Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738876

RESUMEN

Functional characterization of proteins requires them to be expressed and purified in substantial amounts with high purity to perform biochemical assays. The Fast Protein Liquid Chromatography (FPLC) system allows high-resolution separation of complex protein mixtures. By adjusting various parameters in FPLC, such as selecting the appropriate purification matrix, regulating the protein sample's temperature, and managing the sample's flow rate onto the matrix and the elution rate, it is possible to ensure the protein's stability and functionality. In this protocol, we will demonstrate the versatility of the FPLC system to purify 6X-His-tagged flap endonuclease 1 (FEN1) protein, produced in bacterial cultures. To improve protein purification efficiency, we will focus on multiple considerations, including proper column packing and preparation, sample injection using a sample loop, flow rate of sample application to the column, and sample elution parameters. Finally, the chromatogram will be analyzed to identify fractions containing high yields of protein and considerations for proper recombinant protein long-term storage. Optimizing protein purification methods is crucial for improving the precision and reliability of protein analysis.


Asunto(s)
Cromatografía de Afinidad , Cromatografía de Afinidad/métodos , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/aislamiento & purificación , Endonucleasas de ADN Solapado/metabolismo , Cromatografía Liquida/métodos , Histidina/química , Escherichia coli/genética , Escherichia coli/química , Escherichia coli/metabolismo , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
2.
Nucleic Acids Res ; 48(20): e117, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33051689

RESUMEN

Here, we characterized a flap endonuclease 1 (FEN1) plus hairpin DNA probe (hpDNA) system, designated the HpSGN system, for both DNA and RNA editing without sequence limitation. The compact size of the HpSGN system make it an ideal candidate for in vivo delivery applications. In vitro biochemical studies showed that the HpSGN system required less nuclease to cleave ssDNA substrates than the SGN system we reported previously by a factor of ∼40. Also, we proved that the HpSGN system can efficiently cleave different RNA targets in vitro. The HpSGN system cleaved genomic DNA at an efficiency of ∼40% and ∼20% in bacterial and human cells, respectively, and knocked down specific mRNAs in human cells at a level of ∼25%. Furthermore, the HpSGN system was sensitive to the single base mismatch at the position next to the hairpin both in vitro and in vivo. Collectively, this study demonstrated the potential of developing the HpSGN system as a small, effective, and specific editing tool for manipulating both DNA and RNA without sequence limitation.


Asunto(s)
Archaeoglobus fulgidus/enzimología , Endonucleasas de ADN Solapado/metabolismo , Edición Génica/métodos , Secuencias Invertidas Repetidas , Edición de ARN , Archaeoglobus fulgidus/genética , Disparidad de Par Base , ADN/química , Sondas de ADN/química , Sondas de ADN/genética , ADN de Cadena Simple , Escherichia coli/genética , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/aislamiento & purificación , Células HEK293 , Humanos , Técnicas In Vitro , Conformación de Ácido Nucleico , ARN/química , Especificidad por Sustrato
3.
J Chromatogr A ; 1621: 461051, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32268955

RESUMEN

The strength of the biotin/avidin interaction makes it an ideal tool for the purification of biotin-labeled proteins via avidin-coupled resin with high specificity and selectivity. Nevertheless, this tight binding comes at an extra cost of performing the elution step under denaturing conditions. Weakening the biotin/avidin interaction improves the elution conditions, but only to mild or harsh denaturing buffers with the drawback of reducing the specificity and selectivity of this interaction. Here, we present two chromatographic protein purification schemes that are well-suited for application under native conditions thus preserving the strength of the biotin/avidin interaction. In the first scheme, we introduce a biotin-labeled SUMO-tag to each of human flap endonuclease 1 and Escherichia coli replication termination protein Tus, and elute both proteins by performing on-resin cleavage using SUMO protease. In the second scheme, we immobilize biotin-labeled human proliferating cell nuclear antigen (PCNA) on the avidin-coupled resin and use the resulting resin as a tag-free affinity method to purify the PCNA-binding protein human DNA Ligase 1. Furthermore, we streamlined the protein biotinylation protocol by constructing a single plasmid expression system that ensures high level of expression and solubility for each of the target protein bearing the biotin-tag and the enzyme responsible for the in vivo biotinylation reaction. Both chromatographic schemes resulted in a high yield of pure proteins in their native form.


Asunto(s)
Avidina , Biotina , Cromatografía de Afinidad/métodos , Cromatografía/métodos , Proteínas/aislamiento & purificación , Biotinilación , ADN Ligasa (ATP)/aislamiento & purificación , Proteínas de Escherichia coli/aislamiento & purificación , Endonucleasas de ADN Solapado/aislamiento & purificación , Humanos , Plásmidos , Antígeno Nuclear de Célula en Proliferación , Proteínas/genética , Proteína SUMO-1
4.
Methods Mol Biol ; 1983: 207-224, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31087300

RESUMEN

Cellular proteins are modified by lysine acetylation wherein an acetyltransferase transfers an acetyl group from acetyl co enzyme A onto the e-amino group of lysine residues. This modification is extremely dynamic and can be reversed by a deacetylase that removes the acetyl group. Addition of acetyl group to the lysine residue neutralizes its positive charge, thereby functioning as a molecular switch in regulating the enzymatic functions of the protein, its stability, and it cellular localization. Since this modification is extremely dynamic within the cell, biochemical studies characterizing changes in protein function are imperative to understand how this modification alters protein function in a specific cellular pathway. This unit describes in detail expression and purification of a recombinant nuclease and acetyltransferase, in vitro acetylation of the recombinant protein and biochemical assays to study the changes in enzymatic activity of the in vitro acetylated nuclease.


Asunto(s)
Endonucleasas de ADN Solapado/metabolismo , Lisina/metabolismo , Acetilación , ADN/metabolismo , Pruebas de Enzimas/métodos , Endonucleasas de ADN Solapado/aislamiento & purificación , Humanos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/aislamiento & purificación , Factores de Transcripción p300-CBP/metabolismo
5.
Nat Commun ; 10(1): 2104, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068591

RESUMEN

Protein-induced fluorescence enhancement (PIFE) is a popular tool for characterizing protein-DNA interactions. PIFE has been explained by an increase in local viscosity due to the presence of the protein residues. This explanation, however, denies the opposite effect of fluorescence quenching. This work offers a perspective for understanding PIFE mechanism and reports the observation of a phenomenon that we name protein-induced fluorescence quenching (PIFQ), which exhibits an opposite effect to PIFE. A detailed characterization of these two fluorescence modulations reveals that the initial fluorescence state of the labeled mediator (DNA) determines whether this mediator-conjugated dye undergoes PIFE or PIFQ upon protein binding. This key role of the mediator DNA provides a protocol for the experimental design to obtain either PIFQ or PIFE, on-demand. This makes the arbitrary nature of the current experimental design obsolete, allowing for proper integration of both PIFE and PIFQ with existing bulk and single-molecule fluorescence techniques.


Asunto(s)
ADN/metabolismo , Colorantes Fluorescentes/química , Imagen Individual de Molécula/métodos , ADN/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/aislamiento & purificación , Endonucleasas de ADN Solapado/metabolismo , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado , Proteínas Virales/química , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo
6.
Nucleic Acids Res ; 38(21): 7611-25, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20660481

RESUMEN

The two endonucleases, Rad27 (yeast Fen1) and Dna2, jointly participate in the processing of Okazaki fragments in yeasts. Mus81-Mms4 is a structure-specific endonuclease that can resolve stalled replication forks as well as toxic recombination intermediates. In this study, we show that Mus81-Mms4 can suppress dna2 mutational defects by virtue of its functional and physical interaction with Rad27. Mus81-Mms4 stimulated Rad27 activity significantly, accounting for its ability to restore the growth defects caused by the dna2 mutation. Interestingly, Rad27 stimulated the rate of Mus81-Mms4 catalyzed cleavage of various substrates, including regressed replication fork substrates. The ability of Rad27 to stimulate Mus81-Mms4 did not depend on the catalytic activity of Rad27, but required the C-terminal 64 amino acid fragment of Rad27. This indicates that the stimulation was mediated by a specific protein-protein interaction between the two proteins. Our in vitro data indicate that Mus81-Mms4 and Rad27 act together during DNA replication and resolve various structures that can impede normal DNA replication. This conclusion was further strengthened by the fact that rad27 mus81 or rad27 mms4 double mutants were synergistically lethal. We discuss the significance of the interactions between Rad27, Dna2 and Mus81-Mms4 in context of DNA replication.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Endonucleasas/genética , Endonucleasas/aislamiento & purificación , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/aislamiento & purificación , Genes Letales , Cinética , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
7.
Nucleic Acids Res ; 36(14): 4699-707, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18628298

RESUMEN

Small looped mispairs are corrected by DNA mismatch repair. In addition, a distinct process called large loop repair (LLR) corrects heteroduplexes up to several hundred nucleotides in bacteria, yeast and human cells, and in cell-free extracts. Only some LLR protein components are known, however. Previous studies with neutralizing antibodies suggested a role for yeast DNA polymerase delta (Pol delta), RFC and PCNA in LLR repair synthesis. In the current study, biochemical fractionation studies identified FEN1 (Rad27) as another required LLR component. In the presence of purified FEN1, Pol delta, RFC and PCNA, repair occurred on heteroduplexes with loops ranging from 8 to 216 nt. Repair utilized a 5' nick, with correction directed to the nicked strand, irrespective of which strand contained the loop. In contrast, repair of a G/T mismatch occurred at low levels, suggesting specificity of the reconstituted system for looped mispairs. The presence of RPA enhanced reactivity on some looped substrates, but RPA was not required for activity. Although additional LLR factors remain to be identified, the excision and resynthesis steps of LLR from a 5' nick can be reconstituted in a purified system with FEN1 and Pol delta, together with PCNA and its loader RFC.


Asunto(s)
Reparación del ADN , Endonucleasas de ADN Solapado/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Extractos Celulares , Núcleo Celular/metabolismo , ADN Polimerasa III/metabolismo , Endonucleasas de ADN Solapado/análisis , Endonucleasas de ADN Solapado/aislamiento & purificación , Ácidos Nucleicos Heterodúplex/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
8.
Artículo en Inglés | MEDLINE | ID: mdl-18097100

RESUMEN

Flap endonuclease 1 (FEN1) is a structure-specific nuclease that removes the RNA/DNA primer associated with Okazaki fragments in DNA replication. Here, crystals of the complex between the catalytic domain of human FEN1 and a DNA product have been obtained. For efficient crystallization screening, a DNA-protein complex crystallization screening (DPCS) kit was designed based on commercial crystallization kits. The crystal was found to belong to space group P2(1), with unit-cell parameters a = 61.0, b = 101.3, c = 106.4 A, beta = 106.4 degrees. The asymmetric unit is predicted to contain two complexes in the crystallographic asymmetric unit. A diffraction data set was collected to a resolution of 2.75 A.


Asunto(s)
ADN/metabolismo , Endonucleasas de ADN Solapado/química , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/aislamiento & purificación , Endonucleasas de ADN Solapado/aislamiento & purificación , Endonucleasas de ADN Solapado/metabolismo , Humanos , Difracción de Rayos X
9.
Biochim Biophys Acta ; 1770(4): 527-42, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17188431

RESUMEN

We purified and characterized previously from Podospora anserina mitochondria an endonuclease, active on single-stranded, double-stranded and flap DNA, with RNAse H activity, named P49 according to the major 49 kDa band observed on SDS-PAGE. Edman sequencing allowed us to identify the corresponding gene called nuc49. Here we report the properties of the (His)-tagged NUC49 protein expressed in E. coli. We show that this protein does exhibit an endonuclease activity on plasmid DNA, circular recessed and flap M13 substrate with short protruding single strand. However, in contrast to the mt endonuclease purified fraction it does not present RNase H activity and does not cleave linear flap substrate. The activity differences between the protein expressed in E. coli and the mitochondrial endonuclease fraction previously described are discussed. NUC49 presents a strong homology with the S. pombe CDB4 curved DNA binding protein which belongs to a large family including the human cell cycle protein PA2G4 and is able to bind curved DNA. The results constitute the first description of a mitochondrial endonuclease activity associated to this family of proliferation associated homologous proteins. The function of this endonuclease either in recombination, repair or mt DNA rearrangements remains to be determined.


Asunto(s)
Proteínas de Unión al ADN/química , Endonucleasas de ADN Solapado/química , Proteínas Fúngicas/química , Mitocondrias/enzimología , Podospora/enzimología , Secuencia de Aminoácidos , Bacteriófago M13/metabolismo , Secuencia de Bases , Cationes/química , ADN Circular/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/aislamiento & purificación , Endonucleasas de ADN Solapado/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Especificidad por Sustrato
10.
Plant Cell Physiol ; 46(5): 699-715, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15792960

RESUMEN

We have cloned a new member of the RAD2/XPG nuclease family, OsGEN-L (OsGEN-like), from rice (Oryza sativa L.). OsGEN-L possesses two domains, the N- and I-regions, that are conserved in the RAD2/XPG nuclease family. Database searches and phylogenetic analyses revealed that OsGEN-L belongs to class 4 of the RAD2/XPG nuclease family, and OsGEN-L homologs were found in animals and higher plants. To elucidate the function of OsGEN-L, we generated rice OsGEN-L-RNAi transgenic plants in which OsGEN-L expression was silenced. Most of the OsGEN-L-RNAi plants displayed low fertility, and some of them were male-sterile. OsGEN-L-RNAi plants lacked mature pollen, resulting from a defect in early microspore development. A OsGEN-L-green fluorescent protein (GFP) fusion protein was localized in the nucleus, and the OsGEN-L promoter was specifically active in the anthers. Furthermore, a recombinant OsGEN-L protein possessed flap endonuclease activity and both single-stranded and double-stranded DNA-binding activities. Our results suggest that OsGEN-L plays an essential role in DNA metabolism required for early microspore development in rice.


Asunto(s)
Desoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/genética , Silenciador del Gen/fisiología , Oryza/genética , Proteínas de Plantas/genética , Interferencia de ARN/fisiología , ARN Interferente Pequeño/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/aislamiento & purificación , Endonucleasas de ADN Solapado/aislamiento & purificación , Endonucleasas de ADN Solapado/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Datos de Secuencia Molecular , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reproducción/genética , Ribonucleasas/genética , Ribonucleasas/aislamiento & purificación , Ribonucleasas/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
11.
Biochemistry ; 43(35): 11283-94, 2004 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-15366938

RESUMEN

The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.


Asunto(s)
Cloroplastos/enzimología , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/metabolismo , Triticum/enzimología , Catálisis , ADN de Plantas/química , ADN de Plantas/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Exonucleasas/química , Exonucleasas/metabolismo , Endonucleasas de ADN Solapado/aislamiento & purificación , Hidrólisis , Cinética , Conformación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica
12.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 9): 1674-8, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15333952

RESUMEN

Crystallization of protein and protein complexes is a multi-parametric problem that involves the investigation of a vast number of physical and chemical conditions. The buffers, salts and additives used to prepare the protein will be present in every crystallization condition. It is imperative that these conditions be defined prior to crystal screening since they will have a ubiquitous involvement in the crystal-growth experiments. This study involves the crystallization and preliminary analysis of the flap endonuclease-1 (FEN-1) DNA-repair enzyme from the crenarchaeal organism Aeropyrum pernix (Ape). Ape FEN-1 protein in a standard chromatography buffer had only a modest solubility and minimal success in crystallization trials. Using an ion/pH solubility screen, it was possible to dramatically increase the maximum solubility of the protein. The solubility-optimized protein produced large diffraction-quality crystals under multiple conditions in which the non-optimized protein produced only precipitate. Only minor adjustments of the conditions were required to produce single diffraction-quality crystals. The native Ape FEN-1 crystals diffract to 1.4 A resolution and belong to space group P6(1), with unit-cell parameters a = b = 92.8, c = 80.9 A, alpha = beta = 90, gamma = 120 degrees.


Asunto(s)
Aeropyrum/enzimología , Endonucleasas de ADN Solapado/química , Fenómenos Químicos , Química Física , Cristalización , Cristalografía por Rayos X , Interpretación Estadística de Datos , Escherichia coli/metabolismo , Endonucleasas de ADN Solapado/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA