Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.420
Filtrar
1.
Dev Biol ; 511: 76-83, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614285

RESUMEN

This paper introduces a single-cell atlas for pivotal developmental stages in Xenopus, encompassing gastrulation, neurulation, and early tailbud. Notably surpassing its predecessors, the new atlas enhances gene mapping, read counts, and gene/cell type nomenclature. Leveraging the latest Xenopus tropicalis genome version, alongside advanced alignment pipelines and machine learning for cell type assignment, this release maintains consistency with previous cell type annotations while rectifying nomenclature issues. Employing an unbiased approach for cell type assignment proves especially apt for embryonic contexts, given the considerable number of non-terminally differentiated cell types. An alternative cell type attribution here adopts a fuzzy, non-deterministic stance, capturing the transient nature of early embryo progenitor cells by presenting an ensemble of types in superposition. The value of the new resource is emphasized through numerous examples, with a focus on previously unexplored germ cell populations where we uncover novel transcription onset features. Offering interactive exploration via a user-friendly web portal and facilitating complete data downloads, this atlas serves as a comprehensive and accessible reference.


Asunto(s)
Xenopus , Animales , Xenopus/embriología , Xenopus/genética , Gastrulación , Embrión no Mamífero/citología , Neurulación/genética , Neurulación/fisiología , Análisis de la Célula Individual/métodos , Regulación del Desarrollo de la Expresión Génica
2.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38639390

RESUMEN

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Asunto(s)
División Celular , Polaridad Celular , Drosophila melanogaster , Células Epiteliales , Metafase , Huso Acromático , Estrés Mecánico , Animales , Metafase/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Huso Acromático/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/citología , Polaridad Celular/fisiología , Tipificación del Cuerpo , Miosina Tipo II/metabolismo , Embrión no Mamífero/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Gastrulación/fisiología
3.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38646822

RESUMEN

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Asunto(s)
División Celular , Movimiento Celular , Proteínas de Drosophila , Regulación del Desarrollo de la Expresión Génica , Animales , Movimiento Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , División Celular/genética , Mesodermo/metabolismo , Mesodermo/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriología , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética
4.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683994

RESUMEN

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Asunto(s)
Cresta Neural , Análisis de la Célula Individual , Xenopus laevis , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Análisis de la Célula Individual/métodos , Xenopus laevis/embriología , Regulación del Desarrollo de la Expresión Génica , Movimiento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulación , Placa Neural/metabolismo , Placa Neural/embriología , Placa Neural/citología , Transición Epitelial-Mesenquimal/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Neurulación/genética , Neurulación/fisiología , Diferenciación Celular
5.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619327

RESUMEN

Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. In curved epithelia, cells can intercalate along their own apicobasal axes, adopting a shape named 'scutoid' that allows energy minimization in the tissue. Although several geometric and biophysical factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid formation in 3D epithelial packing remain poorly understood. Here, we use live imaging of the sea star embryo coupled with deep learning-based segmentation to dissect the relative contributions of cell density, tissue compaction and cell proliferation on epithelial architecture. We find that tissue compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. Physical compression experiments identify cell density as the factor promoting scutoid formation at a global level. Finally, the comparison of the developing embryo with computational models indicates that the increase in the proportion of scutoids is directly associated with cell divisions. Our results suggest that apico-basal intercalations appearing immediately after mitosis may help accommodate the new cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell rearrangements during development.


Asunto(s)
Proliferación Celular , Embrión no Mamífero , Morfogénesis , Animales , Epitelio , Embrión no Mamífero/citología , Recuento de Células , Estrellas de Mar/embriología , Células Epiteliales/citología , Células Epiteliales/metabolismo , División Celular
6.
Nucleic Acids Res ; 52(4): 1702-1719, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38084924

RESUMEN

Topologically Associating Domains (TADs) have been suggested to facilitate and constrain enhancer-promoter interactions. However, the role of TAD boundaries in effectively restricting these interactions remains unclear. Here, we show that a significant proportion of enhancer-promoter interactions are established across TAD boundaries in Drosophila embryos, but that developmental genes are strikingly enriched in intra- but not inter-TAD interactions. We pursued this observation using the twist locus, a master regulator of mesoderm development, and systematically relocated one of its enhancers to various genomic locations. While this developmental gene can establish inter-TAD interactions with its enhancer, the functionality of these interactions remains limited, highlighting the existence of topological constraints. Furthermore, contrary to intra-TAD interactions, the formation of inter-TAD enhancer-promoter interactions is not solely driven by genomic distance, with distal interactions sometimes favored over proximal ones. These observations suggest that other general mechanisms must exist to establish and maintain specific enhancer-promoter interactions across large distances.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Animales , Drosophila/citología , Drosophila/genética , Embrión no Mamífero/citología , Genómica , Proteína 1 Relacionada con Twist/genética
7.
Dev Dyn ; 253(5): 519-541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38112237

RESUMEN

BACKGROUND: Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells. However, the overlapping and distinct expression patterns of these markers in tandem have not been fully described. RESULTS: Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular cell populations on the cranial, axial, and intersegmental vessels between 1 and 5 days postfertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord-a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. CONCLUSION: Together, our findings highlight the variability and versatility of tracking both pdgfrb and tagln expression in mural cells of the developing zebrafish embryo and reveal unexpected embryonic cell populations that express pdgfrb and tagln.


Asunto(s)
Animales Modificados Genéticamente , Pericitos , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pericitos/citología , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Vasos Sanguíneos/embriología , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Desarrollo Embrionario/fisiología
8.
Cell ; 186(21): 4694-4709.e16, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832525

RESUMEN

Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.


Asunto(s)
Citocinesis , Embrión no Mamífero , Animales , Núcleo Celular , Centrosoma , Ciclinas/metabolismo , Drosophila , Mitosis , Huso Acromático/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo
9.
Curr Biol ; 33(11): R447-R449, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279667

RESUMEN

Bub1 and Polo kinases are well-known multitasking regulators of mitosis. New work shows that they team up at kinetochores to determine the mitotic duration of embryonic divisions in nematodes. As is often the case, the key effector is Cdc20 activity.


Asunto(s)
Ciclo Celular , Embrión no Mamífero , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Cdc20/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Mitosis , Factores de Tiempo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo
10.
Dev Growth Differ ; 65(1): 29-36, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36444483

RESUMEN

Canonical Wnt signalling plays important roles in early embryogenesis, such as axis formation due to its activation and head formation due to its inhibition. ß-catenin protein stability is a key factor in canonical Wnt signalling. Several E3 ubiquitin ligases contribute to ß-catenin degradation through the ubiquitin/proteasome system. We characterised an E3 ubiquitin ligase gene, Xenopus laevis macrophage erythroblast attacher (maea), during early development. maea transcripts were ubiquitously detected in early embryos. The expression levels of the Wnt target genes nodal homolog 3, gene 1 (nodal3.1), and siamois homeodomain 1 (sia1), which were induced by injection with ß-catenin mRNA, were reduced by maea.S mRNA co-injection. maea.S overexpression at the anterior dorsal region enlarged head structures, whereas Maea knockdown interfered with head formation in Xenopus embryos. Maea.S decreased and ubiquitinated ß-catenin protein. ß-catenin-4KRs protein, which mutated the four lysine (K) residues known as ubiquitinated sites to arginine (R) residues, was also ubiquitinated and degraded by Maea.S. These findings suggest that Maea contributes to ß-catenin degradation by ubiquitination of unknown lysine residues in early Xenopus development.


Asunto(s)
Proteínas del Citoesqueleto , Embrión no Mamífero , Proteínas de Xenopus , Xenopus laevis , beta Catenina , Animales , beta Catenina/genética , Regulación del Desarrollo de la Expresión Génica , Lisina/genética , Lisina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Xenopus laevis/crecimiento & desarrollo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas del Citoesqueleto/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo
11.
Gene ; 823: 146369, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35240256

RESUMEN

Vasa is the most studied germ cell marker that is indispensable for germ cell development in teleost fishes. Here, a vasa full-length cDNA from Oryzias celebensis was isolated. Analysis of gene expression by reversed transcription polymerase chain reaction and in situ hybridization showed the vasa transcript was maternally inherited and specifically expressed in germ cells during embryogenesis and in adult gonads. During embryogenesis, vasa mRNA was widely distributed in the embryos until the somitogenesis stage and then specifically expressed in primordial germ cells (PGCs). In the testis, vasa expression was highest in spermatogonia and gradually decreased during spermatogenesis. In ovary, vasa expression was present predominantly in immature oocytes and persisted throughout oogenesis. Constructs containing green or red fluorescence proteins and vasa 3' UTR or dnd 3' UTR, confirmed stable vasa expression in the PGCs of O. celebensis and co-expression of the two genes. In summary, the conservation of vasa expression in embryonic and adult germ cells of both sexes compared to other vertebrates suggests its function is also widely conserved.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Oocitos/metabolismo , Oryzias/embriología , Testículo/metabolismo , Animales , Clonación Molecular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ , Masculino , Herencia Materna , Oryzias/genética , Oryzias/metabolismo , Distribución Tisular
12.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112131

RESUMEN

Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Ciclo Celular , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35029679

RESUMEN

To investigate the role of mechanical constraints in morphogenesis and development, we have developed a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial compression. The local shear stress tensor is retrieved from the sensor shape, accurately reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, in the prechordal plate of the zebrafish embryo during gastrulation, our pipeline of techniques demonstrates its efficiency to directly measure the three dimensional shear stress repartition within a tissue.


Asunto(s)
Embrión no Mamífero/citología , Imagenología Tridimensional/métodos , Resistencia al Corte , Animales , Agregación Celular , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Embrión no Mamífero/metabolismo , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Pez Cebra
14.
Life Sci ; 293: 120337, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074408

RESUMEN

Various factors cause animal bone malnutrition disease during intensive culture. Osteoclasts play an important role in regulating bone metabolism disease. Osteoprotegerin (OPG) modulates osteoclast function; however, the mechanism underlying this effect is unknown. Therefore, the present study aimed to explore whether OPG affects duck embryo osteoclast function via purinergic receptor P2X7. OPG significantly inhibited duck embryo osteoclast differentiation and bone resorption, and suppressed F-actin formation. In addition, OPG remarkably impaired duck embryo osteoclasts' adhesive structure. After OPG treatment, the expression of P2X7R significantly reduced, the ATP level and Ca2+-ATPase activity decreased rapidly, and concomitantly suppressed calcium and MAPK signaling. A438079 (a selective P2X7R inhibitor) significantly inhibited duck embryo osteoclast differentiation and bone resorption, and the phosphorylation of Ca2+ regulated proteins (CAM, CAMKII, CAMKIV) and MAPKs (ERK, JNK, and P38) were markedly suppressed. Pretreatment of duck embryo osteoclasts with BzATP, a P2X7R agonist, activated Ca2+ and MAPK signaling. BzATP alleviated OPG-induced duck embryo osteoclast differentiation and adhesive structure damage, and recovered the distribution of adhesion-related proteins in mature duck embryo osteoclasts. Thus, P2RX7-mediated Ca2+ and MAPK signaling has a key function in OPG-induced duck embryo osteoclast differentiation and adhesive structure damage. P2X7R might be an ideal target to treat bone diseases through regulating bone cell activation.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Osteoclastos/metabolismo , Osteoprotegerina/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Señalización del Calcio/fisiología , Bovinos , Adhesión Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Patos , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Osteoclastos/efectos de los fármacos
15.
Sci Rep ; 12(1): 342, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013443

RESUMEN

Cell segmentation plays a crucial role in understanding, diagnosing, and treating diseases. Despite the recent success of deep learning-based cell segmentation methods, it remains challenging to accurately segment densely packed cells in 3D cell membrane images. Existing approaches also require fine-tuning multiple manually selected hyperparameters on the new datasets. We develop a deep learning-based 3D cell segmentation pipeline, 3DCellSeg, to address these challenges. Compared to the existing methods, our approach carries the following novelties: (1) a robust two-stage pipeline, requiring only one hyperparameter; (2) a light-weight deep convolutional neural network (3DCellSegNet) to efficiently output voxel-wise masks; (3) a custom loss function (3DCellSeg Loss) to tackle the clumped cell problem; and (4) an efficient touching area-based clustering algorithm (TASCAN) to separate 3D cells from the foreground masks. Cell segmentation experiments conducted on four different cell datasets show that 3DCellSeg outperforms the baseline models on the ATAS (plant), HMS (animal), and LRP (plant) datasets with an overall accuracy of 95.6%, 76.4%, and 74.7%, respectively, while achieving an accuracy comparable to the baselines on the Ovules (plant) dataset with an overall accuracy of 82.2%. Ablation studies show that the individual improvements in accuracy is attributable to 3DCellSegNet, 3DCellSeg Loss, and TASCAN, with the 3DCellSeg demonstrating robustness across different datasets and cell shapes. Our results suggest that 3DCellSeg can serve a powerful biomedical and clinical tool, such as histo-pathological image analysis, for cancer diagnosis and grading.


Asunto(s)
Membrana Celular , Aprendizaje Profundo , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Microscopía , Animales , Arabidopsis/citología , Embrión no Mamífero/citología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Pez Cebra/embriología
16.
Dev Biol ; 482: 101-113, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906546

RESUMEN

During metazoan early embryogenesis, the intracellular properties of proteins and organelles change dynamically through rapid cleavage. In particular, a change in the nucleus size is known to contribute to embryonic development-dependent cell cycle and gene expression regulation. Here, we compared the nuclear sizes of various blastomeres from developing Xenopus embryos and analyzed the mechanisms that control the nuclear expansion dynamics by manipulating the amount of intracellular components in a cell-free system. Nuclear expansion was slower in blastomeres from vegetal hemispheres during a longer interphase than in those from animal hemispheres. Furthermore, upon recapitulating interphase events by manipulating the concentration of yolk platelets, which are originally rich in the vegetal blastomeres, in cell-free cytoplasmic extracts, nuclear expansion and DNA replication became slower than that in normal yolk-free conditions. Under these conditions, the supplemented yolk platelets accumulated around the nucleus in a microtubule-dependent manner and impeded the organization of the endoplasmic reticulum network. Overall, we propose that yolk platelets around the nucleus reduce membrane supply from the endoplasmic reticulum to the nucleus, resulting in slower nuclear expansion and cell cycle progression in the yolk-rich vegetal blastomeres.


Asunto(s)
Blastómeros/fisiología , Membrana Celular/fisiología , Núcleo Celular/fisiología , Retículo Endoplásmico/fisiología , Xenopus laevis/embriología , Animales , Tamaño de la Célula , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Interfase/fisiología
17.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884712

RESUMEN

Three new compounds, namely [HL]2+[CuCl4]2-, [HL]2+[ZnCl4]2-, and [HL]2+[CdCl4]2- (where L: imipramine) were synthesized and their physicochemical and biological properties were thoroughly investigated. All three compounds form isostructural, crystalline systems, which have been studied using Single-Crystal X-ray diffraction analysis (SC-XRD) and Fourier-transform infrared spectroscopy (FTIR). The thermal stability was investigated using thermogravimetric analysis (TGA) and melting points for all compounds have been determined. Magnetic measurements were performed in order to study the magnetic properties of the compounds. The above mentioned techniques allowed us to comprehensively examine the physicochemical properties of the newly obtained compounds. The biological activity was investigated using the number of Zebrafish tests, as it is one of the most common models for studying the impact of newly synthesized compounds on the central nervous system (CNS), since this model is very similar to the human CNS.


Asunto(s)
Cadmio/química , Complejos de Coordinación/farmacología , Cobre/química , Embrión no Mamífero/citología , Pez Cebra/crecimiento & desarrollo , Zinc/química , Animales , Electrones , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo
18.
Science ; 374(6572): abg1727, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34855481

RESUMEN

The primitive streak, a transient embryonic structure, marks bilateral symmetry in mammalian and avian embryos and helps confer anterior-posterior and dorsal-ventral spatial information to early differentiating cells during gastrulation. Its recapitulation in vitro may facilitate derivation of tissues and organs with in vivo­like complexity. Proper understanding of the primitive streak and what it entails in human development is key to achieving such research objectives. Here we provide an overview of the primitive streak and conclude that this structure is neither conserved nor necessary for gastrulation or early lineage diversification. We offer a model in which the primitive streak is viewed as part of a morphologically diverse yet molecularly conserved process of spatial coordinate acquisition. We predict that recapitulation of the primitive streak is dispensable for development in vitro.


Asunto(s)
Embrión de Mamíferos/fisiología , Embrión no Mamífero/fisiología , Gastrulación , Línea Primitiva/fisiología , Vertebrados/embriología , Animales , Evolución Biológica , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/citología , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis , Filogenia
19.
STAR Protoc ; 2(4): 100928, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34778847

RESUMEN

Tracking individual cell movement during development is challenging, particularly in tissues subjected to major remodeling. Currently, most live imaging techniques in Xenopus are limited to tissue explants and/or to superficial cells. We describe here a protocol to track immature multiciliated cells (MCCs) moving within the inner epidermal layer of a whole embryo. In addition, we present a data processing protocol to uncouple the movements of individual cells from the coplanar drifts of the tissue in which they are embedded. For complete details on the use and execution of this protocol, please refer to Chuyen et al. (2021).


Asunto(s)
Movimiento Celular/fisiología , Rastreo Celular/métodos , Embrión no Mamífero/citología , Microscopía por Video/métodos , Animales , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/metabolismo , Xenopus laevis
20.
Elife ; 102021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723792

RESUMEN

During organ development, tubular organs often form from flat epithelial primordia. In the placodes of the forming tubes of the salivary glands in the Drosophila embryo, we previously identified spatially defined cell behaviors of cell wedging, tilting, and cell intercalation that are key to the initial stages of tube formation. Here, we address what the requirements are that ensure the continuous formation of a narrow symmetrical tube from an initially asymmetrical primordium whilst overall tissue geometry is constantly changing. We are using live-imaging and quantitative methods to compare wild-type placodes and mutants that either show disrupted cell behaviors or an initial symmetrical placode organization, with both resulting in severe impairment of the invagination. We find that early transcriptional patterning of key morphogenetic transcription factors drives the selective activation of downstream morphogenetic modules, such as GPCR signaling that activates apical-medial actomyosin activity to drive cell wedging at the future asymmetrically placed invagination point. Over time, transcription of key factors expands across the rest of the placode and cells switch their behavior from predominantly intercalating to predominantly apically constricting as their position approaches the invagination pit. Misplacement or enlargement of the initial invagination pit leads to early problems in cell behaviors that eventually result in a defective organ shape. Our work illustrates that the dynamic patterning of the expression of transcription factors and downstream morphogenetic effectors ensures positionally fixed areas of cell behavior with regards to the invagination point. This patterning in combination with the asymmetric geometrical setup ensures functional organ formation.


Asunto(s)
Drosophila/embriología , Embrión no Mamífero/metabolismo , Morfogénesis , Animales , Embrión no Mamífero/citología , Desarrollo Embrionario , Glándulas Salivales/citología , Glándulas Salivales/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA