Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.653
Filtrar
1.
Nature ; 631(8022): 913-919, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987603

RESUMEN

A defining pathological feature of most neurodegenerative diseases is the assembly of proteins into amyloid that form disease-specific structures1. In Alzheimer's disease, this is characterized by the deposition of ß-amyloid and tau with disease-specific conformations. The in situ structure of amyloid in the human brain is unknown. Here, using cryo-fluorescence microscopy-targeted cryo-sectioning, cryo-focused ion beam-scanning electron microscopy lift-out and cryo-electron tomography, we determined in-tissue architectures of ß-amyloid and tau pathology in a postmortem Alzheimer's disease donor brain. ß-amyloid plaques contained a mixture of fibrils, some of which were branched, and protofilaments, arranged in parallel arrays and lattice-like structures. Extracellular vesicles and cuboidal particles defined the non-amyloid constituents of ß-amyloid plaques. By contrast, tau inclusions formed parallel clusters of unbranched filaments. Subtomogram averaging a cluster of 136 tau filaments in a single tomogram revealed the polypeptide backbone conformation and filament polarity orientation of paired helical filaments within tissue. Filaments within most clusters were similar to each other, but were different between clusters, showing amyloid heterogeneity that is spatially organized by subcellular location. The in situ structural approaches outlined here for human donor tissues have applications to a broad range of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Placa Amiloide , Proteínas tau , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/ultraestructura , Autopsia , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestructura , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/química , Placa Amiloide/ultraestructura , Proteínas tau/química , Proteínas tau/metabolismo , Proteínas tau/ultraestructura
2.
Commun Biol ; 7(1): 796, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951162

RESUMEN

The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.


Asunto(s)
Microscopía Electrónica , Fibras Nerviosas , Sinapsis , Animales , Ratones , Microscopía Electrónica/métodos , Fibras Nerviosas/ultraestructura , Sinapsis/ultraestructura , Axones/ultraestructura , Dendritas/ultraestructura , Encéfalo/ultraestructura , Corteza Somatosensorial/ultraestructura , Ratones Endogámicos C57BL , Masculino , Programas Informáticos , Hipocampo/ultraestructura , Hipocampo/citología , Microscopía Electrónica de Volumen
3.
Acta Neuropathol Commun ; 12(1): 94, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867338

RESUMEN

Down syndrome (DS) is a common genetic condition caused by trisomy of chromosome 21. Among their complex clinical features, including musculoskeletal, neurological, and cardiovascular disabilities, individuals with DS have an increased risk of developing progressive dementia and early-onset Alzheimer's disease (AD). This dementia is attributed to the increased gene dosage of the amyloid-ß (Aß) precursor protein gene, the formation of self-propagating Aß and tau prion conformers, and the deposition of neurotoxic Aß plaques and tau neurofibrillary tangles. Tau amyloid fibrils have previously been established to adopt many distinct conformations across different neurodegenerative conditions. Here, we report the characterization of brain samples from four DS cases spanning 36-63 years of age by spectral confocal imaging with conformation-specific dyes and cryo-electron microscopy (cryo-EM) to determine structures of isolated tau fibrils. High-resolution structures revealed paired helical filament (PHF) and straight filament (SF) conformations of tau that were identical to those determined from AD cases. The PHFs and SFs are made of two C-shaped protofilaments, each containing a cross-ß/ß-helix motif. Similar to filaments from AD cases, most filaments from the DS cases adopted the PHF form, while a minority (approximately 20%) formed SFs. Samples from the youngest individual with no documented dementia had sparse tau deposits. To isolate tau for cryo-EM from this challenging sample we used a novel affinity-grid method involving a graphene oxide surface derivatized with anti-tau antibodies. This method improved isolation and revealed that primarily tau PHFs and a minor population of chronic traumatic encephalopathy type II-like filaments were present in this youngest case. These findings expand the similarities between AD and DS to the molecular level, providing insight into their related pathologies and the potential for targeting common tau filament folds by small-molecule therapeutics and diagnostics.


Asunto(s)
Enfermedad de Alzheimer , Microscopía por Crioelectrón , Síndrome de Down , Proteínas tau , Humanos , Síndrome de Down/patología , Síndrome de Down/metabolismo , Proteínas tau/metabolismo , Proteínas tau/ultraestructura , Microscopía por Crioelectrón/métodos , Persona de Mediana Edad , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Femenino , Adulto , Masculino , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/ultraestructura
4.
Acta Neuropathol Commun ; 12(1): 88, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840253

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington , Imagenología Tridimensional , Mitocondrias , Animales , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Mitocondrias/ultraestructura , Mitocondrias/patología , Mitocondrias/metabolismo , Imagenología Tridimensional/métodos , Ratones , Ratones Transgénicos , Encéfalo/patología , Encéfalo/ultraestructura , Encéfalo/metabolismo , Microscopía Electrónica/métodos , Masculino , Neuronas/patología , Neuronas/ultraestructura , Neuronas/metabolismo
5.
Science ; 385(6705): 168-174, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38900912

RESUMEN

Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.


Asunto(s)
Vesículas Sinápticas , ATPasas de Translocación de Protón Vacuolares , Animales , Ratas , Proteínas Bacterianas/química , Encéfalo/ultraestructura , Encéfalo/enzimología , Colesterol/química , Microscopía por Crioelectrón , Hidrólisis , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/ultraestructura , Sinaptofisina/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/aislamiento & purificación , ATPasas de Translocación de Protón Vacuolares/ultraestructura , Conformación Proteica
6.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729112

RESUMEN

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Asunto(s)
Drosophila melanogaster , Microscopía Electrónica , Neurotransmisores , Sinapsis , Animales , Encéfalo/ultraestructura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestructura , Drosophila melanogaster/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Microscopía Electrónica/métodos , Redes Neurales de la Computación , Neuronas/metabolismo , Neuronas/ultraestructura , Neurotransmisores/metabolismo , Sinapsis/ultraestructura , Sinapsis/metabolismo
7.
Nature ; 629(8013): 893-900, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632402

RESUMEN

The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Células Endoteliales , Gasderminas , Inflamación , Animales , Femenino , Humanos , Masculino , Ratones , Membrana Basal/metabolismo , Membrana Basal/ultraestructura , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/ultraestructura , Barrera Hematoencefálica/virología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Caspasas Iniciadoras/metabolismo , Dependovirus , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Gasderminas/antagonistas & inhibidores , Gasderminas/metabolismo , Inflamación/patología , Inflamación/metabolismo , Klebsiella pneumoniae/fisiología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/sangre , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Piroptosis , Sepsis/metabolismo , Sepsis/patología , Sepsis/microbiología , Análisis de la Célula Individual , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura
8.
Nat Commun ; 15(1): 2755, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553438

RESUMEN

Projection imaging accelerates volumetric interrogation in fluorescence microscopy, but for multi-cellular samples, the resulting images may lack contrast, as many structures and haze are summed up. Here, we demonstrate rapid projective light-sheet imaging with parameter selection (props) of imaging depth, position and viewing angle. This allows us to selectively image different sub-volumes of a sample, rapidly switch between them and exclude background fluorescence. Here we demonstrate the power of props by functional imaging within distinct regions of the zebrafish brain, monitoring calcium firing inside muscle cells of moving Drosophila larvae, super-resolution imaging of selected cell layers, and by optically unwrapping the curved surface of a Drosophila embryo. We anticipate that props will accelerate volumetric interrogation, ranging from subcellular to mesoscopic scales.


Asunto(s)
Drosophila , Pez Cebra , Animales , Microscopía Fluorescente/métodos , Encéfalo/ultraestructura , Larva
9.
Cell Rep Methods ; 3(7): 100520, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37533653

RESUMEN

Analysis of brain structure, connectivity, and molecular diversity relies on effective tissue fixation. Conventional tissue fixation causes extracellular space (ECS) loss, complicating the segmentation of cellular objects from electron microscopy datasets. Previous techniques for preserving ECS in mammalian brains utilizing high-pressure perfusion can give inconsistent results owing to variations in the hydrostatic pressure within the vasculature. A more reliable fixation protocol that uniformly preserves the ECS throughout whole brains would greatly benefit a wide range of neuroscience studies. Here, we report a straightforward transcardial perfusion strategy that preserves ECS throughout the whole rodent brain. No special setup is needed besides sequential solution changes, and the protocol offers excellent reproducibility. In addition to better capturing tissue ultrastructure, preservation of ECS has many downstream advantages such as accelerating heavy-metal staining for electron microscopy, improving detergent-free immunohistochemistry for correlated light and electron microscopy, and facilitating lipid removal for tissue clearing.


Asunto(s)
Encéfalo , Espacio Extracelular , Animales , Reproducibilidad de los Resultados , Encéfalo/ultraestructura , Microscopía Electrónica , Fijación del Tejido/métodos , Mamíferos
10.
Hum Brain Mapp ; 44(13): 4722-4737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401639

RESUMEN

Given the anatomical and functional similarities between the retina and the brain, the retina could be a "window" for viewing brain structures. We investigated the association between retinal nerve fiber layers (peripapillary retinal nerve fiber layer, ppRNFL; macular ganglion cell-inner plexiform layer, GC-IPL; and macular ganglion cell complex, GCC), and brain magnetic resonance imaging (MRI) parameters in young health adults. We included 857 students (mean age: 23.3 years, 71.3% women) from the i-Share study. We used multivariate linear models to study the cross-sectional association of each retinal nerve layer thickness assessed by spectral-domain optical coherence tomography (SD-OCT) with structural (volumes and cortical thickness), and microstructural brain markers, assessed on MRI globally and regionally. Microstructural MRI parameters included diffusion tensor imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI). On global brain analysis, thicker ppRNFL, GC-IPL and GCC were all significantly associated with patterns of diffusion metrics consistent with higher WM microstructural integrity. In regional analyses, after multiple testing corrections, our results suggested significant associations of some retinal nerve layers with brain regional gray matter occipital volumes and with diffusion MRI parameters in a region involved in the visual pathway and in regions containing associative tracts. No associations were found with global volumes or with global or regional cortical thicknesses. Results of this study suggest that some retinal nerve layers may reflect brain structures. Further studies are needed to confirm these results in young subjects.


Asunto(s)
Encéfalo , Neuroimagen , Células Ganglionares de la Retina , Humanos , Masculino , Femenino , Adulto Joven , Imagen por Resonancia Magnética , Encéfalo/ultraestructura , Células Ganglionares de la Retina/ultraestructura
11.
Science ; 379(6636): eadd9330, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893230

RESUMEN

Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain (Drosophila larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from descending neurons, and multiple novel circuit motifs. The brain's most recurrent circuits comprised the input and output neurons of the learning center. Some structural features, including multilayer shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures. The identified brain architecture provides a basis for future experimental and theoretical studies of neural circuits.


Asunto(s)
Encéfalo , Conectoma , Drosophila melanogaster , Red Nerviosa , Animales , Encéfalo/ultraestructura , Neuronas/ultraestructura , Sinapsis/ultraestructura , Drosophila melanogaster/ultraestructura , Red Nerviosa/ultraestructura
12.
Cereb Cortex ; 33(10): 6320-6334, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36573438

RESUMEN

Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.


Asunto(s)
Atención , Trastorno del Espectro Autista , Encéfalo , Conectoma , Humanos , Adolescente , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Conjuntos de Datos como Asunto , Masculino , Femenino , Encéfalo/fisiopatología , Encéfalo/ultraestructura
13.
Science ; 378(6619): 486-487, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378965
14.
Science ; 378(6619): 488-492, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378966

RESUMEN

Detailed knowledge about the neural connections among regions of the brain is key for advancing our understanding of normal brain function and changes that occur with aging and disease. Researchers use a range of experimental techniques to map connections at different levels of granularity in rodent animal models, but the results are often challenging to compare and integrate. Three-dimensional reference atlases of the brain provide new opportunities for cumulating, integrating, and reinterpreting research findings across studies. Here, we review approaches for integrating data describing neural connections and other modalities in rodent brain atlases and discuss how atlas-based workflows can facilitate brainwide analyses of neural network organization in relation to other facets of neuroarchitecture.


Asunto(s)
Atlas como Asunto , Mapeo Encefálico , Encéfalo , Animales , Envejecimiento , Encéfalo/ultraestructura
15.
Science ; 378(6619): 500-504, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378967

RESUMEN

A comprehensive description of how neurons and entire brain regions are interconnected is fundamental for a mechanistic understanding of brain function and dysfunction. Neuroimaging has shaped the way to approaching the human brain's connectivity on the basis of diffusion magnetic resonance imaging and tractography. At the same time, polarization, fluorescence, and electron microscopy became available, which pushed spatial resolution and sensitivity to the axonal or even to the synaptic level. New methods are mandatory to inform and constrain whole-brain tractography by regional, high-resolution connectivity data and local fiber geometry. Machine learning and simulation can provide predictions where experimental data are missing. Future interoperable atlases require new concepts, including high-resolution templates and directionality, to represent variants of tractography solutions and estimates of their accuracy.


Asunto(s)
Encéfalo , Conectoma , Neuroimagen , Humanos , Encéfalo/ultraestructura , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética , Neuroimagen/métodos , Neuronas
16.
Science ; 378(6619): 505-510, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378968

RESUMEN

There is more to brain connections than the mere transfer of signals between brain regions. Behavior and cognition emerge through cortical area interaction. This requires integration between local and distant areas orchestrated by densely connected networks. Brain connections determine the brain's functional organization. The imaging of connections in the living brain has provided an opportunity to identify the driving factors behind the neurobiology of cognition. Connectivity differences between species and among humans have furthered the understanding of brain evolution and of diverging cognitive profiles. Brain pathologies amplify this variability through disconnections and, consequently, the disintegration of cognitive functions. The prediction of long-term symptoms is now preferentially based on brain disconnections. This paradigm shift will reshape our brain maps and challenge current brain models.


Asunto(s)
Encéfalo , Cognición , Conectoma , Red Nerviosa , Humanos , Encéfalo/fisiología , Encéfalo/ultraestructura , Imagen por Resonancia Magnética/métodos , Red Nerviosa/ultraestructura
17.
Nat Methods ; 19(11): 1357-1366, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36280717

RESUMEN

Dense reconstruction of synaptic connectivity requires high-resolution electron microscopy images of entire brains and tools to efficiently trace neuronal wires across the volume. To generate such a resource, we sectioned and imaged a larval zebrafish brain by serial block-face electron microscopy at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with the flood-filling network algorithm, automated the detection of chemical synapses and validated the results by comparisons to transmission electron microscopic images and light-microscopic reconstructions. Neurons and their connections are stored in the form of a queryable and expandable digital address book. We reconstructed a network of 208 neurons involved in visual motion processing, most of them located in the pretectum, which had been functionally characterized in the same specimen by two-photon calcium imaging. Moreover, we mapped all 407 presynaptic and postsynaptic partners of two superficial interneurons in the tectum. The resource developed here serves as a foundation for synaptic-resolution circuit analyses in the zebrafish nervous system.


Asunto(s)
Sinapsis , Pez Cebra , Animales , Larva , Sinapsis/ultraestructura , Encéfalo/ultraestructura , Microscopía Electrónica
18.
Proc Natl Acad Sci U S A ; 119(40): e2200638119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161899

RESUMEN

Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past.


Asunto(s)
Evolución Biológica , Encéfalo , Genómica , Neuroimagen , Polimorfismo de Nucleótido Simple , Encéfalo/crecimiento & desarrollo , Encéfalo/ultraestructura , ADN Antiguo , Genómica/métodos , Humanos , Neuroimagen/métodos
19.
Nature ; 610(7933): 791-795, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108674

RESUMEN

Parkinson's disease (PD) is the most common movement disorder, with resting tremor, rigidity, bradykinesia and postural instability being major symptoms1. Neuropathologically, it is characterized by the presence of abundant filamentous inclusions of α-synuclein in the form of Lewy bodies and Lewy neurites in some brain cells, including dopaminergic nerve cells of the substantia nigra2. PD is increasingly recognised as a multisystem disorder, with cognitive decline being one of its most common non-motor symptoms. Many patients with PD develop dementia more than 10 years after diagnosis3. PD dementia (PDD) is clinically and neuropathologically similar to dementia with Lewy bodies (DLB), which is diagnosed when cognitive impairment precedes parkinsonian motor signs or begins within one year from their onset4. In PDD, cognitive impairment develops in the setting of well-established PD. Besides PD and DLB, multiple system atrophy (MSA) is the third major synucleinopathy5. It is characterized by the presence of abundant filamentous α-synuclein inclusions in brain cells, especially oligodendrocytes (Papp-Lantos bodies). We previously reported the electron cryo-microscopy structures of two types of α-synuclein filament extracted from the brains of individuals with MSA6. Each filament type is made of two different protofilaments. Here we report that the cryo-electron microscopy structures of α-synuclein filaments from the brains of individuals with PD, PDD and DLB are made of a single protofilament (Lewy fold) that is markedly different from the protofilaments of MSA. These findings establish the existence of distinct molecular conformers of assembled α-synuclein in neurodegenerative disease.


Asunto(s)
Química Encefálica , Encéfalo , Microscopía por Crioelectrón , Enfermedad por Cuerpos de Lewy , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestructura , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Demencia/complicaciones , Demencia/patología
20.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35776541

RESUMEN

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Asunto(s)
Desarrollo del Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiología , Encéfalo/ultraestructura , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA