Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.324
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732100

RESUMEN

The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1ß induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1ß compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.


Asunto(s)
Resinas Compuestas , Fibroblastos , Encía , Interleucina-1beta , Polimetil Metacrilato , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Encía/citología , Resinas Compuestas/farmacología , Resinas Compuestas/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Cultivadas , Factor de Transcripción ReIA/metabolismo , Adhesión Celular/efectos de los fármacos
2.
J Appl Oral Sci ; 32: e20230294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747782

RESUMEN

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Asunto(s)
Movimiento Celular , Proliferación Celular , Supervivencia Celular , Fibroblastos , Encía , Ácido Hialurónico , Fibrina Rica en Plaquetas , Regeneración , Ácido Hialurónico/farmacología , Humanos , Fibroblastos/efectos de los fármacos , Encía/efectos de los fármacos , Encía/citología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Regeneración/efectos de los fármacos , Factores de Tiempo , Movimiento Celular/efectos de los fármacos , Reproducibilidad de los Resultados , Técnica del Anticuerpo Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Colágeno , Ensayo de Materiales , Cicatrización de Heridas/efectos de los fármacos , Materiales Biocompatibles/farmacología , Colágeno Tipo I/análisis
3.
J Dent ; 145: 105033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697505

RESUMEN

OBJECTIVES: This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS: 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS: BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS: The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE: Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.


Asunto(s)
Antibacterianos , Cerámica , Pilares Dentales , Fibroblastos , Encía , Vidrio , Propiedades de Superficie , Zinc , Circonio , Circonio/farmacología , Circonio/química , Humanos , Zinc/farmacología , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Encía/citología , Encía/efectos de los fármacos , Vidrio/química , Cerámica/farmacología , Cerámica/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Antioxidantes/farmacología , Ensayo de Materiales , Colágeno , Cicatrización de Heridas/efectos de los fármacos , Materiales Dentales/farmacología , Materiales Dentales/química , Células Cultivadas
4.
J Evid Based Integr Med ; 29: 2515690X241258369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38778767

RESUMEN

The aim of this study was to evaluate the effect of curcumin combined with Lactobacillus rhamnosus GG cell-free supernatant (LGG CFS) on the proliferation and induction of apoptosis in SCC-9 oral squamous cell carcinoma (OSCC) cells. Curcumin (40 µg/ml) and 25% v/v LGG CFS (108 CFU/ml), both alone and in a combination regimen, significantly decreased the viability of SCC-9 cells and normal human gingival fibroblast (HGF) cells. Interestingly, the combination of low doses of curcumin (5 µg/ml) and 25% v/v LGG CFS (106 CFU/ml) had no effect on the HGF cells but significantly inhibited the viability of SCC-9 cells (p < 0.05). Flow cytometric analysis revealed that SCC-9 cells treated with the combination of low-dose curcumin and low-dose LGG CFS had a higher apoptotic rate than the cells in the control group and the single treatment groups (p < 0.05). The combined treatment also significantly increased the Bax/Bcl2 mRNA and protein expression in SCC-9 cells (p < 0.05) but not in HGF cells, indicating the underlying mechanism of the combination regimen. There was no significant difference in caspase-3 protein expression or the Bcl-xL/Bak and Mcl-1/Bak ratios between the treatment and control groups in both cell lines. These findings suggested that the coadministration of curcumin and LGG could exhibit anticancer effects in SCC-9 cells without causing toxicity to normal fibroblast cells.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Supervivencia Celular , Curcumina , Lacticaseibacillus rhamnosus , Neoplasias de la Boca , Humanos , Curcumina/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Encía/citología , Probióticos/farmacología , Antineoplásicos/farmacología
5.
BMC Oral Health ; 24(1): 573, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760715

RESUMEN

BACKGROUND: The aim of this study is to examine the cytotoxic effects of dental gels with different contents, which are frequently used during teething, on gingival mesenchymal stem cells (G-MSCs). METHOD: The teething gels used in this study were Dentinox, Gengigel, Osanite, and Jack and Jill. The human gingival mesenchimal stem cells (hG-MSCs) were incubated with these teething gel solutions (0.1%, 50% and 80% concentrations). Reproductive behavior of G-MSCs was monitored in real time for 72 h using the xCELLigence real-time cell analyzer (RTCA) system. Two-way repeated Anova test and post hoc Bonferroni test were used to evaluate the effect of concentration and dental gel on 0-hour and 72-hour viability. Significance was evaluated at p < 0.05 level. RESULTS: Teething gels prepared at 50% concentration are added to the G-MSC culture, the "cell index" value of G-MSCs to which Dentinox brand gel is added is significantly lower than all other groups (p = 0.05). There is a statistically significant difference between the concentrations in terms of cell index values at the 72nd hour compared to the 0th hour (p = 0.001). CONCLUSIONS: The local anesthetic dental gels used in children have a more negative effect on cell viability as concentration increases.


Asunto(s)
Supervivencia Celular , Geles , Encía , Células Madre Mesenquimatosas , Humanos , Encía/citología , Encía/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas In Vitro
6.
ACS Appl Bio Mater ; 7(5): 2993-3004, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38593411

RESUMEN

Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Ensayo de Materiales , Óxido Nítrico , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Escherichia coli/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Biopelículas/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , Propiedades de Superficie , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Encía/citología
7.
JCI Insight ; 9(10)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652539

RESUMEN

Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.


Asunto(s)
Artritis Reumatoide , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , FN-kappa B , Linfocitos T Reguladores , Células Th17 , Artritis Reumatoide/terapia , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Humanos , Animales , Células Th17/inmunología , Células Th17/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Quinasa I-kappa B/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Encía/citología , Encía/metabolismo , Encía/patología , Encía/inmunología , Masculino , Fibroblastos/metabolismo
8.
J Indian Prosthodont Soc ; 24(2): 152-158, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38650340

RESUMEN

AIM: In routine dental care, various dental luting cements are utilized to cement the dental prosthesis. Thus, the aim of the current study was to assess the Cytotoxic effect of three different dental luting cements on human gingival mesenchymal stem cell and evaluation of cytokines and growth factors release. SETTINGS AND DESIGN: Cytotoxicity of glass ionomer cement (GIC), resin modified glass ionomer cement (RMGIC) and resin cement (RC) on the human gingival mesenchymal stem cells (HGMSCs) was evaluated. Amongst the cements tested, least cytotoxic cement was further tested for the release of cytokines and growth factors. MATERIALS AND METHODS: MTT test was used to evaluate the cytotoxicity of the dental luting cements at 1 h, 24 h, and 48 h on HGMSCs. Cytokines such as interleukin (IL) 1α & IL 8 and growth factors such as platelet derived growth factor & transforming growth factor beta release from the least cytotoxic RC was evaluated using flow cytometry analysis. STATISTICAL ANALYSIS USED: The mean absorbance values by MTT assay and cell viability at various time intervals between four groups were compared using a one way analysis of variance test and Tukey's post hoc test. The least cytotoxic RC group and the control group's mean levels of cytokines and growth factors were compared using the Mann-Whitney test. RESULT: As exposure time increased, the dental luting cement examined in this study were cytotoxic. RC was the least cytotoxic, RMGIC was moderate and glass ionomer cement showed the highest cytotoxic effect. Concomitantly, a significant positive biological response of gingival mesenchymal stem cells with the release of ILs when exposed to the RC was observed. CONCLUSION: For a fixed dental prosthesis to be clinically successful over the long term, it is imperative that the biocompatibility of the luting cement be taken into account in order to maintain a healthy periodontium surrounding the restoration.


Asunto(s)
Citocinas , Cementos Dentales , Encía , Péptidos y Proteínas de Señalización Intercelular , Células Madre Mesenquimatosas , Humanos , Encía/citología , Encía/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cementos Dentales/farmacología , Cementos Dentales/química , Cementos Dentales/toxicidad , Técnicas In Vitro , Cementos de Ionómero Vítreo/farmacología , Cementos de Ionómero Vítreo/toxicidad , Cementos de Ionómero Vítreo/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas
9.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Artículo en Chino | MEDLINE | ID: mdl-38637003

RESUMEN

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Asunto(s)
Células Endoteliales , Encía , Células Endoteliales de la Vena Umbilical Humana , Periodontitis , Proteínas de Unión a Fosfato , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Piroptosis , Animales , Ratones , Humanos , Periodontitis/metabolismo , Periodontitis/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Encía/patología , Encía/metabolismo , Encía/citología , Proteínas de Unión a Fosfato/metabolismo , Células Endoteliales/metabolismo , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microtomografía por Rayos X , Modelos Animales de Enfermedad , Porphyromonas gingivalis
10.
J Periodontal Res ; 59(3): 599-610, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482719

RESUMEN

OBJECTIVE: This study investigates the effects of ZNF862 on the proliferation and apoptosis of human gingival fibroblasts and their related mechanisms. BACKGROUND: As a major transcription factor family, zinc finger proteins (ZFPs) regulate cell differentiation, growth, and apoptosis through their conserved zinc finger motifs, which allow high flexibility and specificity in gene regulation. In our previous study, ZNF862 mutation was associated with hereditary gingival fibromatosis. Nevertheless, little is known about the biological function of ZNF862. Therefore, this study was aimed to reveal intracellular localization of ZNF862, the influence of ZNF862 on the growth and apoptosis of human gingival fibroblasts (HGFs) and its potential related mechanisms. METHODS: Immunohistochemistry, immunofluorescence staining, and western blotting were performed to determine the intracellular localization of ZNF862 in HGFs. HGFs were divided into three groups: ZNF862 overexpression group, ZNF862 interference group, and the empty vector control group. Then, the effects of ZNF862 on cell proliferation, migration, cell cycle, and apoptosis were evaluated. qRT-PCR and western blotting were performed to further explore the mechanism related to the proliferation and apoptosis of HGFs. RESULTS: ZNF862 was found to be localized in the cytoplasm of HGFs. In vitro experiments revealed that ZNF862 overexpression inhibited HGFs proliferation and migration, induced cell cycle arrest at the G0/G1-phase and apoptosis. Whereas, ZNF862 knockdown promoted HGFs proliferation and migration, accelerated the transition from the G0/G1 phase into the S and G2/M phase and inhibited cell apoptosis. Mechanistically, the effects of ZNF862 on HGFs proliferation and apoptosis were noted to be dependent on inhibiting the cyclin-dependent kinase inhibitor 1A (p21)-retinoblastoma 1 (RB1) signaling pathway and enhancing the B-cell lymphoma-extra-large (Bcl-xL)-Caspase 3 signaling pathway. CONCLUSION: Our results for the first time reveal that ZNF862 is localized in the cytoplasm of HGFs. ZNF862 can inhibit the proliferation of HGFs by inhibiting the p21-RB1 signaling pathway, and it also promotes the apoptosis of HGFs by enhancing the Bcl-xL-Caspase 3 signaling pathway.


Asunto(s)
Apoptosis , Caspasa 3 , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Fibroblastos , Encía , Transducción de Señal , Proteína bcl-X , Humanos , Apoptosis/genética , Encía/citología , Encía/metabolismo , Fibroblastos/metabolismo , Caspasa 3/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína bcl-X/metabolismo , Factores de Transcripción/metabolismo , Movimiento Celular , Células Cultivadas , Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
11.
J Periodontal Res ; 59(3): 611-621, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38500269

RESUMEN

BACKGROUND AND OBJECTIVE: Forkhead box-O 1 (FOXO1) is a transcription factor actively involved in oral wound healing at the epithelial barrier. However, less is known regarding the role of FOXO1 during the tissue repair response in the connective tissue compartment. This study explored the involvement of FOXO1 in the modulation of fibroblast activity related to wound healing. METHODS: Primary cultures of human gingival fibroblasts were obtained from four healthy young donors. Myofibroblastic differentiation, collagen gel contraction, cell migration, cell spreading, and integrin activation were evaluated in the presence or absence of a FOXO1 inhibitor (AS1842856). Variations in mRNA and proteins of interest were evaluated through qRT-PCR and western blot, respectively. Distribution of actin, α-smooth muscle actin, and ß1 integrin was evaluated using immunofluorescence. FOXO1 and TGF-ß1 expression in gingival wound healing was assessed by immunohistochemistry in gingival wounds performed in C57BL/6 mice. Images were analyzed using ImageJ/Fiji. ANOVA or Kruskal-Wallis test followed by Tukey's or Dunn's post-hoc test was performed. All data are expressed as mean ± SD. p < .05 was considered statistically significant. RESULTS: FOXO1 inhibition caused a decrease in the expression of the myofibroblastic marker α-SMA along with a reduction in fibronectin, type I collagen, TGF-ß1, and ß1 integrin mRNA level. The FOXO1 inhibitor also caused decreases in cell migration, cell spreading, collagen gel contraction, and ß1 integrin activation. FOXO1 and TGF-ß1 were prominently expressed in gingival wounds in fibroblastic cells located at the wound bed. CONCLUSION: The present study indicates that FOXO1 plays an important role in the modulation of several wound-healing functions in gingival fibroblast. Moreover, our findings reveal an important regulatory role for FOXO1 on the differentiation of gingival myofibroblasts, the regulation of cell migration, and collagen contraction, all these functions being critical during tissue repair and fibrosis.


Asunto(s)
Actinas , Movimiento Celular , Fibroblastos , Proteína Forkhead Box O1 , Encía , Cicatrización de Heridas , Humanos , Encía/citología , Encía/metabolismo , Cicatrización de Heridas/fisiología , Fibroblastos/metabolismo , Proteína Forkhead Box O1/metabolismo , Animales , Células Cultivadas , Diferenciación Celular , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo , Ratones , Integrina beta1 , Miofibroblastos , Quinolonas
12.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38457263

RESUMEN

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Asunto(s)
Aleaciones , Proliferación Celular , Supervivencia Celular , Fibroblastos , Encía , Nanopartículas del Metal , Plata , Propiedades de Superficie , Tiazoles , Titanio , Humanos , Fibroblastos/efectos de los fármacos , Titanio/toxicidad , Titanio/química , Encía/citología , Encía/efectos de los fármacos , Plata/química , Plata/toxicidad , Proliferación Celular/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Aleaciones/toxicidad , Ensayo de Materiales , Aleaciones Dentales/química , Aleaciones Dentales/toxicidad , Microscopía Electrónica de Rastreo , Colorantes , Materiales Biocompatibles/química , Sales de Tetrazolio
13.
Int Dent J ; 74(3): 607-615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38228433

RESUMEN

BACKGROUND: Periodontitis is one of the most common chronic oral inflammatory diseases. Over the past decade, herpes viruses, particularly Epstein-Barr virus (EBV), have been considered promising pathogenic candidates for periodontitis. However, the specific mechanism by which EBV contributes to the development of periodontitis is still unknown. This study aimed to explore the mechanism of EBV underlying the inflammatory response in human gingival fibroblasts (HGFs). MATERIALS AND METHODS: HGFs were stimulated with different concentrations of EBV (104, 105, 106, 107, and 108 DNA copies/mL) for 0, 8, 24, or 48 hours. The mRNA levels of interleukin (IL)-1ß, tumour necrosis factor-α (TNF-α), IL-8, monocyte chemoattractant protein-1 (MCP-1), and Toll-like receptor 9 (TLR9) were measured using quantitative real-time polymerase chain reaction (PCR). Enzyme-linked immunosorbent assays (ELISAs) were performed for determining the mRNA and protein levels of IL-1ß, TNF-α, IL-8, and MCP-1. Real-time PCR and ELISA were performed to determine the protein levels of IL-1ß, TNF-α, IL-8, and MCP-1. Activation of the TLR9/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) pathway was evaluated using western blotting. RESULTS: The expressions of IL-1ß, TNF-α, IL-8, and MCP-1 were significantly upregulated in HGFs under EBV stimulation in a concentration- and time-dependent manner. EBV promoted TLR9 and MyD88 expression and induced NF-κB transcription. On the contrary, the upregulation of these factors and the activation of NF-κB pathway were drastically inhibited by TLR9 antagonists. CONCLUSIONS: Our findings demonstrate that EBV promotes the production of inflammatory cytokines IL-1ß and TNF-α and chemokines IL-8 and MCP-1 in HGFs through the TLR9/MyD88/NF-κB pathway.


Asunto(s)
Quimiocina CCL2 , Citocinas , Fibroblastos , Encía , Herpesvirus Humano 4 , Interleucina-1beta , Receptor Toll-Like 9 , Humanos , Fibroblastos/virología , Fibroblastos/metabolismo , Encía/virología , Encía/citología , Citocinas/metabolismo , Receptor Toll-Like 9/metabolismo , Quimiocina CCL2/metabolismo , Interleucina-1beta/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , ARN Mensajero/metabolismo , Interleucina-8/metabolismo , Periodontitis/virología , Periodontitis/metabolismo
14.
J Periodontal Res ; 59(3): 542-551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38146226

RESUMEN

BACKGROUND AND OBJECTIVE: Efferocytosis is a process whereby macrophages remove apoptotic cells, such as neutrophils, that have accumulated in tissues, which is required for resolution of inflammation. Efferocytosis is impaired in individuals with increasing age and in those with various systemic diseases. Recently, efferocytosis has been reported to be related to the pathogenesis and progression of periodontitis, and enhancement of efferocytosis, especially in the subjects with impaired efferocytosis, was suggested to lead to periodontitis prevention and care. Various anti-inflammatory ingredients are used in oral care products, but their effect on efferocytosis is unclear. Here, we aimed to identify ingredients contained in oral care products that are effective for efferocytosis regulation. METHODS: The ability of dead cells to induce inflammation in human gingival fibroblast (HGF) cells were evaluated by measuring IL-6 secretion. Six ingredients in oral care products used as anti-inflammatory agents were evaluated for their effect on efferocytosis using flow cytometry. The expression of various efferocytosis-related molecules, such as MERTK and LRP1 involved in recognition, and LXRα and ABCA1 that function in metabolism, were measured in RAW264.7 cells with or without ingredient treatment. Rac1 activity, which is related to the uptake of dead cells, was measured using the G-LISA kit. RESULTS: Dead cells elicited IL-6 secretion in HGF cells. Among the six ingredients, GK2 and hinokitiol enhanced efferocytosis activity. GK2 and hinokitiol significantly increased the expression of MERTK and LRP1, and also enhanced LXRα and ABCA1 expression after efferocytosis. Furthermore, they increased Rac1 activity in the presence of dead cells. CONCLUSION: Among the six ingredients tested, GK2 and hinokitiol promoted efferocytosis by regulating apoptotic cell recognition, uptake, and metabolism-related molecules. Efferocytosis upregulation may be one of the mechanisms of GK2 and hinokitiol in the treatment of inflammatory diseases, such as periodontitis.


Asunto(s)
Apoptosis , Encía , Ácido Glicirrínico , Macrófagos , Monoterpenos , Fagocitosis , Tropolona , Apoptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos , Tropolona/análogos & derivados , Tropolona/farmacología , Fagocitosis/efectos de los fármacos , Encía/citología , Encía/metabolismo , Encía/efectos de los fármacos , Ácido Glicirrínico/farmacología , Monoterpenos/farmacología , Ratones , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células RAW 264.7 , Antiinflamatorios/farmacología , Interleucina-6/metabolismo , Células Cultivadas , Eferocitosis
15.
Clin Oral Investig ; 27(4): 1363-1389, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36786957

RESUMEN

OBJECTIVES: To identify and report the current landmarks used for measuring gingival thickness (GT) in healthy maxillary anterior teeth. MATERIAL AND METHODS: The protocol of this Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review was registered in PROSPERO. A literature search was conducted to identify articles that met the eligibility criteria published up to 2022. The methods of assessing gingival thickness and the landmarks adopted on the studies were described. Primary outcomes were identified, and the frequency of reporting in the selected articles was calculated. Additionally, risk-of-bias assessments were performed for individual articles. RESULTS: Fifty-eight articles (34 with low risk of bias and 24 with medium risk of bias) were selected. A total of 3638 individuals had their gingival thickness measured. Thirty-nine different landmarks were adopted in the studies. Fifty-six articles with 22 landmarks were included in the meta-analysis. A higher heterogeneity was found between the studies (GT ranged from 0.48 to 2.59 mm, mean GT 1.074; 95% CI: 1.024-1.104). The 3 most used landmarks were 2 mm from gingival margin (10 studies, mean GT 1.170 mm, 95% CI: 1.085-1.254), bone crest (9 studies, mean GT 1.01 mm; 95% CI: 0.937-1.083), and cemento-enamel junction (7 studies, mean GT 1.172 mm; 95% CI: 1.105, 1.239). CONCLUSIONS: Within the limits of this study, a large heterogeneity in GT was found, and there was no consensus on the ideal landmark for GT measurement. CLINICAL RELEVANCE: The landmark 2 mm from gingival margin, located at attached gingiva, can be used for GT measurement by clinical and image-based devices. This is an important step for a quantitative instead of a qualitative evaluation of phenotypes.


Asunto(s)
Encía , Maxilar , Diente , Tomografía Computarizada de Haz Cónico/métodos , Encía/citología , Maxilar/citología , Cuello del Diente
16.
J Photochem Photobiol B ; 241: 112670, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36841175

RESUMEN

BACKGROUND: Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS: Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS: A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS: aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.


Asunto(s)
Color , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Hierro , Luz , Porfirinas , Porphyromonas gingivalis , Porfirinas/metabolismo , Hierro/metabolismo , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/efectos de la radiación , Transporte Biológico/genética , Transporte Biológico/efectos de la radiación , Humanos , Encía/citología , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Radical Hidroxilo/metabolismo , Hemo/metabolismo , Regulación hacia Arriba/efectos de la radiación , Homeostasis/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Aerobiosis , Genes Bacterianos/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/efectos de la radiación
17.
Cells ; 11(21)2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36359794

RESUMEN

Regenerative endodontic treatment based on tissue engineering has recently gained interest in contemporary restorative dentistry. However, low survival rates and poor potential differentiation of stem cells could undermine the success rate of pulp regenerative therapy. Human gingival fibroblast-conditioned medium (hGF-CM) has been considered a potential therapy for tissue regeneration due to its stability in maintaining multiple factors essential for tissue regeneration compared to live cell transplantation. This study aimed to investigate the potency of hGF-CM on stem cells from human dental pulp (DPSC) in pulp regeneration. A series of experiments confirmed that hGF-CM contributes to a significant increase in proliferation, migration capability, and cell viability of DPSC after H2O2 exposure. Moreover, it has been proved to facilitate the odontogenic differentiation of DPSC via qRT-PCR, ALP (alkaline phosphatase), and ARS (Alizarin Red S) staining. It has been discovered that such highly upregulated odontogenesis is related to certain types of ECM proteins (collagen and laminin) from hGF-CM via proteomics. In addition, it is found that the ERK pathway is a key mechanism via inhibition assay based on RNA-seq result. These findings demonstrate that hGF-CM could be beneficial biomolecules for pulp regeneration.


Asunto(s)
Medios de Cultivo Condicionados , Pulpa Dental , Peróxido de Hidrógeno , Ingeniería de Tejidos , Humanos , Fosfatasa Alcalina/metabolismo , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Fibroblastos/metabolismo , Regeneración , Encía/citología , Encía/metabolismo , Ingeniería de Tejidos/métodos
18.
PLoS One ; 17(2): e0263083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35113915

RESUMEN

In order to advance models of human oral mucosa towards routine use, these models must faithfully mimic the native tissue structure while also being scalable and cost efficient. The goal of this study was to develop a low-cost, keratinized human gingival model with high fidelity to human attached gingiva and demonstrate its utility for studying the implant-tissue interface. Primary human gingival fibroblasts (HGF) and keratinocytes (HGK) were isolated from clinically healthy gingival biopsies. Four matrices, electrospun collagen (ES), decellularized dermis (DD), type I collagen gels (Gel) and released type I collagen gels (Gel-R)) were tested to engineer lamina propria and gingiva. HGF viability was similar in all matrices except for Gel-R, which was significantly decreased. Cell penetration was largely limited to the top layers of all matrices. Histomorphometrically, engineered human gingiva was found to have similar appearance to the native normal human gingiva except absence of rete pegs. Immunohistochemical staining for cell phenotype, differentiation and extracellular matrix composition and organization within 3D engineered gingiva made with electrospun collagen was mostly in agreement with normal gingival tissue staining. Additionally, five types of dental material posts (5-mm diameter x 3-mm height) with different surface characteristics were used [machined titanium, SLA (sandblasted-acid etched) titanium, TiN-coated (titanium nitride-coated) titanium, ceramic, and PEEK (Polyetheretherketone) to investigate peri-implant soft tissue attachment studied by histology and SEM. Engineered epithelial and stromal tissue migration to the implant-gingival tissue interface was observed in machined, SLA, ceramic, and PEEK groups, while TiN was lacking attachment. Taken together, the results suggest that electrospun collagen scaffolds provide a scalable, reproducible and cost-effective lamina propria and 3D engineered gingiva that can be used to explore biomaterial-soft tissue interface.


Asunto(s)
Adhesión Celular , Colágeno/química , Implantes Dentales/estadística & datos numéricos , Fibroblastos/fisiología , Encía/fisiología , Queratinocitos/fisiología , Titanio/química , Fibroblastos/citología , Encía/citología , Humanos , Queratinocitos/citología , Ensayo de Materiales , Propiedades de Superficie
19.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35054995

RESUMEN

Periodontitis is an inflammatory condition that causes the destruction of the supporting tissues of teeth and is a major public health problem affecting more than half of the adult population worldwide. Recently, members of the herpes virus family, such as the Epstein-Barr virus (EBV), have been suggested to be involved in the etiology of periodontitis because bacterial activity alone does not adequately explain the clinical characteristics of periodontitis. However, the role of EBV in the etiology of periodontitis is unknown. This study aimed to examine the effect of inactivated EBV on the expression of inflammatory cytokines in human gingival fibroblasts (HGFs) and the induction of osteoclast differentiation. We found that extremely high levels of interleukin (IL)-6 and IL-8 were induced by inactivated EBV in a copy-dependent manner in HGFs. The levels of IL-6 and IL-8 in HGFs were higher when the cells were treated with EBV than when treated with lipopolysaccharide and lipoteichoic acid. EBV induced IκBα degradation, NF-κB transcription, and RAW264.7 cell differentiation into osteoclast-like cells. These findings suggest that even without infecting the cells, EBV contributes to inflammatory cytokine production and osteoclast differentiation by contact with oral cells or macrophage lineage, resulting in periodontitis onset and progression.


Asunto(s)
Citocinas/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Mediadores de Inflamación/metabolismo , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Citocinas/genética , Infecciones por Virus de Epstein-Barr/virología , Expresión Génica , Encía/citología , Encía/virología , Ratones , Células RAW 264.7 , Transducción de Señal
20.
J Periodontal Res ; 57(2): 402-411, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35037259

RESUMEN

OBJECTIVES: Stem cell transplantation has shown modest effects on periodontal tissue regeneration, and it is still unclear how regenerative effects utilizing this modality are mediated. A greater understanding of the basic interactions between implanted and host cells is needed to improve future strategies. The aims of this study were to investigate the effects of periodontal ligament (PDL) cells on expression of periodontal markers and alkaline phosphatase (ALP) activity of gingival fibroblasts (GF). MATERIALS AND METHODS: Primary human PDL cells were co-cultured with primary GF cultures either by direct co-culture with subsequent FACS sorting or indirect co-culture using transwell cultures and PDL cell conditioned medium. Expression of periodontal markers, asporin, nestin, and periostin, was assessed by qPCR and immunofluorescence staining. Alkaline phosphatase (ALP) expression was assessed by qPCR, histochemical staining, and activity assessed by para-nitrophenol enzymatic assay. Single cultures of PDL cells and GF were used as controls. The role of Wnt signaling on ALP activity was assessed via Dkk1-mediated inhibition. RESULTS: PDL cells significantly upregulated expression of PDL markers in GF with both direct and indirect co-culture methods when compared to controls (6.05 vs. 0.73 and 59.48 vs. 17.55 fold change of asporin expression). PDL/GF cell co-cultures significantly increased ALP activity in GF when compared with single GF cultures. Similar results were obtained when using conditioned medium isolated from PDL cell cultures. Dkk1 caused dose-dependent reduction in ALP activity of GF cultured in PDL cell conditioned medium. CONCLUSIONS: PDL cells stimulate expression of periodontal markers and osteogenic capacity of gingival fibroblasts via paracrine signaling which can be partially inhibited with addition of the Wnt antagonist, Dkk1.Further studies are required to identify specific secreted factors responsible for this activity.


Asunto(s)
Fibroblastos/citología , Encía , Ligamento Periodontal , Fosfatasa Alcalina/metabolismo , Diferenciación Celular , Células Cultivadas , Encía/citología , Humanos , Ligamento Periodontal/citología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA