Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
Nat Commun ; 15(1): 5872, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997287

RESUMEN

How organisms respond to environmental stress is a key topic in evolutionary biology. This study focused on the genomic evolution of Laburnicola rhizohalophila, a dark-septate endophytic fungus from roots of a halophyte. Chromosome-level assemblies were generated from five representative isolates from structured subpopulations. The data revealed significant genomic plasticity resulting from chromosomal polymorphisms created by fusion and fission events, known as dysploidy. Analyses of genomic features, phylogenomics, and macrosynteny have provided clear evidence for the origin of intraspecific diploid-like hybrids. Notably, one diploid phenotype stood out as an outlier and exhibited a conditional fitness advantage when exposed to a range of abiotic stresses compared with its parents. By comparing the gene expression patterns in each hybrid parent triad under the four growth conditions, the mechanisms underlying growth vigor were corroborated through an analysis of transgressively upregulated genes enriched in membrane glycerolipid biosynthesis and transmembrane transporter activity. In vitro assays suggested increased membrane integrity and lipid accumulation, as well as decreased malondialdehyde production under optimal salt conditions (0.3 M NaCl) in the hybrid. These attributes have been implicated in salinity tolerance. This study supports the notion that hybridization-induced genome doubling leads to the emergence of phenotypic innovations in an extremophilic endophyte.


Asunto(s)
Diploidia , Raíces de Plantas , Plantas Tolerantes a la Sal , Raíces de Plantas/microbiología , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/genética , Vigor Híbrido/genética , Filogenia , Genoma Fúngico , Ascomicetos/genética , Ascomicetos/metabolismo , Regulación Fúngica de la Expresión Génica , Endófitos/genética , Endófitos/metabolismo , Estrés Fisiológico/genética , Fenotipo , Tolerancia a la Sal/genética , Hibridación Genética
2.
Arch Microbiol ; 206(8): 340, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960981

RESUMEN

Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.


Asunto(s)
Endófitos , Hongos , Alcaloides de Triptamina Secologanina , Endófitos/metabolismo , Endófitos/genética , Hongos/metabolismo , Hongos/genética , Alcaloides de Triptamina Secologanina/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Vías Biosintéticas , Plantas Medicinales/microbiología , Plantas Medicinales/metabolismo , Productos Biológicos/metabolismo
3.
J Agric Food Chem ; 72(26): 14557-14569, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957088

RESUMEN

This study aimed to investigate the mechanisms by which dark septate endophytes (DSE) regulate salt tolerance and the accumulation of bioactive constituents in licorice. First, the salt stress tolerance and resynthesis with the plant effect of isolated DSE from wild licorice were tested. Second, the performance of licorice inoculated with DSE, which had the best salt-tolerant and growth-promoting effects, was examined under salt stress. All isolated DSE showed salt tolerance and promoted plant growth, withCurvularia lunata D43 being the most effective. Under salt stress, C. lunata D43 could promote growth, increase antioxidant enzyme activities, enhance glycyrrhizic acid accumulation, improve key enzyme activities in the glycyrrhizic acid synthesis pathway, and induce the expression of the key enzyme gene and salt tolerance gene of licorice. The structural equation model demonstrated that DSE alleviate the negative effects of salt stress through direct and indirect pathways. Variations in key enzyme activities, gene expression, and bioactive constituent concentration can be attributed to the effects of DSE. These results contribute to revealing the value of DSE for cultivating medicinal plants in saline soils.


Asunto(s)
Endófitos , Glycyrrhiza , Ácido Glicirrínico , Estrés Salino , Ácido Glicirrínico/metabolismo , Glycyrrhiza/química , Glycyrrhiza/metabolismo , Glycyrrhiza/microbiología , Endófitos/metabolismo , Endófitos/genética , Tolerancia a la Sal , Ascomicetos/metabolismo , Ascomicetos/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
4.
Front Cell Infect Microbiol ; 14: 1413728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015339

RESUMEN

Pseudomonas aeruginosa has already been stipulated as a "critical" pathogen, emphasizing the urgent need for researching and developing novel antibacterial agents due to multidrug resistance. Bacterial biofilm formation facilitates cystic fibrosis development and restricts the antibacterial potential of many current antibiotics. The capacity of P. aeruginosa to form biofilms and resist antibiotics is closely correlated with quorum sensing (QS). Bacterial QS is being contemplated as a promising target for developing novel antibacterial agents. QS inhibitors are a promising strategy for treating chronic infections. This study reported that the active compound PT22 (1H-pyrrole-2,5-dicarboxylic acid) isolated from Perenniporia tephropora FF2, one endophytic fungus from Areca catechu L., presents QS inhibitory activity against P. aeruginosa. Combined with gentamycin or piperacillin, PT22 functions as a novel antibiotic accelerant against P. aeruginosa. PT22 (0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL) reduces the production of QS-related virulence factors, such as pyocyanin and rhamnolipid, and inhibits biofilm formation of P. aeruginosa PAO1 instead of affecting its growth. The architectural disruption of the biofilms was confirmed by visualization through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Real-time quantitative PCR (RT-qPCR) indicated that PT22 significantly attenuated the expression of QS-related genes followed by docking analysis of molecules against QS activator proteins. PT22 dramatically increased the survival rate of Galleria mellonella. PT22 combined with gentamycin or piperacillin presents significant inhibition of biofilm formation and eradication of mature biofilm compared to monotherapy, which was also confirmed by visualization through SEM and CLSM. After being treated with PT22 combined with gentamycin or piperacillin, the survival rates of G. mellonella were significantly increased compared to those of monotherapy. PT22 significantly enhanced the susceptibility of gentamycin and piperacillin against P. aeruginosa PAO1. Our results suggest that PT22 from P. tephropora FF2 as a potent QS inhibitor is a candidate antibiotic accelerant to combat the antibiotic resistance of P. aeruginosa.


Asunto(s)
Antibacterianos , Biopelículas , Pseudomonas aeruginosa , Pirroles , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pirroles/farmacología , Animales , Factores de Virulencia/genética , Endófitos/química , Endófitos/metabolismo , Pruebas de Sensibilidad Microbiana , Ácidos Dicarboxílicos/farmacología , Simulación del Acoplamiento Molecular , Piocianina/metabolismo
5.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971771

RESUMEN

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Asunto(s)
Endófitos , Germinación , Ácidos Indolacéticos , Ocimum basilicum , Semillas , Thymus (Planta) , Ocimum basilicum/microbiología , Thymus (Planta)/química , Ácidos Indolacéticos/metabolismo , Endófitos/fisiología , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/genética , Germinación/efectos de los fármacos , Semillas/microbiología , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos
6.
Appl Microbiol Biotechnol ; 108(1): 405, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958755

RESUMEN

This study investigated the potential of endophytic fungi to produce paclitaxel (Taxol®), a potent anticancer compound widely employed in chemotherapy. This research aimed to identify, confirm, and characterize endophytic fungi capable of paclitaxel (PTX) production and assess their paclitaxel yield. Additionally, it aimed to investigate factors influencing paclitaxel production. A total of 100 endophytic fungal isolates were collected and identified from the roots of Artemisia judaica. Aspergillus fumigatiaffinis exhibited the highest PTX production (26.373 µg L-1) among the isolated endophytic fungi. The strain was identified as A. fumigatiaffinis (Accession No. PP235788.1). Molecular identification confirmed its novelty, representing the first report of PTX production by A. fumigatiaffinis, an endophyte of Artemisia judaica. Optimization through full factorial design of experiments (DOE) and response surface methodology (RSM) significantly enhanced PTX production to 110.23 µg L-1 from 1 g of dry weight of the fungal culture under optimal conditions of pH 8.0, 150 µg L-1 becozyme supplementation, and 18 days of fermentation in potato dextrose broth. The presence of paclitaxel was confirmed using thin layer chromatography, high performance liquid chromatography, and gas chromatography-mass spectrometry. These findings maximize the role of endophytic fungus to produce a secondary metabolite that might be able to replace the chemically produced PTX and gives an opportunity to provide a sustainable source of PTX eco-friendly at high concentrations. KEY POINTS: • Endophytic fungi, like A. fumigatiaffinis, show promise for eco-friendly paclitaxel production • Optimization strategies boost paclitaxel yield significantly, reaching 110.23 µg L -1 • Molecular identification confirms novelty, offering a sustainable PTX source.


Asunto(s)
Aspergillus , Endófitos , Fermentación , Paclitaxel , Paclitaxel/biosíntesis , Aspergillus/metabolismo , Aspergillus/genética , Endófitos/metabolismo , Endófitos/genética , Endófitos/aislamiento & purificación , Endófitos/clasificación , Raíces de Plantas/microbiología , Medios de Cultivo/química , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Líquida de Alta Presión
7.
Microbiologyopen ; 13(4): e1425, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987999

RESUMEN

Pigments provide a simple means to rapidly visually ascertain the quantities or presence of specific microbes in a complex community. The selection of pigment-producing colonies that are simple to differentiate from common colony phenotypes provides a high degree of certainty for the identity of pigment-tagged strains. Successful employment of pigment production is dependent on various intrinsic factors related to proper levels of gene expression and pigment production that are not always easy to predict and vary within each microbe. We have constructed a simple transposon system that incorporates the genes for the production of deoxyviolacein, a pigment produced from intracellular reserves of the amino acid tryptophan, to randomly insert these genes throughout the genome. This tool allows the user to select from many thousands of potential sites throughout a bacterial genome for an ideal location to generate the desired amount of pigment. We have applied this system to a small selection of endophytes and other model bacteria to differentiate these strains from complex communities and confirm their presence after several weeks in natural environments. We provide two examples of applications using the pigments to trace strains following introduction into plant tissues or to produce a reporter strain for extracellular nitrogen compound sensing. We recognize that this tool could have far broader utility in other applications and microbes, and describe the methodology for use by the greater scientific community.


Asunto(s)
Elementos Transponibles de ADN , Pigmentos Biológicos , Elementos Transponibles de ADN/genética , Pigmentos Biológicos/metabolismo , Mutagénesis Insercional/métodos , Vectores Genéticos/genética , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Triptófano/metabolismo , Endófitos/genética , Endófitos/metabolismo
8.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004720

RESUMEN

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Asunto(s)
Planta del Astrágalo , Microbiota , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Planta del Astrágalo/microbiología , Planta del Astrágalo/metabolismo , Bacterias Fijadoras de Nitrógeno/metabolismo , Bacterias Fijadoras de Nitrógeno/genética , Saponinas/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Metabolómica , Arthrobacter/metabolismo , Arthrobacter/genética , Endófitos/metabolismo , Endófitos/genética , Rhizobium/metabolismo
9.
J Agric Food Chem ; 72(28): 15801-15810, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38962874

RESUMEN

Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 µg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 µM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.


Asunto(s)
Benzopiranos , Proteínas Fúngicas , Familia de Multigenes , Pigmentos Biológicos , Talaromyces , Talaromyces/genética , Talaromyces/metabolismo , Talaromyces/química , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Humanos , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Línea Celular Tumoral
10.
Sci Rep ; 14(1): 12950, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839805

RESUMEN

Endophytes have been shown to promote plant growth and health. In the present study, a Bacillus velezensis CH1 (CH1) strain was isolated and identified from high-quality oats, which was capable of producing indole-3-acetic acid (IAA) and strong biofilms, and capabilities in the nitrogen-fixing and iron carriers. CH1 has a 3920 kb chromosome with 47.3% GC content and 3776 code genes. Compared genome analysis showed that the largest proportion of the COG database was metabolism-related (44.79%), and 1135 out of 1508 genes were associated with the function "biosynthesis, transport, and catabolism of secondary metabolites." Furthermore, thirteen gene clusters had been identified in CH1, which were responsible for the synthesis of fifteen secondary metabolites that exhibit antifungal and antibacterial properties. Additionally, the strain harbors genes involved in plant growth promotion, such as seven putative genes for IAA production, spermidine and polyamine synthase genes, along with multiple membrane-associated genes. The enrichment of these functions was strong evidence of the antimicrobial properties of strain CH1, which has the potential to be a biofertilizer for promoting oat growth and disease resistance.


Asunto(s)
Avena , Bacillus , Ácidos Indolacéticos , Bacillus/genética , Bacillus/metabolismo , Bacillus/aislamiento & purificación , Avena/microbiología , Avena/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Biopelículas/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fijación del Nitrógeno , Filogenia , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/genética , Genoma Bacteriano
11.
Fungal Biol ; 128(4): 1876-1884, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876540

RESUMEN

The endophytic fungus Chaetomium nigricolor culture filtrate's hexane extract was used to identify a cytotoxic very long-chain fatty acid. Based on multiple spectroscopic investigations, the structure of the compound was predicted to be an unsaturated fatty acid, Nonacosenoic acid (NA). Using the MTT assay, the compound's cytotoxic potential was evaluated against MCF-7, A-431, U-251, and HEK-293 T cells. The compound was moderately cytotoxic to breast carcinoma cell line, MCF-7 cells and negligibly cytotoxic to non-cancerous cell line HEK-293 T cells. The compound exhibited mild cytotoxic activity against A-431 and U-251 cells. The compound also induced ROS generation and mitochondrial depolarization in MCF-7 cells when assessed via the NBT and JC-1 assays, respectively. This is the first report on the production of nonacosenoic acid from the endophytic fungus Chaetomium nigricolor and the assessment of its bioactivity.


Asunto(s)
Chaetomium , Endófitos , Ácidos Grasos Insaturados , Chaetomium/química , Humanos , Endófitos/química , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Ácidos Grasos Insaturados/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Tallos de la Planta/microbiología , Tallos de la Planta/química , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular
12.
Appl Microbiol Biotechnol ; 108(1): 382, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896329

RESUMEN

Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by rising global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to meet the increasing demand without affecting the source plant's existence. Currently, another strategy to increase camptothecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT production can be improved . KEY POINTS: • Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit DNA topoisomerase I. • Plants and endophytes offer a potential approach for camptothecin production. • Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production.


Asunto(s)
Biotecnología , Camptotheca , Camptotecina , Endófitos , Camptotecina/biosíntesis , Biotecnología/métodos , Endófitos/metabolismo , Endófitos/genética , Camptotheca/metabolismo , Antineoplásicos Fitogénicos/biosíntesis , Humanos
13.
Molecules ; 29(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38930923

RESUMEN

Endophytic microorganisms contribute significantly to water bioremediation by enhancing pollutant degradation and supporting aquatic plant health and resilience by releasing bioactive compounds and enzymes. These microorganisms inhabit plant tissues without causing disease or any noticeable symptoms. Endophytes effectively aid in eliminating contaminants from water systems. Nanoparticles serve as potent enhancers in bioremediation processes, augmenting the efficiency of pollutant degradation by increasing surface area and bioavailability, thereby improving the efficacy and rate of remediation. Their controlled nutrient release and ability to stabilize endophytic colonization further contribute to the enhanced and sustainable elimination of contaminated environments. The synergistic effect of endophytes and nanoparticles in water remediation has been widely explored in recent studies, revealing compelling outcomes. Water pollution poses significant threats to human health, ecosystems, and economies; hence, the sixth global goal of the Sustainable Development Agenda 2030 of the United Nations aims to ensure the availability and sustainable management of water resources, recognizing their crucial importance for current and future generations. Conventional methods for addressing water pollution exhibit several limitations, including high costs, energy-intensive processes, the production of hazardous by-products, and insufficient effectiveness in mitigating emerging pollutants such as pharmaceuticals and microplastics. Noticeably, there is an inability to effectively remove various types of pollutants, thus resulting in incomplete purification cycles. Nanoparticle-enhanced water bioremediation offers an innovative, eco-friendly alternative for degrading contaminants. A growing body of research has shown that integrating endophytic microorganisms with nanoparticles for water bioremediation is a potent and viable alternative. This review examines the potential of using endophytic microorganisms and nanoparticles to enhance water remediation, exploring their combined effects and applications in water purification. The paper also provides an overview of synthetic methods for producing endophyte-nanoparticle composites to optimize their remediation capabilities in aqueous environments. The final section of the review highlights the constraints related to integrating endophytes with nanoparticles.


Asunto(s)
Biodegradación Ambiental , Endófitos , Nanopartículas , Nanopartículas/química , Endófitos/metabolismo , Purificación del Agua/métodos , Contaminantes Químicos del Agua , Humanos
14.
Toxins (Basel) ; 16(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38922168

RESUMEN

Claviceptaceous endophytic fungi in the genus Epichloë mostly form a symbiotic relationship with cool-season grasses. Epichloë spp. are capable of producing bioactive alkaloids such as peramines, lolines, ergot alkaloids, and indole-diterpenes, which protect the host plant from herbivory by animals, insects, and nematodes. The host also benefits from enhanced tolerance to abiotic stresses, such as salt, drought, waterlogging, cold, heavy metals, and low nitrogen stress. The bioactive alkaloids produced can have both direct and indirect effects towards plant parasitic nematodes. Direct interaction with nematodes' motile stages can cause paralysis (nematostatic effect) or death (nematicidal effect). Indirectly, the metabolites may induce host immunity which inhibits feeding and subsequent nematode development. This review highlights the different mechanisms through which this interaction and the metabolites produced have been explored in the suppression of plant parasitic nematodes and also how the specific interactions between different grass genotypes and endophyte strains result in variable suppression of different nematode species. An understanding of the different grass-endophyte interactions and their successes and failures in suppressing various nematode species is essential to enable the proper selection of grass-endophyte combinations to identify the alkaloids produced, concentrations required, and determine which nematodes are sensitive to which specific alkaloids.


Asunto(s)
Alcaloides , Endófitos , Nematodos , Poaceae , Animales , Alcaloides/farmacología , Endófitos/metabolismo , Poaceae/parasitología , Nematodos/efectos de los fármacos , Epichloe/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología
15.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831110

RESUMEN

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Asunto(s)
Bacillus subtilis , Endófitos , Raíces de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/aislamiento & purificación , Bacillus subtilis/metabolismo , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/genética , Endófitos/clasificación , Rosmarinus/química , Rosmarinus/microbiología , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Fusarium/crecimiento & desarrollo , Fusarium/genética , Fusarium/metabolismo , Microbiología del Suelo , Desarrollo de la Planta , Germinación , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crecimiento & desarrollo , Rhizoctonia/efectos de los fármacos , Fijación del Nitrógeno , Fosfatos/metabolismo
16.
Curr Microbiol ; 81(7): 209, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834921

RESUMEN

The metabolomic and genomic characterization of an endophytic Bacillus safensis Ni7 was carried out in this study. This strain has previously been isolated from the xerophytic plant Nerium indicum L. and reported to enhance the drought tolerance in Capsicum annuum L. seedlings. The effects of drought stress on the morphology, biofilm production, and metabolite production of B. safensis Ni7 are analyzed in the current study. From the results obtained, the organism was found to have multiple strategies such as aggregation and clumping, robust biofilm production, and increased production of surfactin homologues under the drought induced condition when compared to non-stressed condition. Further the whole genome sequencing (WGS) based analysis has demonstrated B. safensis Ni7 to have a genome size of 3,671,999 bp, N50 value of 3,527,239, and a mean G+C content of 41.58%. Interestingly the organism was observed to have the presence of various stress-responsive genes (13, 20U, 16U,160, 39, 17M, 18, 26, and ctc) and genes responsible for surfactin production (srfAA, srfAB, srfAC, and srfAD), biofilm production (epsD, epsE, epsF, epsG, epsH, epsI, epsK, epsL, epsM, epsN, and pel), chemotaxis (cheB_1, cheB_2, cheB_3, cheW_1, cheW_2 cheR, cheD, cheC, cheA, cheY, cheV, and cheB_4), flagella synthesis (flgG_1, flgG_2, flgG_3, flgC, and flgB) as supportive to the drought tolerance. Besides these, the genes responsible for plant growth promotion (PGP), including the genes for nitrogen (nasA, nasB, nasC, nasD, and nasE) and sulfur assimilation (cysL_1&L_2, cysI) and genes for phosphate solubilization (phoA, phoP_1& phoP_2, and phoR) could also be predicted. Along with the same, the genes for catalase, superoxide dismutase, protein homeostasis, cellular fitness, osmoprotectants production, and protein folding could also be predicted from its WGS data. Further pan-genome analysis with plant associated B. safensis strains available in the public databases revealed B. safensis Ni7 to have the presence of a total of 5391 gene clusters. Among these, 3207 genes were identified as core genes, 954 as shell genes and 1230 as cloud genes. This variation in gene content could be taken as an indication of evolution of strains of Bacillus safensis as per specific conditions and hence in the case of B. safensis Ni7 its role in habitat adaptation of plant is well expected. This diversity in endophytic bacterial genes may attribute its role to support the plant system to cope up with stress conditions. Overall, the study provides genomic evidence on Bacillus safensis Ni7 as a stress alleviating microbial partner in plants.


Asunto(s)
Bacillus , Biopelículas , Sequías , Endófitos , Genoma Bacteriano , Estrés Fisiológico , Endófitos/genética , Endófitos/metabolismo , Endófitos/fisiología , Bacillus/genética , Bacillus/metabolismo , Bacillus/fisiología , Biopelículas/crecimiento & desarrollo , Metabolómica , Secuenciación Completa del Genoma , Genómica , Composición de Base , Capsicum/microbiología
17.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856763

RESUMEN

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Asunto(s)
Atractylodes , Endófitos , Perfilación de la Expresión Génica , Enfermedades de las Plantas , Raíces de Plantas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiología , Atractylodes/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Endófitos/genética , Endófitos/metabolismo , Endófitos/clasificación , Endófitos/fisiología , Endófitos/aislamiento & purificación , Transcriptoma , Fusarium/genética , Fusarium/fisiología , China , ARN Ribosómico 16S/genética
18.
Fitoterapia ; 176: 106053, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838828

RESUMEN

Biotransformation of ursane-type triterpenoid ilexgenin A by endophytic fungi Lasiodiplodia sp. MQD-4 and Pestalotiopsis sp. ZZ-1, isolated from Ilex pubescences and Callicarpa kwangtungensis respectively, was investigated for the first time. Six previously undescribed metabolites (1-6) with 23-norursane triterpenoids skeleton were isolated and their structures were unambiguously established by the analysis of spectroscopic data and single-crystal X-ray crystallographic experiments. Decarboxylation, oxidation, and hydroxylation reactions were observed on the triterpenoid skeleton. Especially, the decarboxylation of C-23 provided definite evidence to understand the biogenetic process of 23-norursane triterpenoids. Moreover, the qualitative analysis of the extract of I. pubescences showed metabolites 1, 3, 4, and 6 could be detected in the originated plant, indicating biotransformation by endophytic fungi is a practical strategy for the isolation of novel natural products. Finally, all isolates were evaluated for the protective activities against H2O2-induced HUVECs dysfunction in vitro. Compound 5 could improve the viability of endothelial cells and decrease the level of intracellular ROS.


Asunto(s)
Biotransformación , Endófitos , Células Endoteliales de la Vena Umbilical Humana , Ilex , Triterpenos , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Triterpenos/metabolismo , Endófitos/química , Endófitos/metabolismo , Estructura Molecular , Humanos , Ilex/microbiología , Ascomicetos/química , Ascomicetos/metabolismo , China
19.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892244

RESUMEN

Endophytic fungi are present in every plant, and crops are no exception. There are more than 50,000 edible plant species on the planet, but only 15 crops provide 90 percent of the global energy intake, and "the big four"-wheat, rice, maize and potato-are staples for about 5 billion people. Not only do the four staple crops contribute to global food security, but the endophytic fungi within their plant tissues are complex ecosystems that have been under scrutiny. This review presents an outline of the endophytic fungi and their secondary metabolites in four staple crops: wheat, rice, maize and potato. A total of 292 endophytic fungi were identified from the four major crops, with wheat having the highest number of 157 endophytic fungi. Potato endophytic fungi had the highest number of secondary metabolites, totaling 204 compounds, compared with only 23 secondary metabolites from the other three crops containing endophytic fungi. Some of the compounds are those with specific structural and pharmacological activities, which may be beneficial to agrochemistry and medicinal chemistry.


Asunto(s)
Productos Agrícolas , Endófitos , Hongos , Metabolismo Secundario , Endófitos/metabolismo , Productos Agrícolas/microbiología , Hongos/metabolismo , Triticum/microbiología , Zea mays/microbiología , Oryza/microbiología , Solanum tuberosum/microbiología
20.
Food Microbiol ; 122: 104551, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839219

RESUMEN

Brown rot, caused by Monilinia fructicola, is considered one of the devasting diseases of pre-harvest and post-harvest peach fruits, restricting the yield and quality of peach fruits and causing great economic losses to the peach industry every year. Presently, the management of the disease relies heavily on chemical control. In the study, we demonstrated that the volatile organic compounds (VOCs) of endophyte bacterial Pseudomonas protegens QNF1 inhibited the mycelial growth of M. fructicola by 95.35% compared to the control, thereby reducing the brown rot on postharvest fruits by 98.76%. Additionally, QNF1 VOCs severely damaged the mycelia of M. fructicola. RNA-seq analysis revealed that QNF1 VOCs significantly repressed the expressions of most of the genes related to pathogenesis (GO:0009405) and integral component of plasma membrane (GO:0005887), and further analysis revealed that QNF1 VOCs significantly altered the expressions of the genes involved in various metabolism pathways including Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. The findings of the study indicated that QNF1 VOCs displayed substantial control efficacy by disrupting the mycelial morphology of M. fructicola, weakening its pathogenesis, and causing its metabolic disorders. The study provided a potential way and theoretical support for the management of the brown rot of peach fruits.


Asunto(s)
Ascomicetos , Frutas , Enfermedades de las Plantas , Prunus persica , Pseudomonas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Prunus persica/microbiología , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pseudomonas/genética , Pseudomonas/metabolismo , Ascomicetos/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/genética , Endófitos/genética , Endófitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA