as well as an antibody fragment by producing site-specifically labelled antibodies for TRFIA for cardiac troponin I (cTnI) detection with a significant improvement in assay sensitivity compared to that with conventionally labelled tracer antibodies. Overall, our data clearly illustrates the benefits of the site-specific labelling strategy for generating high-performing tracer antibodies for TRF immunoassays.


Asunto(s)
Elementos de la Serie de los Lantanoides , Humanos , Elementos de la Serie de los Lantanoides/química , Anticuerpos/inmunología , Anticuerpos/química , Inmunoensayo/métodos , Troponina I/inmunología , Troponina I/análisis , Inmunoglobulina G , Quelantes/química , Coloración y Etiquetado/métodos
4.
Inorg Chem ; 63(29): 13223-13230, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38986039

RESUMEN

The Block V of the RTX domain of the adenylate cyclase protein from Bordetella pertussis is disordered, and upon binding eight calcium ions, it folds into a beta roll domain with a C-terminal capping group. Due to their similar ionic radii and coordination geometries, trivalent lanthanide ions have been used to probe and identify calcium-binding sites in many proteins. Here, we report using a FRET-based assay that the RTX domain can bind rare earth elements (REEs) with higher affinities than calcium. The apparent disassociation constants for lanthanide ions ranged from 20 to 75 µM, which are an order of magnitude higher than the affinity for calcium, with a higher selectivity toward heavy REEs over light REEs. Most proteins release bound ions at mildly acidic conditions (pH 5-6), and the high affinity REE-binding lanmodulin protein can bind 3-4 REE ions at pH as low as ∼2.5. Circular dichroism (CD) spectra of the RTX domain demonstrate pH-induced folding of the beta roll domain in the absence of ions, indicating that protonation of key amino acids enables structure formation in low pH solutions. The beta roll domain coordinates up to four ions in extreme pH conditions (pH < 1), as determined by equilibrium ultrafiltration experiments. Finally, to demonstrate a potential application of the RTX domain, REE ions (Nd3+ and Dy3+) were recovered from other non-REEs (Fe2+ and Co2+) in a NdFeB magnet simulant solution (at pH 6).


Asunto(s)
Metales de Tierras Raras , Metales de Tierras Raras/química , Concentración de Iones de Hidrógeno , Elementos de la Serie de los Lantanoides/química , Bordetella pertussis/enzimología , Bordetella pertussis/química , Sitios de Unión , Unión Proteica , Dominios Proteicos , Calcio/química , Calcio/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(32): e2322096121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39078674

RESUMEN

Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla. Here, we report the biosynthetic machinery, the structure, and the physiological relevance of a lanthanophore, methylolanthanin. The structure of methylolanthanin exhibits a unique 4-hydroxybenzoate moiety which has not previously been described in other metallophores. We find that production of methylolanthanin is required for normal levels of Ln accumulation in the methylotrophic bacterium Methylobacterium extorquens AM1, while overexpression of the molecule greatly increases bioaccumulation and adsorption. Our results provide a clearer understanding of how Ln-utilizing bacteria sense, scavenge, and store Ln; essential processes in the environment where Ln are poorly bioavailable. More broadly, the identification of this lanthanophore opens doors for study of how biosynthetic gene clusters are repurposed for additional functions and the complex relationship between metal homeostasis and fitness.


Asunto(s)
Elementos de la Serie de los Lantanoides , Methylobacterium extorquens , Elementos de la Serie de los Lantanoides/metabolismo , Elementos de la Serie de los Lantanoides/química , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética
6.
J Mater Chem B ; 12(29): 7203-7214, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38952178

RESUMEN

Fluorescence-based LB (liquid biopsy) offers a rapid means of detecting cancer non-invasively. However, the widespread issue of sample loss during purification steps will diminish the accuracy of detection results. Therefore, in this study, we introduce a magnetic lanthanide sensor (MLS) designed for sensitive detection of the characteristic protein, epithelial cell adhesion molecule (EpCAM), on epithelial tumor exosomes. By leveraging the inherent multi-peak emission and time-resolved properties of the sole-component lanthanide element, combined with the self-ratiometric strategy, MLS can overcome limitations imposed by manual operation and/or sample complexity, thereby providing more stable and reliable output results. Specifically, terbium-doped NaYF4 nanoparticles (NaYF4:Tb) and deformable aptamers terminated with BHQ1 were sequentially introduced onto superparamagnetic silica-decorated Fe3O4 nanoparticles. Prior to target binding, emission from NaYF4:Tb at 543 nm was partially quenched due to the fluorescence resonance energy transfer (FRET) from NaYF4:Tb to BHQ1. Upon target binding, changes in the secondary structure of aptamers led to the fluorescence intensity increasing since the deconfinement of distance-dependent FRET effect. The characteristic emission of NaYF4:Tb at 543 nm was then utilized as the detection signal (I1), while the less changed emission at 583 nm served as the reference signal (I2), further reporting the self-ratiometric values of I1 and I2 (I1/I2) to illustrate the epithelial cancerous features of exosomes while ignoring possible sample loss. Consequently, over a wide range of exosome concentrations (2.28 × 102-2.28 × 108 particles per mL), the I1/I2 ratio exhibited a linear increase with exosome concentration [Y(I1/I2) = 0.166 lg (Nexosomes) + 3.0269, R2 = 0.9915], achieving a theoretical detection limit as low as 24 particles per mL. Additionally, MLS effectively distinguished epithelial cancer samples from healthy samples, showcasing significant potential for clinical diagnosis.


Asunto(s)
Exosomas , Exosomas/química , Exosomas/metabolismo , Humanos , Elementos de la Serie de los Lantanoides/química , Transferencia Resonante de Energía de Fluorescencia , Terbio/química , Molécula de Adhesión Celular Epitelial/metabolismo , Luminiscencia , Nanopartículas de Magnetita/química , Tamaño de la Partícula , Itrio/química , Técnicas Biosensibles/métodos , Fluoruros
7.
Anal Chem ; 96(28): 11455-11462, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38968402

RESUMEN

Efficient, mild, and reversible adsorption of nucleic acids onto nanomaterials represents a promising analytical approach for medical diagnosis. However, there is a scarcity of efficient and reversible nucleic acid adsorption nanomaterials. Additionally, the lack of comprehension of the molecular mechanisms governing their interactions poses significant challenges. These issues hinder the rational design and analytical applications of the nanomaterials. Herein, we propose an ultra-efficient nucleic acid affinity nanomaterial based on programmable lanthanide metal-organic frameworks (Ln-MOFs). Through experiments and density functional theory calculations, a rational design guideline for nucleic acid affinity of Ln-MOF was proposed, and a modular and flexible preparation scheme was provided. Then, Er-TPA (terephthalic acid) MOF emerged as the optimal candidate due to its pore size-independent adsorption and desorption capabilities for nucleic acids, enabling ultra-efficient adsorption (about 150% mass ratio) within 1 min. Furthermore, we elucidate the molecular-level mechanisms underlying the Ln-MOF adsorption of single- and double-stranded DNA and G4 structures. The affinity nanomaterial based on Ln-MOF exhibits robust nucleic acid extraction capability (4-fold higher than commercial reagent kits) and enables mild and reversible CRISPR/Cas9 functional regulation. This method holds significant promise for broad application in DNA/RNA liquid biopsy and gene editing, facilitating breakthroughs in analytical chemistry, pharmacy, and medical research.


Asunto(s)
ADN , Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Elementos de la Serie de los Lantanoides/química , Adsorción , ADN/química , ADN/aislamiento & purificación , Ácidos Ftálicos/química , Nanoestructuras/química , Teoría Funcional de la Densidad , Humanos
8.
Anal Chem ; 96(29): 12139-12146, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38990049

RESUMEN

Precise modulation of host-guest interactions between programmable Ln-MOFs (lanthanide metal-organic frameworks) and phosphate analytes holds immense promise for enabling novel functionalities in biosensing. However, the intricate relationship between these functionalities and structures remains largely elusive. Understanding this correlation is crucial for advancing the rational design of fluorescent biosensor technology. Presently, there exists a large research gap concerning the utilization of Ln-MOFsto monitor the conversion of ATP to ADP, which poses a limitation for kinase detection. In this work, we delve into the potential of Ln-MOFs to amplify the fluorescence response during the kinase-mediated ATP-to-ADP conversion. Six Eu-MOFs were synthesized and Eu-TPTC ([1,1':4',1″]-terphenyl-3,3'',5,5''-tetracarboxylic acid) was selected as a ratiometric fluorescent probe, which is most suitable for high-precision detection of creatine kinase activity through the differential response from ATP to ADP. The molecular -level mechanism was confirmed by density functional theory. Furthermore, a simple paper chip-based platform was constructed to realize the fast (20 min) and sensitive (limit of detection is 0.34 U/L) creatine kinase activity detection in biological samples. Ln-MOF-phosphate interactions offer promising avenues for kinase activity assays and hold the potential for precise customization of analytical chemistry.


Asunto(s)
Adenosina Difosfato , Adenosina Trifosfato , Estructuras Metalorgánicas , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Estructuras Metalorgánicas/química , Adenosina Difosfato/análisis , Adenosina Difosfato/metabolismo , Adenosina Difosfato/química , Creatina Quinasa/metabolismo , Creatina Quinasa/análisis , Creatina Quinasa/química , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Elementos de la Serie de los Lantanoides/química , Animales
9.
Anal Chem ; 96(29): 12084-12092, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001802

RESUMEN

Near-infrared (NIR) luminescent lanthanide materials hold great promise for bioanalysis, as they have anti-interference properties. The approach of efficient luminescence is sensitization through a reasonable chromophore to overcome the obstacle of the aqueous phase. The involvement of the surfactant motif is an innovative strategy to arrange the amphiphilic groups to be regularly distributed near the polymer to form a closed sensitized space. Herein, a lanthanide polymer (TCPP-PEI70K-FITC@Yb/SDBS) is designed in which the meso-tetra(4-carboxyphenyl)porphine (TCPP) ligand serves as both a sensitizer and photocatalytic switch. The surfactant sodium dodecyl benzenesulfonate (SDBS) wraps the photosensitive polymers to form a hydrophobic layer, which augments the light-harvesting ability and expedites its photocatalysis. TCPP-PEI70K-FITC@Yb/SDBS is subsequently applied as an amplified photocatalysis toolbox for universally regulating the generation of reactive oxygen species (ROS). Boosting 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to produce blue products, a dual-mode biosensor is fabricated for improving the diagnosis of programmed death ligand-1-positive (PDL1) cancer exosomes. Exosomes were captured by Fe3O4 modified by the PDL1 aptamer, enabling replacement of alkaline phosphatase (ALP)-labeled multiple hybridized chains; then, the isolated ALP triggered a hydrolysis reaction to block the generation of oxTMB. Detection sensitivity improves by 1 order of magnitude through SDBS modulation, down to 104 particles/mL. The sensor performed well clinically in distinguishing cancer patients from healthy individuals, expanding physiological applications of near-infrared lanthanide luminescence.


Asunto(s)
Elementos de la Serie de los Lantanoides , Luz , Polímeros , Humanos , Elementos de la Serie de los Lantanoides/química , Polímeros/química , Catálisis , Exosomas/química , Exosomas/metabolismo , Rayos Infrarrojos , Neoplasias/diagnóstico , Procesos Fotoquímicos , Técnicas Biosensibles , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
10.
Adv Mater ; 36(33): e2401559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38958107

RESUMEN

Label-free proteomics is widely used to identify disease mechanism and potential therapeutic targets. However, deep proteomics with ultratrace clinical specimen remains a major technical challenge due to extensive contact loss during complex sample pretreatment. Here, a hybrid of four boronic acid-rich lanthanide metal-organic frameworks (MOFs) with high protein affinity is introduced to capture proteins in ultratrace samples jointly by nitrogen-boronate complexation, cation-π and ionic interactions. A MOFs Aided Sample Preparation (MASP) workflow that shrinks sample volume and integrates lysis, protein capture, protein digestion and peptide collection steps into a single PCR tube to minimize sample loss caused by non-specific absorption, is proposed further. MASP is validated to quantify ≈1800 proteins in 10 HEK-293T cells. MASP is applied to profile cerebrospinal fluid (CSF) proteome from cerebral stroke and brain damaged patients, and identified ≈3700 proteins in 1 µL CSF. MASP is further demonstrated to detect ≈9600 proteins in as few as 50 µg mouse brain tissues. MASP thus enables deep, scalable, and reproducible proteome on precious clinical samples with low abundant proteins.


Asunto(s)
Ácidos Borónicos , Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Proteómica , Humanos , Estructuras Metalorgánicas/química , Proteómica/métodos , Animales , Ácidos Borónicos/química , Ratones , Elementos de la Serie de los Lantanoides/química , Células HEK293 , Proteoma/análisis , Encéfalo/metabolismo
11.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063204

RESUMEN

The effect of La, Ce, Pr and Nd ions on four Ln(ligand)3 complexes and at three DFT levels of calculation was analyzed. Four ligands were chosen, three of which were based on the 1,2,3-triazole ring. The DFT methods used were B3LYP, CAM-B3LYP and M06-2X. The relationships established were between the geometric parameters, atomic charges, HOMO-LUMO energies and other molecular properties. These comparisons and trends will facilitate the synthesis of new complexes by selecting the ligand and lanthanide ion best suited to the desired property of the complex. The experimental IR and Raman spectra of Ln(2b')3 complexes where Ln = La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er ions have been recorded and compared to know the effect of the lanthanide ion on the complex. The hydration in these complexes was also analyzed. Additionally, the effect of the type of coordination center on the ability of an Ln(ligand)3 complex to participate in electron exchange and hydrogen transfer was investigated using two in vitro model systems-DPPH and ABTS.


Asunto(s)
Elementos de la Serie de los Lantanoides , Triazoles , Triazoles/química , Triazoles/farmacología , Elementos de la Serie de los Lantanoides/química , Ligandos , Iones/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Espectrometría Raman , Modelos Moleculares
12.
Chemosphere ; 363: 142946, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059635

RESUMEN

The assessment of perfluorooctanoic acid (PFOA) photocatalytic degradation usually involves tedious pre-treatment and sophisticated instrumentation, making it impractical to evaluate the degradation process in real-time. Herein, we synthesized a series of lanthanide metal-organic frameworks (Ln-MOFs) with outstanding fluorescent sensing properties and applied them as luminescent probes in the photocatalytic degradation reaction of PFOA for real-time evaluation. As the catalytic reaction proceeds, the fluorescence color changes significantly from green to orange-red due to the different interaction mechanisms between the electron-deficient PFOA and smaller radius F- with the ratiometric fluorescent probe MOF-76 (Tb: Eu = 29:1). The limit of detection (LOD) was calculated to be 0.0127 mM for PFOA and 0.00746 mM for F-. In addition, the conversion rate of the catalytic reaction can be read directly based on the chromaticity value by establishing a three-dimensional relationship graph of G/R value-conversion rate-time (G/R indicates the ratio between green and red luminance values in the image.), allowing for real-time and rapid tracking of the PFOA degradation. The recoveries of PFOA and F- in the actual water samples were 99.3-102.7% (RSD = 2.2-4.4%) and 100.7-105.3% (RSD = 3.9-6.8%), respectively. Both theoretical calculations and experiments reveal that the detection mechanism was attributed to the photoinduced electron transfer and energy transfer between the analytes and the probe. This method simplifies the sample analysis process and avoids the use of bulky instruments, and thus has great potential on the design and development of quantitative time-resolved visualization methods to assess catalytic performance and reveal mechanisms.


Asunto(s)
Caprilatos , Colorantes Fluorescentes , Fluorocarburos , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Estructuras Metalorgánicas/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Caprilatos/química , Caprilatos/análisis , Fluorocarburos/química , Fluorocarburos/análisis , Catálisis , Elementos de la Serie de los Lantanoides/química , Límite de Detección , Fotólisis
13.
Anal Chem ; 96(27): 10953-10961, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38922180

RESUMEN

Detection of circulating tumor DNA (ctDNA) in liquid biopsy is of great importance for tumor diagnosis but difficult due to its low amount in bodily fluids. Herein, a novel ctDNA detection platform is established by quantifying DNA amplification by-product pyrophosphate (PPi) using a newly designed bivariable lanthanide metal-organic framework (Ln-MOF), namely, Ce/Eu-DPA MOF (CE-24, DPA = pyridine-2,6-dicarboxylic acid). CE-24 MOF exhibits ultrafast dual-response (fluorescence enhancement and enzyme-activity inhibition) to PPi stimuli by virtue of host-guest interaction. The platform is applied to detecting colon carcinoma-related ctDNA (KARS G12D mutation) combined with the isothermal nucleic acid exponential amplification reaction (EXPAR). ctDNA triggers the generation of a large amount of PPi, and the ctDNA quantification is achieved through the ratio fluorescence/colorimetric dual-mode assay of PPi. The combination of the EXPAR and the dual-mode PPi sensing allows the ctDNA assay method to be low-cost, convenient, bioreaction-compatible (freedom from the interference of bioreaction systems), sensitive (limit of detection down to 101 fM), and suitable for on-site detection. To the best of our knowledge, this work is the first application of Ln-MOF for ctDNA detection, and it provides a novel universal strategy for the rapid detection of nucleic acid biomarkers in point-of-care scenarios.


Asunto(s)
ADN Tumoral Circulante , Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/análisis , Humanos , Elementos de la Serie de los Lantanoides/química , Técnicas de Amplificación de Ácido Nucleico , Difosfatos , Límite de Detección
14.
Yakugaku Zasshi ; 144(6): 651-657, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38825474

RESUMEN

Microbial exudates including siderophore, which changes chemical species of actinides and lanthanides. We have investigated effects of desferrioxamine B (DFOB; one of the siderophores) and siderophore-like organic molecules (SLOM) on the adsorption of lanthanides by microbial cells, aluminium oxide (Al2O3), and manganese (Mn) oxides. When DFOB was present, the distribution coefficients of cerium (Ce) were measured to be lower than those of neighboring elements of lanthanum (La) and praseodymium (Pr) (Negative anomaly of Ce adsorption). Even though initial oxidation state of Ce in the solution was III, that was changed to IV after the addition of DFOB, indicating that Ce(III) was oxidized by forming complex with DFOB. When lanthanides were adsorbed by biogenic Mn(IV) oxides, negative anomaly of Ce adsorption was observed in the sorption in alkaline solution. Ce(III) was oxidized to forme the complexes of Ce(IV) with SLOM in the solution. These results show that siderophore possesses high performance of oxidation of Ce(III) to Ce(IV) during association, affectiong the adsorption behavior of Ce. After Fukushima accident, radioactive Cs accumulation by Eleutherococcus sciadophylloides (Koshiabura) caused by the dissolution of Fe from soil around the roots, that was dominated by siderophore releasing microorganisms (SB). These SBs may enhance dissolution of iron (Fe) and uranium (U) phases in the nuclear fuel debris formed in the nuclear reactors in Fukushima Daiichi nuclear power plant. Thus, in the interaction between microorganisms and radionuclides, SLOMs discharged by microorganisms are deeply involved in the chemical state change of radionuclides.


Asunto(s)
Oxidación-Reducción , Sideróforos , Adsorción , Deferoxamina/metabolismo , Óxido de Aluminio/química , Elementos de la Serie de los Lantanoides/química , Compuestos de Manganeso/química , Óxidos , Cerio , Radioisótopos
15.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928512

RESUMEN

Hexaazamacrocyclic Schiff bases have been extensively combined with lanthanoid (Ln) ions to obtain complexes with a highly axial geometry. However, the use of flexible hexaazatetraamine macrocycles containing two pyridines and acyclic spacers is rather uncommon. Accordingly, we obtained [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O, where L and LMe2 are the 18-membered macrocycles 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane and 3,10-dimethyl-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane, respectively, which contain ethylene and methylethylene spacers between their N3 moieties. [DyL(OAc)2]OAc·7H2O·EtOH represents the first crystallographically characterized lanthanoid complex of L, while [DyLMe2(Cl)2]Cl·2H2O contributes to increasing the scarce number of LnIII compounds containing LMe2. Furthermore, the crystal structure of L·12H2O was solved, and it was compared with those of other related macrocycles previously published. Likewise, the crystal structures of the DyIII complexes were compared with those of the lanthanoid and d-metal complexes of other 18-membered N6 donor macrocycles. This comparison showed some effect of the spacers employed, as well as the influence of the size of the ancillary ligands and the metal ion. Additionally, the distinct folding behaviors of these macrocycles influenced their coordination geometries. Moreover, the luminescent properties of [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O were also investigated, showing that both complexes are fluorescent, with the emission being sensitized by the ligands.


Asunto(s)
Complejos de Coordinación , Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Ligandos , Complejos de Coordinación/química , Elementos de la Serie de los Lantanoides/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
16.
Adv Mater ; 36(30): e2404120, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727702

RESUMEN

This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.


Asunto(s)
Electrones , Shewanella , Shewanella/metabolismo , Transporte de Electrón , Liposomas/química , Nanopartículas/química , Elementos de la Serie de los Lantanoides/química , Teoría Funcional de la Densidad
17.
Anal Chem ; 96(19): 7697-7705, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697043

RESUMEN

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Asunto(s)
Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética , Nanopartículas , Polímeros , Semiconductores , Imagen por Resonancia Magnética/métodos , Animales , Elementos de la Serie de los Lantanoides/química , Polímeros/química , Nanopartículas/química , Ratones , Humanos , Gadolinio/química , Luminiscencia , Oxígeno Singlete/química , Itrio/química , Fluoruros/química , Ratones Desnudos
18.
Chemistry ; 30(38): e202400900, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738452

RESUMEN

Crystallophores are lanthanide complexes that have demonstrated outstanding induction of crystallization for various proteins. This article explores the effect of tailored modifications of the crystallophore first generation and their impact on the nucleating properties and protein crystal structures. Through high-throughput crystallization experiments and dataset analysis, we evaluated the effectiveness of these variants, in comparison to the first crystallophore generation G1. In particular, the V1 variant, featuring a propanol pendant arm, demonstrated the ability to produce new crystallization conditions for the proteins tested (hen-egg white lysozyme, proteinase K and thaumatin). Structural analysis performed in the case of hen egg-white lysozyme along with Molecular Dynamics simulations, highlights V1's unique behavior, taking advantage of the flexibility of its propanol arm to explore different protein surfaces and form versatile supramolecular interactions.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa , Muramidasa/química , Muramidasa/metabolismo , Endopeptidasa K/química , Endopeptidasa K/metabolismo , Elementos de la Serie de los Lantanoides/química , Cristalización , Animales , Cristalografía por Rayos X , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pollos , Proteínas/química , Proteínas/metabolismo , Complejos de Coordinación/química
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124410, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718745

RESUMEN

Tandem enzyme can catalyze some cascade reactions with high efficiency, and some few tandem enzyme-like mimics have been discovered recently. Further improving the catalytic efficiency of tandem nanoenzymes with facile method may undoubtedly promote and broaden their applications in various fields. In this work, cupric oxide nanoparticles (CuO NPs) with dual-functional enzyme mimics were synthesized using the rapid deposition method in advance, which simultaneously combined with lanthanide infinite coordination polymers (Ln ICPs) during the self-assemble of Tb3+, guanine-5'-triphosphate (GTP) and auxiliary ligand terephthalic acid (TA). Excitingly, the obtained Tb-GTP/TA@CuO ICPs, not only displayed obviously enhanced tandem catalytic activity compared with pure CuO NPs, but also provided a versatile ratiometric platform for ultrahigh selective and sensitive detection of glutathione (GSH) under single-wavelength excitation. A good linear relationship between the ratio signal and the GSH concentration was spanning from 0.001 to 20 µM with an impressive detection limit of 0.50 nM. This study opens a new and universal avenue for preparing integrated multifunctional probes by coupling of nanoenzyme catalytic activity with superior luminescent Ln ICPs through facile method.


Asunto(s)
Cobre , Glutatión , Elementos de la Serie de los Lantanoides , Polímeros , Espectrometría de Fluorescencia , Cobre/química , Glutatión/análisis , Glutatión/química , Polímeros/química , Elementos de la Serie de los Lantanoides/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Nanopartículas/química , Catálisis , Nanopartículas del Metal/química
20.
Int J Biol Macromol ; 271(Pt 1): 132341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821792

RESUMEN

To address the growing challenge of counterfeit prevention, this study developed a novel anti-counterfeiting ink system based on bacterial cellulose nanocrystals (BCNC) and lanthanide (Er, Yb)­nitrogen (N) co-dropped graphene quantum dots (GQDs), which exhibited both photoluminescence (PL) and upconversion photoluminescence (UCPL) fluorescent properties as well as excellent rheological characteristics. The Er/Yb/N-GQDs with positive charges were synthesized by a one-step hydrothermal method and subsequently assembled with negatively charged BCNC through electrostatic self-assembly to fabricate a novel nanohybrid, Er/Yb/N-GQDs-BCNC. Raman spectroscopy results indicated an enhancement in the graphitization of GQDs due to lanthanide modification. The TEM results demonstrated a homogeneous distribution of Er/Yb/N-GQDs on BCNC, while XRD, FTIR, and XPS analyses confirmed their physical binding, thus validating the successful synthesis of novel nanohybrids. Then, Er/Yb/N-GQDs-BCNC was introduced into PVA waterborne ink and exhibited dual anti-counterfeiting properties by emitting blue fluorescence at Em 440 nm under Ex 370 nm and green fluorescence at Em 550 nm under Ex 980 nm. Furthermore, the incorporation of BCNC significantly enhanced the thixotropic behavior and yield stress of the PVA waterborne ink. This enhancement made the dual anti-counterfeiting fluorescent ink more suitable for diversified applications on different devices and various substrates, thus providing a novel approach for convenient and rapid information encryption and high security anti-counterfeiting.


Asunto(s)
Celulosa , Grafito , Tinta , Elementos de la Serie de los Lantanoides , Nanopartículas , Nitrógeno , Puntos Cuánticos , Celulosa/química , Nanopartículas/química , Puntos Cuánticos/química , Nitrógeno/química , Grafito/química , Elementos de la Serie de los Lantanoides/química , Agua/química , Luminiscencia , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA