Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
BMC Ecol Evol ; 24(1): 99, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026190

RESUMEN

BACKGROUND: Inbreeding and relationship coefficients are essential for conservation and breeding programs. Whether dealing with a small conserved population or a large commercial population, monitoring the inbreeding rate and designing mating plans that minimize the inbreeding rate and maximize the effective population size is important. Free, open-source, and efficient software may greatly contribute to conservation and breeding programs and help students and researchers. Efficient methods exist for calculating inbreeding coefficients. Therefore, an efficient way of calculating the numerator relationship coefficients is via the inbreeding coefficients. i.e., the relationship coefficient between parents is twice the inbreeding coefficient of their progeny. A dummy progeny is introduced where no progeny exists for a pair of individuals. Calculating inbreeding coefficients is very fast, and finding whether a pair of individuals has a progeny and picking one from multiple progenies is computationally more demanding. Therefore, the R package introduces a dummy progeny for any pair of individuals whose relationship coefficient is of interest, whether they have a progeny or not. RESULTS: Runtime and peak memory usage were benchmarked for calculating relationship coefficients between two sets of 250 and 800 animals (200,000 dummy progenies) from a pedigree of 2,721,252 animals. The program performed efficiently (200,000 relationship coefficients, which involved calculating 2,721,252 + 200,000 inbreeding coefficients) within 3:45 (mm:ss). Providing the inbreeding coefficients (for real animals), the runtime was reduced to 1:08. Furthermore, providing the diagonal elements of D in A = TDT ' (d), the runtime was reduced to 54s. All the analyses were performed on a machine with a total memory size of 1 GB. CONCLUSIONS: The R package FnR is free and open-source software with implications in conservation and breeding programs. It proved to be time and memory efficient for large populations and many dummy progenies. Calculation of inbreeding coefficients can be resumed for new animals in the pedigree. Thus, saving the latest inbreeding coefficient estimates is recommended. Calculation of d coefficients (from scratch) was very fast, and there was limited value in storing those for future use.


Asunto(s)
Endogamia , Programas Informáticos , Endogamia/métodos , Animales , Linaje , Masculino , Femenino
2.
Genes (Basel) ; 12(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946921

RESUMEN

Herein, the genetic diversity of the local Prestice Black-Pied pig breed was assessed by the simultaneous analysis of the pedigree and single nucleotide polymorphism (SNP) data. The information about sire line, dam, date of birth, sex, breeding line, and herd for 1971 individuals was considered in the pedigree analysis. The SNP analysis (n = 181) was performed using the Illumina PorcineSNP60 BeadChip kit. The quality of pedigree and SNPs and the inbreeding coefficients (F) and effective population size (Ne) were evaluated. The correlations between inbreeding based on the runs of homozygosity (FROH) and pedigree (FPED) were also calculated. The average FPED for all animals was 3.44%, while the FROH varied from 10.81% for a minimum size of 1 Mbp to 3.98% for a minimum size of 16 Mbp. The average minor allele frequency was 0.28 ± 0.11. The observed and expected within breed heterozygosities were 0.38 ± 0.13 and 0.37 ± 0.12, respectively. The Ne, obtained using both the data sources, reached values around 50 animals. Moderate correlation coefficients (0.49-0.54) were observed between FPED and FROH. It is necessary to make decisions that stabilize the inbreeding rate in the long-term using optimal contribution selection based on the available SNP data.


Asunto(s)
Variación Genética/genética , Polimorfismo de Nucleótido Simple/genética , Porcinos/genética , Animales , Frecuencia de los Genes/genética , Genómica/métodos , Genotipo , Homocigoto , Endogamia/métodos , Linaje , Densidad de Población
3.
PLoS One ; 16(10): e0248087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34695128

RESUMEN

In the present study, GeneSeek GGP-LDv4 33k single nucleotide polymorphism chip was used to detect runs of homozygosity (ROH) in eight Italian beef cattle breeds, six breeds with distribution limited to Tuscany (Calvana, Mucca Pisana, Pontremolese) or Sardinia (Sarda, Sardo Bruna and Sardo Modicana) and two cosmopolitan breeds (Charolais and Limousine). ROH detection analyses were used to estimate autozygosity and inbreeding and to identify genomic regions with high frequency of ROH, which might reflect selection signatures. Comparative analysis among breeds revealed differences in length and distribution of ROH and inbreeding levels. The Charolais, Limousine, Sarda, and Sardo Bruna breeds were found to have a high frequency of short ROH (~ 15.000); Calvana and Mucca Pisana presented also runs longer than 16 Mbp. The highest level of average genomic inbreeding was observed in Tuscan breeds, around 0.3, while Sardinian and cosmopolitan breeds showed values around 0.2. The population structure and genetic distances were analyzed through principal component and multidimensional scaling analyses, and resulted in a clear separation among the breeds, with clusters related to productive purposes. The frequency of ROH occurrence revealed eight breed-specific genomic regions where genes of potential selective and conservative interest are located (e.g. MYOG, CHI3L1, CHIT1 (BTA16), TIMELESS, APOF, OR10P1, OR6C4, OR2AP1, OR6C2, OR6C68, CACNG2 (BTA5), COL5A2 and COL3A1 (BTA2)). In all breeds, we found the largest proportion of homozygous by descent segments to be those that represent inbreeding events that occurred around 32 generations ago, with Tuscan breeds also having a significant proportion of segments relating to more recent inbreeding.


Asunto(s)
Bovinos/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Genoma/genética , Genómica/métodos , Genotipo , Homocigoto , Endogamia/métodos , Italia
4.
PLoS Genet ; 17(7): e1009665, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34280184

RESUMEN

Wright's inbreeding coefficient, FST, is a fundamental measure in population genetics. Assuming a predefined population subdivision, this statistic is classically used to evaluate population structure at a given genomic locus. With large numbers of loci, unsupervised approaches such as principal component analysis (PCA) have, however, become prominent in recent analyses of population structure. In this study, we describe the relationships between Wright's inbreeding coefficients and PCA for a model of K discrete populations. Our theory provides an equivalent definition of FST based on the decomposition of the genotype matrix into between and within-population matrices. The average value of Wright's FST over all loci included in the genotype matrix can be obtained from the PCA of the between-population matrix. Assuming that a separation condition is fulfilled and for reasonably large data sets, this value of FST approximates the proportion of genetic variation explained by the first (K - 1) principal components accurately. The new definition of FST is useful for computing inbreeding coefficients from surrogate genotypes, for example, obtained after correction of experimental artifacts or after removing adaptive genetic variation associated with environmental variables. The relationships between inbreeding coefficients and the spectrum of the genotype matrix not only allow interpretations of PCA results in terms of population genetic concepts but extend those concepts to population genetic analyses accounting for temporal, geographical and environmental contexts.


Asunto(s)
Variación Genética/genética , Genética de Población/métodos , Análisis de Componente Principal/métodos , Animales , Consanguinidad , Genoma , Genómica , Genotipo , Humanos , Endogamia/métodos , Modelos Genéticos , Modelos Teóricos
5.
Genes (Basel) ; 12(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207101

RESUMEN

Inbreeding depression has been widely documented for livestock and other animal and plant populations. Inbreeding is generally expected to have a stronger unfavorable effect on fitness traits than on other traits. Traditionally, the degree of inbreeding depression in livestock has been estimated as the slope of the linear regression of phenotypic values on pedigree-based inbreeding coefficients. With the increasing availability of SNP-data, pedigree inbreeding can now be replaced by SNP-based measures. We performed a meta-analysis of 154 studies, published from 1990 to 2020 on seven livestock species, and compared the degree of inbreeding depression (1) across different trait groups, and (2) across different pedigree-based and SNP-based measures of inbreeding. Across all studies and traits, a 1% increase in pedigree inbreeding was associated with a median decrease in phenotypic value of 0.13% of a trait's mean, or 0.59% of a trait's standard deviation. Inbreeding had an unfavorable effect on all sorts of traits and there was no evidence for a stronger effect on primary fitness traits (e.g., reproduction/survival traits) than on other traits (e.g., production traits or morphological traits). p-values of inbreeding depression estimates were smaller for SNP-based inbreeding measures than for pedigree inbreeding, suggesting more power for SNP-based measures. There were no consistent differences in p-values for percentage of homozygous SNPs, inbreeding based on runs of homozygosity (ROH) or inbreeding based on a genomic relationship matrix. The number of studies that directly compares these different measures, however, is limited and comparisons are furthermore complicated by differences in scale and arbitrary definitions of particularly ROH-based inbreeding. To facilitate comparisons across studies in future, we provide the dataset with inbreeding depression estimates of 154 studies and stress the importance of always reporting detailed information (on traits, inbreeding coefficients, and models used) along with inbreeding depression estimates.


Asunto(s)
Aptitud Genética , Endogamia/métodos , Ganado/genética , Animales , Homocigoto , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
6.
Sci Rep ; 11(1): 13972, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234221

RESUMEN

High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.


Asunto(s)
Canales de Calcio Tipo R/deficiencia , Canales de Calcio Tipo T/genética , Proteínas de Transporte de Catión/deficiencia , Genotipo , Endogamia , Patrón de Herencia , Herencia Multifactorial , Mutación , Animales , Femenino , Endogamia/métodos , Masculino , Ratones , Fenotipo
7.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34148873

RESUMEN

Rice grain shape and nutritional quality traits have high economic value for commercial production of rice and largely determine the market price, besides influencing the global food demand for high-quality rice. Detection, mapping and exploitation of quantitative trait loci (QTL) associated with kernel elongation and grain quality in Basmati rice is considered as an efficient strategy for improving the kernel elongation and grain quality trait in rice varieties. Genetic information in rice for most of these traits is scanty and needed interventions through the use of molecular markers. A recombinant inbred lines (RIL) population consisting of 130 lines generated from the cross involving Basmati 370, a superior quality Basmati variety and Pusa Basmati 1121, a Basmati derived variety were used to map the QTLs for 9 important grain quality and yield related traits. Correlation studies showed that various components of yield show a significant positive relationship with grain yield. A genetic map was constructed using 70 polymorphic simple sequence repeat (SSR) markers spanning a genetic distance of 689.3 cM distributed over 12 rice chromosomes. Significant variation was observed and showed transgressive segregation for grain quality traits in RIL population. A total of 20 QTLs were identified associated with nine yield and quality traits. Epistatic interactions were also identified for grain quality related traits indicating complex genetic nature inheritance. Therefore, the identified QTLs and flanking marker information could be utilized in the marker-assisted selection to improve kernel elongation and nutritional grain quality traits in rice varieties.


Asunto(s)
Grano Comestible/genética , Epistasis Genética , Genoma de Planta , Oryza/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cruzamientos Genéticos , Grano Comestible/anatomía & histología , Grano Comestible/clasificación , Marcadores Genéticos , Endogamia/métodos , Repeticiones de Microsatélite , Oryza/anatomía & histología , Oryza/clasificación , Fenotipo , Fitomejoramiento/métodos , Selección Genética
8.
Genes (Basel) ; 12(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069791

RESUMEN

In the North Eastern Himalayan region (NEHR) of India, maize is an important food crop. The local people cultivate the maize landraces and consume them as food. However, these landraces are deficient in ß-carotene content. Thus, we aimed to incorporate the crtRB1 gene from UMI285ß+ into the genetic background of the NEHR maize landrace, Yairipok Chujak (CAUM66), and thereby enhance the ß-carotene content through marker-assisted backcrossing (MABC). In this regard, we backcrossed and screened BC1F1 and BC2F1 plants possessing the heterozygous allele for crtRB1 and then screened with 106 polymorphic simple sequence repeat (SSR) markers. The plants having maximum recurrent parent genome recovery (RPGR) were selected in each generation and selfed to produce BC2F2 seeds. In the BC2F2 generation, four plants (CAUM66-54-9-12-2, CAUM66-54-9-12-11, CAUM66-54-9-12-13, and CAUM66-54-9-12-24) having homozygous crtRB1-favorable allele with maximum RPGR (86.74-90.16%) were selected and advanced to BC2F3. The four selected plants were selfed to produce BC2F3 and then evaluated for agronomic traits and ß-carotene content. The agronomic performance of the four lines was similar (78.83-99.44%) to that of the recurrent parent, and ß-carotene content (7.541-8.711 µg/g) was on par with the donor parent. Our study is the first to improve the ß-carotene content in NEHR maize landrace through MABC. The newly developed lines could serve as potential resources to further develop nutrition-rich maize lines and could provide genetic stock for use in breeding programs.


Asunto(s)
Genes de Plantas/genética , Marcadores Genéticos/genética , Zea mays/genética , beta Caroteno/genética , Alelos , Endogamia/métodos , India , Repeticiones de Microsatélite/genética , Fenotipo , Fitomejoramiento/métodos , Polimorfismo Genético/genética
9.
PLoS One ; 16(5): e0250608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33956807

RESUMEN

The German White-headed Mutton (GWM) sheep is a monitoring population believed to have been improved through crosses with other breeds, e.g., Texel (TXL) and French Berrichone du Cher (BDC). The primary aim of the study was to analyse genetic diversity and breed composition of GWM sheep. Furthermore, different measures of computing inbreeding from the runs of homozygosity (ROH) were investigated. Data for GWM consisted of pedigree information on 19,000 animals and 40,753 quality filtered SNPs on 46 individuals. Additionally, publicly available genotype data on 209 individuals belonging to nine sheep breeds were included in the analysis. Due to evenness of SNPs spacing and proportionality of the number of SNPs in each autosome to autosome length, a high correlation (rp = 0.99) was found between genomic inbreeding coefficients computed based on the length of ROH (FROH_L) and those computed relative to the number of SNPs in ROH (FROH_N). Total inbreeding was partitioned into values for individual chromosomes revealing the highest levels of inbreeding on chromosomes 1, 2 and 3. Correlations between the ROH-based inbreeding measures and pedigree inbreeding reached 0.82. The observed heterozygosity estimate in GWM was high (0.39), however, the breed suffered low level of effective population size (~50) from a genomic viewpoint. Moreover, effective number of founders (186), and effective number of ancestors (144) implied disequilibrium of founder contribution and a genetic bottleneck in the breed. Multidimensional scaling and network visualisation analyses revealed close connectedness of GWM to BDC and German Texel (GTX). A model-based admixture analysis consistently indicated the flow of genes from other breeds, particularly BDC to GWM. Our analyses highlight the mixed genetic background of GWM sheep and furthermore, suggest a close monitoring of the breed to consolidate its genetic diversity while averting further reduction in the effective population size.


Asunto(s)
Genómica/métodos , Homocigoto , Endogamia/métodos , Polimorfismo de Nucleótido Simple , Oveja Doméstica/genética , Animales , Femenino , Masculino , Linaje , Densidad de Población , Ovinos
10.
Genet Sel Evol ; 53(1): 42, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933002

RESUMEN

BACKGROUND: Genomic relationship matrices are used to obtain genomic inbreeding coefficients. However, there are several methodologies to compute these matrices and there is still an unresolved debate on which one provides the best estimate of inbreeding. In this study, we investigated measures of inbreeding obtained from five genomic matrices, including the Nejati-Javaremi allelic relationship matrix (FNEJ), the Li and Horvitz matrix based on excess of homozygosity (FL&H), and the VanRaden (methods 1, FVR1, and 2, FVR2) and Yang (FYAN) genomic relationship matrices. We derived expectations for each inbreeding coefficient, assuming a single locus model, and used these expectations to explain the patterns of the coefficients that were computed from thousands of single nucleotide polymorphism genotypes in a population of Iberian pigs. RESULTS: Except for FNEJ, the evaluated measures of inbreeding do not match with the original definitions of inbreeding coefficient of Wright (correlation) or Malécot (probability). When inbreeding coefficients are interpreted as indicators of variability (heterozygosity) that was gained or lost relative to a base population, both FNEJ and FL&H led to sensible results but this was not the case for FVR1, FVR2 and FYAN. When variability has increased relative to the base, FVR1, FVR2 and FYAN can indicate that it decreased. In fact, based on FYAN, variability is not expected to increase. When variability has decreased, FVR1 and FVR2 can indicate that it has increased. Finally, these three coefficients can indicate that more variability than that present in the base population can be lost, which is also unreasonable. The patterns for these coefficients observed in the pig population were very different, following the derived expectations. As a consequence, the rate of inbreeding depression estimated based on these inbreeding coefficients differed not only in magnitude but also in sign. CONCLUSIONS: Genomic inbreeding coefficients obtained from the diagonal elements of genomic matrices can lead to inconsistent results in terms of gain and loss of genetic variability and inbreeding depression estimates, and thus to misleading interpretations. Although these matrices have proven to be very efficient in increasing the accuracy of genomic predictions, they do not always provide a useful measure of inbreeding.


Asunto(s)
Endogamia/métodos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Porcinos/genética , Animales
11.
Genes (Basel) ; 12(3)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802830

RESUMEN

Traditionally, pedigree-based relationship coefficients were used to manage inbreeding and control inbreeding depression that occurs within populations. The extensive incorporation of genomic data in livestock breeding creates the opportunity to develop and implement methods to manage populations at the genomic level. Consequently, the realized proportion of the genome that two individuals share can be more accurately estimated instead of using pedigree information to estimate the expected proportion of shared alleles. To make use of this improvement, in this study we evaluated the genomic inbreeding measures in the Polish conserved cold-blooded horse population and compared the data with the traditional measures of inbreeding. Additionally, an ancestry fractions/proportions from Admixture software were tested as an estimate of lineage (ancestry coefficient) used for horses qualifying for the conservation program. The highest correlation of pedigree-based (FPED) and genomic inbreeding estimates was found for FROH (runs of homozygosity-based F coefficient) and FUNI (F coefficient based on the correlation between uniting gametes). FROH correlation with FPED tended to increase as the number of generations registered as pedigree increased. While lineage and gene contributions (Q) from Admixture software correlated, they showed poor direct compliance; hence, Q-value cannot be recommended as the estimate of pedigree-based lineage. All these findings suggest that the methods of genomics should be considered as an alternative or support in the analysis of population structure in conservative breeding that can help control inbreeding in rare horse populations.


Asunto(s)
Genómica/métodos , Caballos/clasificación , Endogamia/métodos , Animales , Conservación de los Recursos Naturales , Genotipo , Caballos/genética , Linaje , Polimorfismo de Nucleótido Simple
12.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853941

RESUMEN

Domestic dogs have experienced population bottlenecks, recent inbreeding, and strong artificial selection. These processes have simplified the genetic architecture of complex traits, allowed deleterious variation to persist, and increased both identity-by-descent (IBD) segments and runs of homozygosity (ROH). As such, dogs provide an excellent model for examining how these evolutionary processes influence disease. We assembled a dataset containing 4,414 breed dogs, 327 village dogs, and 380 wolves genotyped at 117,288 markers and data for clinical and morphological phenotypes. Breed dogs have an enrichment of IBD and ROH, relative to both village dogs and wolves, and we use these patterns to show that breed dogs have experienced differing severities of bottlenecks in their recent past. We then found that ROH burden is associated with phenotypes in breed dogs, such as lymphoma. We next test the prediction that breeds with greater ROH have more disease alleles reported in the Online Mendelian Inheritance in Animals (OMIA). Surprisingly, the number of causal variants identified correlates with the popularity of that breed rather than the ROH or IBD burden, suggesting an ascertainment bias in OMIA. Lastly, we use the distribution of ROH across the genome to identify genes with depletions of ROH as potential hotspots for inbreeding depression and find multiple exons where ROH are never observed. Our results suggest that inbreeding has played a large role in shaping genetic and phenotypic variation in dogs and that future work on understudied breeds may reveal new disease-causing variation.


Asunto(s)
Aptitud Genética/genética , Depresión Endogámica/genética , Patrón de Herencia/genética , Animales , Perros , Variación Genética/genética , Genoma/genética , Genotipo , Salud , Homocigoto , Endogamia/métodos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Selección Artificial/genética
13.
Genes (Basel) ; 12(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918718

RESUMEN

The aim of the conservation programme is to maintain the population size of endangered livestock breeds of less economic importance at a level that ensures the survival of the breed, the preservation of genetic diversity, and the preservation of as many pedigree lines as possible. The Polish Konik, a native Polish primitive-type horse breed and is one of the breeds included in such a programme in Poland. Presently, there are only 16 (of the 35 maternal lines known in 1962), some of which are endangered. We examined the genetic variability and structure of the Polish Konik maternal lines (176 individuals) on the basis of the pedigree data and 17 microsatellite markers (STRs) from parentage testing. The overall mean number of alleles was 7.647 (±0.411), the effective number of alleles was 3.935 (±0.271), the mean number of alleles for which the frequency was equal to or lower than 5% was 4.471 (±0.286), and the mean information index was 1.506 (±0.087). The structure of the population and admixture patterns were calculated with the Structure and Structure Harvester software. The structural analysis indicated three likely genetic clusters; as the most optimal K value was estimated as 3, with ∆K of 15.4188. The F-statistics results indicated a low level of inbreeding (average inbreeding coefficient FIT was 0.0188, coefficient of differentiation FST was 0.0304, and mean inbreeding index value FIS was -0.0119). Variability monitoring should be carried out in order to avoid inbreeding depression, while breeding strategies should be designed to prevent the decrease of genetic variability in the Polish horse breed and to sustain the active female lines.


Asunto(s)
Variación Genética , Genética de Población , Caballos/genética , Endogamia/métodos , Repeticiones de Microsatélite , Densidad de Población , Animales , Femenino , Masculino , Polonia
14.
PLoS One ; 16(2): e0245497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539427

RESUMEN

Malnutrition has emerged as one of the major health problems worldwide. Traditional yellow maize has low provitamin-A (proA) content and its genetic base in proA biofortification breeding program of subtropics is extremely narrow. To diversify the proA rich germplasm, 10 elite low proA inbreds were crossed with a proA rich donor (HP702-22) having mutant crtRB1 gene. The F2 populations derived from these crosses were genotyped using InDel marker specific to crtRB1. Severe marker segregation distortion was observed. Seventeen crtRB1 inbreds developed through marker-assisted pedigree breeding and seven inbreds generated using marker-assisted backcross breeding were characterized using 77 SSRs. Wide variation in gene diversity (0.08 to 0.79) and dissimilarity coefficient (0.28 to 0.84) was observed. The inbreds were grouped into three major clusters depicting the existing genetic diversity. The crtRB1-based inbreds possessed high ß-carotene (BC: 8.72µg/g), ß-cryptoxanthin (BCX: 4.58µg/g) and proA (11.01µg/g), while it was 2.35µg/g, 1.24µg/g and 2.97µg/g in checks, respectively. Based on their genetic relationships, 15 newly developed crtRB1-based inbreds were crossed with five testers (having crtRB1 gene) using line × tester mating design. 75 experimental hybrids with crtRB1 gene were evaluated over three locations. These experimental hybrids possessed higher BC (8.02µg/g), BCX (4.69µg/g), proA (10.37µg/g) compared to traditional hybrids used as check (BC: 2.36 µg/g, BCX: 1.53µg/g, proA: 3.13µg/g). Environment and genotypes × environment interaction had minor effects on proA content. Both additive and dominance gene action were significant for proA. The mean proportion of proA to total carotenoids (TC) was 44% among crtRB1-based hybrids, while 11% in traditional hybrids. BC was found to be positively correlated with BCX (r = 0.68) and proA (r = 0.98). However, no correlation was observed between proA and grain yield. Several hybrids with >10.0 t/ha grain yield with proA content >10.0 µg/g were identified. This is the first comprehensive study on development of diverse proA rich maize hybrids through marker-assisted pedigree breeding approach. The findings provides sustainable and cost-effective solution to alleviate vitamin-A deficiency.


Asunto(s)
Grano Comestible/química , Grano Comestible/genética , Endogamia/métodos , Fitomejoramiento/métodos , Provitaminas/análisis , Vitamina A/análisis , Zea mays/química , Zea mays/genética , Alelos , Carotenoides/análisis , Genes de Plantas , Genotipo , Desnutrición/dietoterapia , Proteínas de Plantas/genética , Polimorfismo Genético , Deficiencia de Vitamina A/dietoterapia , beta Caroteno/análisis
15.
PLoS One ; 16(1): e0232436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33449925

RESUMEN

The objective of this study was to investigate the genetic diversity of the Garfagnina (GRF) goat, a breed that currently risks extinction. For this purpose, 48 goats were genotyped with the Illumina CaprineSNP50 BeadChip and analyzed together with 214 goats belonging to 9 other Italian breeds (~25 goats/breed), whose genotypes were available from the AdaptMap project [Argentata (ARG), Bionda dell'Adamello (BIO), Ciociara Grigia (CCG), Di Teramo (DIT), Garganica (GAR), Girgentana (GGT), Orobica (ORO), Valdostana (VAL) and Valpassiria (VSS)]. Comparative analyses were conducted on i) runs of homozygosity (ROH), ii) admixture ancestries and iii) the accuracy of breed traceability via discriminant analysis on principal components (DAPC) based on cross-validation. ROH analyses was used to assess the genetic diversity of GRF, while admixture and DAPC to evaluate its relationship to the other breeds. For GRF, common ROH (more than 45% in GRF samples) was detected on CHR 12 at, roughly 50.25-50.94Mbp (ARS1 assembly), which spans the CENPJ (centromere protein) and IL17D (interleukin 17D) genes. The same area of common ROH was also present in DIT, while a broader region (~49.25-51.94Mbp) was shared among the ARG, CCG, and GGT. Admixture analysis revealed a small region of common ancestry from GRF shared by BIO, VSS, ARG and CCG breeds. The DAPC model yielded 100% assignment success for GRF. Overall, our results support the identification of GRF as a distinct native Italian goat breed. This work can contribute to planning conservation programmes to save GRF from extinction and will improve the understanding of the socio-agro-economic factors related with the farming of GRF.


Asunto(s)
Genoma/genética , Cabras/genética , Animales , Femenino , Genómica/métodos , Genotipo , Homocigoto , Endogamia/métodos , Italia , Masculino , Polimorfismo de Nucleótido Simple/genética , Densidad de Población
16.
Genet Sel Evol ; 53(1): 6, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407084

RESUMEN

BACKGROUND: For many years, breeders of companion animals have applied inbreeding or line breeding to transfer desirable genetic traits from parents to their offspring. Simultaneously, this resulted in a considerable spread of hereditary diseases and phenomena associated with inbreeding depression. RESULTS: Our cluster analysis of kinship and inbreeding coefficients suggests that the Thai or traditional Siamese cat could be considered as a subpopulation of the Siamese cat, which shares common ancestors, although they are considered as separate breeds. In addition, model-based cluster analysis could detect regional differences between Thai subpopulations. We show that by applying optimal contribution selection and simultaneously limiting the contributions by other breeds, the genetic diversity within subpopulations can be improved. CONCLUSION: In principle, the European mainland Thai cat population can achieve a genetic diversity of about 26 founder genome equivalents, a value that could potentially sustain a genetically diverse population. However, reaching such a target will be difficult in the absence of a supervised breeding program. Suboptimal solutions can be obtained by minimisation of kinships within regional subpopulations. Exchanging animals between different regions on a small scale might be already quite useful to reduce the kinship, by achieving a potential diversity of 23 founder genome equivalents. However, contributions by other breeds should be minimised to preserve the original Siamese gene pool.


Asunto(s)
Enfermedades de los Gatos/genética , Gatos/genética , Endogamia/métodos , Modelos Genéticos , Animales , Enfermedades de los Gatos/prevención & control , Polimorfismo Genético , Selección Artificial
17.
Sci Rep ; 11(1): 682, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436770

RESUMEN

Inbreeding can depress individuals' fitness traits and reduce population viability. However, studies that directly translate inbreeding depression on fitness traits into consequences for population viability, and further, into consequences for management choices, are lacking. Here, we estimated impacts of inbreeding depression (B, lethal equivalents) across life-history stages for an extinct-in-the-wild species, the sihek (Guam kingfisher, Todiramphus cinnamominus). We then projected population growth under different management alternatives with our B estimates incorporated, as well as without inbreeding depression (B = 0) or with a conventional default B. We found that inbreeding depression severely impacted multiple life-history stages, and directly translated into an effect on population viability under management alternatives. Simulations including our B estimates indicated rapid population decline, whereas projections without inbreeding depression or with default B suggested very gradual population decline. Further, our results demonstrate that incorporation of B across life-history stages can influence management decisions, as projections with our B estimates suggested a need to switch to increased breeding management to avoid species extinction and support wild releases. Our results demonstrate that magnitude of B across life-history stages can translate into demographic consequences, such that incorporation of multiple life-stage B into population models can be important for informed conservation management decision-making.


Asunto(s)
Conservación de los Recursos Naturales , Extinción Biológica , Depresión Endogámica , Endogamia/métodos , Fenotipo , Densidad de Población , Animales , Animales Salvajes , Aves , Demografía
18.
Sci Rep ; 10(1): 16308, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004874

RESUMEN

Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput genotyping method that relies on restriction enzymes to reduce genome complexity. GBS is being widely used for various genetic and breeding applications. In the present study, 2240 individuals from eight maize populations, including two association populations (AM), backcross first generation (BC1), BC1F2, F2, double haploid (DH), intermated B73 × Mo17 (IBM), and a recombinant inbred line (RIL) population, were genotyped using GBS. A total of 955,120 of raw data for SNPs was obtained for each individual, with an average genotyping error of 0.70%. The rate of missing genotypic data for these SNPs was related to the level of multiplex sequencing: ~ 25% missing data for 96-plex and ~ 55% for 384-plex. Imputation can greatly reduce the rate of missing genotypes to 12.65% and 3.72% for AM populations and bi-parental populations, respectively, although it increases total genotyping error. For analysis of genetic diversity and linkage mapping, unimputed data with a low rate of genotyping error is beneficial, whereas, for association mapping, imputed data would result in higher marker density and would improve map resolution. Because imputation does not influence the prediction accuracy, both unimputed and imputed data can be used for genomic prediction. In summary, GBS is a versatile and efficient SNP discovery approach for homozygous materials and can be effectively applied for various purposes in maize genetics and breeding.


Asunto(s)
Técnicas de Genotipaje/métodos , Fitomejoramiento/métodos , Análisis de Secuencia de ADN/métodos , Zea mays/genética , Estudio de Asociación del Genoma Completo , Endogamia/métodos , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética
19.
Sci Rep ; 10(1): 15993, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009476

RESUMEN

The mating of 77 heterozygous pairs (Cav3.2[+|-] x Cav3.2[+|-]) revealed a significant deviation of genotype distribution from Mendelian inheritance in weaned pups. The mating of 14 pairs (Cav3.2[-|-] female x Cav3.2[+|-] male) and 8 pairs (Cav3.2[+|-] female x Cav3.2[-|-] male) confirmed the significant reduction of deficient homozygous Cav3.2[-|-] pups, leading to the conclusion that prenatal lethality may occur, when one or both alleles, encoding the Cav3.2T-type Ca2+ channel, are missing. Also, the mating of 63 heterozygous pairs (Cav2.3[+|-] x Cav2.3[+|-]) revealed a significant deviation of genotype distribution from Mendelian inheritance in weaned pups, but only for heterozygous male mice, leading to the conclusion that compensation may only occur for Cav2.3[-|-] male mice lacking both alleles of the R-type Ca2+ channel. During the mating of heterozygous parents, the number of female mice within the weaned population does not deviate from the expected Mendelian inheritance. During prenatal development, both, T- and R-type Ca2+ currents are higher expressed in some tissues than postnatally. It will be discussed that the function of voltage-gated Ca2+ channels during prenatal development must be investigated in more detail, not least to understand devastative diseases like developmental epileptic encephalopathies (DEE).


Asunto(s)
Canales de Calcio Tipo R/fisiología , Canales de Calcio Tipo T/fisiología , Proteínas de Transporte de Catión/fisiología , Cromosomas/genética , Inestabilidad Genómica , Endogamia/métodos , Sitios de Carácter Cuantitativo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Curr Biol ; 30(17): R980-R981, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32898493

RESUMEN

Analyzing ancient DNA of the central Andes, Ringbauer and colleagues identify a markedly elevated rate of unions of closely related parents after ca. 1000 CE. This change of mating preferences sheds new light on a unique system of social organization based on ancestry ("ayllu") whereby within-group unions were preferred to facilitate sharing of resources.


Asunto(s)
ADN Antiguo/análisis , Endogamia/historia , Endogamia/métodos , Reproducción , Historia Antigua , Historia Medieval , Humanos , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA