Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 651
Filtrar
1.
ACS Chem Biol ; 19(8): 1794-1802, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39096241

RESUMEN

Protein degradation is a tightly regulated biological process that maintains bacterial proteostasis. ClpPs are a highly conserved family of serine proteases that associate with the AAA + ATPase (an ATPase associated with diverse cellular activities) to degrade protein substrates. Identification and biochemical characterization of protein substrates for the AAA + ATPase-dependent ClpP degradation systems are considered essential for gaining an understanding of the molecular operation of the complex ClpP degradation machinery. Consequently, expanding the repertoire of protein substrates that can be degraded in vitro and within bacterial cells is necessary. Here, we report that AAA + ATPase-ClpP proteolytic complexes promote degradation of the secondary metabolite surfactin synthetases SrfAA, SrfAB, and SrfAC in Bacillus subtilis. On the basis of in vitro and in-cell studies coupled with activity-based protein profiling of nonribosomal peptide synthetases, we showed that SrfAC is targeted to the ClpC-ClpP proteolytic complex, whereas SrfAA is hydrolyzed not only by the ClpC-ClpP proteolytic complex but also by different ClpP proteolytic complexes. Furthermore, SrfAB does not appear to be a substrate for the ClpC-ClpP proteolytic complex, thereby implying that other ClpP proteolytic complexes are involved in the degradation of this surfactin synthetase. Natural product biosynthesis is regulated by the AAA + ATPase-ClpP degradation system, indicating that protein degradation plays a role in the regulatory stages of biosynthesis. However, few studies have examined the regulation of protein degradation levels. Furthermore, SrfAA, SrfAB, and SrfAC were identified as protein substrates for AAA + ATPase-ClpP degradation systems, thereby contributing to a better understanding of the complex ClpP degradation machinery.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Productos Biológicos , Endopeptidasa Clp , Proteolisis , Endopeptidasa Clp/metabolismo , Productos Biológicos/metabolismo , Productos Biológicos/química , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Péptido Sintasas/metabolismo , Adenosina Trifosfatasas/metabolismo
2.
Environ Microbiol ; 26(7): e16677, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039821

RESUMEN

Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the ATPase associated with diverse cellular activities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature-based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man-made stress conditions have emerged. These bacteria possess novel ATPase associated with diverse cellular activities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram-negative or Gram-positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Termotolerancia , Calor , Bacterias/genética , Bacterias/metabolismo , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico
3.
Biochem Pharmacol ; 226: 116394, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942090

RESUMEN

Concurrent infection in breast cancer patients is the direct cause of the high mortality rate of the disease. However, there is no available method to increase the survival rate until now. To address the problem, we propose one drug with two target strategy to treat the refractory disease. A small chemical, ph-ph+, was attempted to be used in the study to explore the feasibility of the approach in anticancer and antifungus at the same time. The results showed that ph-ph+ could prevent the proliferation and metastasis of breast cancer cells, and kill C. albicans simultaneously. The molecular mechanism was associated with the activation of an evolutionarily conserved protease CLpP in the cancer and C. albicans cells. Also, the signaling pathway mediated by PLAGL2 that highly expressed in cancer cells participated in preventing cell metastasis and inducing apoptosis of ph-ph+. The one drug with dual targets inhibited the growth and metastasis of the cancer cells, and meanwhile eliminated C. albicans in tissues in the experimental animals. The results suggested that ph-ph+ with dual targets of CLpP and PLAGL2 would be a feasible approach to prolong the survival rate in patients with metastatic breast cancer and pathogenic infection.


Asunto(s)
Neoplasias de la Mama , Candida albicans , Candidiasis , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Animales , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Ratones , Línea Celular Tumoral , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/genética , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Ratones Desnudos , Proliferación Celular/efectos de los fármacos
4.
Genes (Basel) ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927630

RESUMEN

LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.


Asunto(s)
Endopeptidasa Clp , Hemo , Ratones Noqueados , Mitocondrias , Proteínas Mitocondriales , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Animales , Ratones , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Hemo/metabolismo , Biosíntesis de Proteínas , Humanos , Membranas Mitocondriales/metabolismo , Estrés Fisiológico
5.
Redox Biol ; 73: 103203, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823208

RESUMEN

Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.


Asunto(s)
Endopeptidasa Clp , Mitocondrias , Músculo Liso Vascular , Miocitos del Músculo Liso , Fenotipo , Sirtuina 1 , Animales , Humanos , Ratones , Diferenciación Celular , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética
6.
Cell Stress Chaperones ; 29(4): 540-551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908470

RESUMEN

Anaplasma phagocytophilum is an intracellular tick-transmitted bacterial pathogen that infects neutrophils in mammals and causes granulocytic anaplasmosis. In this study, we investigated the molecular chaperones ClpB and DnaK from A. phagocytophilum. In Escherichia coli, ClpB cooperates with DnaK and its co-chaperones DnaJ and GrpE in ATP-dependent reactivation of aggregated proteins. Since ClpB is not produced in metazoans, it is a promising target for developing antimicrobial therapies, which generates interest in studies on that chaperone's role in pathogenic bacteria. We found that ClpB and DnaK are transcriptionally upregulated in A. phagocytophilum 3-5 days after infection of human HL-60 and tick ISE6 cells, which suggests an essential role of the chaperones in supporting the pathogen's intracellular life cycle. Multiple sequence alignments show that A. phagocytophilum ClpB and DnaK contain all structural domains that were identified in their previously studied orthologs from other bacteria. Both A. phagocytophilum ClpB and DnaK display ATPase activity, which is consistent with their participation in the ATP-dependent protein disaggregation system. However, despite a significant sequence similarity between the chaperones from A. phagocytophilum and those from E. coli, the former were not as effective as their E. coli orthologs during reactivation of aggregated proteins in vitro and in supporting the survival of E. coli cells under heat stress. We conclude that the A. phagocytophilum chaperones might have evolved with distinct biochemical properties to maintain the integrity of pathogenic proteins under unique stress conditions of an intracellular environment of host cells.


Asunto(s)
Anaplasma phagocytophilum , Proteínas Bacterianas , Proteínas HSP70 de Choque Térmico , Anaplasma phagocytophilum/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Endopeptidasa Clp/metabolismo , Escherichia coli/metabolismo , Animales , Células HL-60 , Secuencia de Aminoácidos , Adenosina Trifosfatasas/metabolismo , Proteínas de Choque Térmico/metabolismo
7.
Neoplasia ; 55: 101015, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38944913

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for approximately 90 % of all cases. ONC201, a member of the imipridone drug family, has shown promising therapeutic potential and a good safety profile in both malignant pediatric central nervous system tumors (diffuse midline glioma [DMG]) and hematologic malignancies. ONC206 is a more potent analog of ONC201. However, the ONC206 potential and mechanism of action in HCC remain to be elucidated. We found that ONC206 hindered HCC growth by suppressing cell proliferation and inducing apoptosis. Moreover, ONC206 induced cytoprotective autophagy, and blocking autophagy enhanced the proapoptotic effect of ONC206. Additionally, ONC206 induced mitochondrial swelling, reduced the mitochondrial membrane potential (MMP), and led to the accumulation of mitochondrial ROS in HCC cells, ultimately resulting in mitochondrial dysfunction. The HCC patient samples exhibited notably elevated levels of caseinolytic protease proteolytic subunit (ClpP), which serves as a mediator of ONC206-induced mitochondrial dysfunction and the activation of protective autophagy. knockdown of ClpP reversed the cytotoxic effects of ONC206 on HCC cells. In summary, our results provide the first insight into the mechanism by which ONC206 exerts its anti-HCC effects and induces protective autophagy in HCC cells through ClpP.


Asunto(s)
Apoptosis , Autofagia , Carcinoma Hepatocelular , Endopeptidasa Clp , Neoplasias Hepáticas , Mitocondrias , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Autofagia/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Animales , Ratones , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Imidazoles/farmacología , Compuestos de Bencilo , Compuestos Heterocíclicos con 3 Anillos
8.
mBio ; 15(7): e0138924, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38920392

RESUMEN

The host protein calprotectin inhibits the growth of a variety of bacterial pathogens through metal sequestration in a process known as "nutritional immunity." Staphylococcus aureus growth is inhibited by calprotectin in vitro, and calprotectin is localized in vivo to staphylococcal abscesses during infection. However, the staphylococcal adaptations that provide defense against nutritional immunity and the role of metal-responsive regulators are not fully characterized. In this work, we define the transcriptional response of S. aureus and the role of the metal-responsive regulators, Zur, Fur, and MntR, in response to metal limitation by calprotectin exposure. Additionally, we identified genes affecting the fitness of S. aureus during metal limitation through a Transposon sequencing (Tn-seq) approach. Loss of function mutations in clpP, which encodes a proteolytic subunit of the ATP-dependent Clp protease, demonstrate reduced fitness of S. aureus to the presence of calprotectin. ClpP contributes to pathogenesis in vivo in a calprotectin-dependent manner. These studies establish a critical role for ClpP to combat metal limitation by calprotectin and reveal the genes required for S. aureus to outcompete the host for metals. IMPORTANCE: Staphylococcus aureus is a leading cause of skin and soft tissue infections, bloodstream infections, and endocarditis. Antibiotic treatment failures during S. aureus infections are increasingly prevalent, highlighting the need for novel antimicrobial agents. Metal chelator-based therapeutics have tremendous potential as antimicrobials due to the strict requirement for nutrient metals exhibited by bacterial pathogens. The high-affinity transition metal-binding properties of calprotectin represents a potential therapeutic strategy that functions through metal chelation. Our studies provide a foundation to define mechanisms by which S. aureus combats nutritional immunity and may be useful for the development of novel therapeutics to counter the ability of S. aureus to survive in a metal-limited environment.


Asunto(s)
Complejo de Antígeno L1 de Leucocito , Infecciones Estafilocócicas , Staphylococcus aureus , Complejo de Antígeno L1 de Leucocito/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Infecciones Estafilocócicas/microbiología , Metales/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Regulación Bacteriana de la Expresión Génica , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Ratones , Adaptación Fisiológica
9.
Int J Biol Macromol ; 266(Pt 2): 131371, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580013

RESUMEN

Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade ß-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.


Asunto(s)
Proteínas Bacterianas , Proteínas de Choque Térmico , Leptospira , Multimerización de Proteína , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Leptospira/metabolismo , Leptospira/enzimología , Leptospira interrogans/enzimología , Leptospira interrogans/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Unión Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Proteolisis
10.
J Med Chem ; 67(8): 6769-6792, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38620134

RESUMEN

The activation of Homo sapiens Casein lysing protease P (HsClpP) by a chemical or genetic strategy has been proved to be a new potential therapy in acute myeloid leukemia (AML). However, limited efficacy has been achieved with classic agonist imipridone ONC201. Here, a novel class of HsClpP agonists is designed and synthesized using a ring-opening strategy based on the lead compound 1 reported in our previous study. Among these novel scaffold agonists, compound 7k exhibited remarkably enhanced proteolytic activity of HsClpP (EC50 = 0.79 ± 0.03 µM) and antitumor activity in vitro (IC50 = 0.038 ± 0.003 µM). Moreover, the intraperitoneal administration of compound 7k markedly suppressed tumor growth in Mv4-11 xenograft models, achieving a tumor growth inhibition rate of 88%. Concurrently, 7k displayed advantageous pharmacokinetic properties in vivo. This study underscores the promise of compound 7k as a significant HsClpP agonist and an antileukemia drug candidate, warranting further exploration for AML treatment.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Endopeptidasa Clp , Leucemia Mieloide Aguda , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Ratones , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Endopeptidasa Clp/metabolismo , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C
11.
Nucleic Acids Res ; 52(9): 5195-5208, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38567730

RESUMEN

Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Plásmidos , Rec A Recombinasas , Plásmidos/genética , Escherichia coli/genética , Rec A Recombinasas/metabolismo , Rec A Recombinasas/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Recombinación Genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Exodesoxirribonucleasa V/metabolismo , Exodesoxirribonucleasa V/genética , ADN Bacteriano/metabolismo , Elementos Transponibles de ADN/genética , Enzimas de Restricción del ADN , Proteínas de Unión al ADN
12.
mBio ; 15(4): e0003124, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38501868

RESUMEN

The Clp protease system is important for maintaining proteostasis in bacteria. It consists of ClpP serine proteases and an AAA+ Clp-ATPase such as ClpC1. The hexameric ATPase ClpC1 utilizes the energy of ATP binding and hydrolysis to engage, unfold, and translocate substrates into the proteolytic chamber of homo- or hetero-tetradecameric ClpP for degradation. The assembly between the hetero-tetradecameric ClpP1P2 chamber and the Clp-ATPases containing tandem ATPase domains from the same species has not been studied in depth. Here, we present cryo-EM structures of the substrate-bound ClpC1:shClpP1P2 from Streptomyces hawaiiensis, and shClpP1P2 in complex with ADEP1, a natural compound produced by S. hawaiiensis and known to cause over-activation and dysregulation of the ClpP proteolytic core chamber. Our structures provide detailed information on the shClpP1-shClpP2, shClpP2-ClpC1, and ADEP1-shClpP1/P2 interactions, reveal conformational transition of ClpC1 during the substrate translocation, and capture a rotational ATP hydrolysis mechanism likely dominated by the D1 ATPase activity of chaperones.IMPORTANCEThe Clp-dependent proteolysis plays an important role in bacterial homeostasis and pathogenesis. The ClpP protease system is an effective drug target for antibacterial therapy. Streptomyces hawaiiensis can produce a class of potent acyldepsipeptide antibiotics such as ADEP1, which could affect the ClpP protease activity. Although S. hawaiiensis hosts one of the most intricate ClpP systems in nature, very little was known about its Clp protease mechanism and the impact of ADEP molecules on ClpP. The significance of our research is in dissecting the functional mechanism of the assembled Clp degradation machinery, as well as the interaction between ADEP1 and the ClpP proteolytic chamber, by solving high-resolution structures of the substrate-bound Clp system in S. hawaiiensis. The findings shed light on our understanding of the Clp-dependent proteolysis in bacteria, which will enhance the development of antimicrobial drugs targeting the Clp protease system, and help fighting against bacterial multidrug resistance.


Asunto(s)
Adenosina Trifosfatasas , Endopeptidasa Clp , Streptomyces , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Proteolisis , Adenosina Trifosfatasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Péptido Hidrolasas/metabolismo , Adenosina Trifosfato/metabolismo
13.
J Biol Chem ; 300(4): 107165, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484801

RESUMEN

ClpG is a novel autonomous disaggregase found in Pseudomonas aeruginosa that confers resistance to lethal heat stress. The mechanism by which ClpG specifically targets protein aggregates for disaggregation is unknown. In their recent work published in JBC, Katikaridis et al. (2023) identify an avidity-based mechanism by which four or more ClpG subunits, through specific N-terminal hydrophobic residues located on an exposed ß-sheet loop, interact with multiple hydrophobic patches on an aggregated protein substrate. This study establishes a model for substrate binding to a prokaryotic disaggregase that should inform further investigations into other autonomous disaggregases.


Asunto(s)
Proteínas Bacterianas , Unión Proteica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Agregado de Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química
14.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339144

RESUMEN

Mitochondrial unfolded protein stress response (mtUPR) plays a critical role in regulating cellular and metabolic stress response and helps maintain protein homeostasis. Caseinolytic peptidase P (CLPP) is one of the key regulators of mtUPR and promotes unfolded protein degradation. Previous studies demonstrated that global deletion of Clpp resulted in female infertility, whereas no impairment was found in the mouse model with targeted deletion of Clpp in cumulus/granulosa cells. These results suggest the need to delineate the function of Clpp in oocytes. In this study, we aimed to further explore the role of mtUPR in female reproductive competence and senescence using a mouse model. Oocyte-specific targeted deletion of Clpp in mice resulted in female subfertility associated with metabolic and functional abnormalities in oocytes, thus highlighting the importance of CLPP-mediated protein homeostasis in oocyte competence and reproductive function.


Asunto(s)
Endopeptidasa Clp , Infertilidad Femenina , Mitocondrias , Femenino , Fertilidad/genética , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Mitocondrias/metabolismo , Oocitos/metabolismo , Respuesta de Proteína Desplegada/genética , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Animales , Ratones
15.
Biomolecules ; 14(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397478

RESUMEN

The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.


Asunto(s)
Avena , Eucariontes , Animales , Ratones , Arginina , Avena/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Eucariontes/metabolismo , Hemo/metabolismo , Histidina , Transportadores de Anión Orgánico
16.
ACS Synth Biol ; 13(2): 669-682, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38317378

RESUMEN

Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Portadoras/genética , Proteolisis , Degrones , Adenosina Trifosfatasas/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo
17.
Sci Rep ; 14(1): 2572, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296985

RESUMEN

Bacterial caseinolytic protease P subunit (ClpP) is important and vital for cell survival and infectivity. Recent publications describe and discuss the complex structure-function relationship of ClpP and its processive activity mediated by 14 catalytic sites. Even so, there are several aspects yet to be further elucidated, such as the paradoxical allosteric modulation of ClpP by peptidomimetic boronates. These compounds bind to all catalytic sites, and in specific conditions, they stimulate a dysregulated degradation of peptides and globular proteins, instead of inhibiting the enzymatic activity, as expected for serine proteases in general. Aiming to explore and explain this paradoxical effect, we solved and refined the crystal structure of native ClpP from Staphylococcus epidermidis (Se), an opportunistic pathogen involved in nosocomial infections, as well as ClpP in complex with ixazomib at 1.90 Å and 2.33 Å resolution, respectively. The interpretation of the crystal structures, in combination with complementary biochemical and biophysical data, shed light on how ixazomib affects the ClpP conformational state and activity. Moreover, SEC-SAXS and DLS measurements show, for the first time, that a peptidomimetic boronate compound also induces the assembly of the tetradecameric structure from isolated homomeric heptameric rings of a gram-positive organism.


Asunto(s)
Glicina/análogos & derivados , Peptidomiméticos , Peptidomiméticos/farmacología , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Compuestos de Boro/farmacología , Compuestos de Boro/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas Bacterianas/metabolismo
18.
Pediatr Dev Pathol ; 27(2): 198-204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37903135

RESUMEN

Caseinolytic peptidase B homolog (CLPB) is a mitochondrial protein which is highly expressed in brain. Its deficiency may be associated with severe neonatal encephalopathy. This report describes a case of fatal neonatal encephalopathy associated with biallelic stop-gain mutation in CLPB (NM_001258392.3:c.1159C>T/p.Arg387*). Neurologic disorder encompasses pre- and post-natal features including polyhydramnios, intrauterine growth restriction, respiratory insufficiency, lethargy, excessive startle reflex, generalized hypertonia, and epileptic seizures. Brain macroscopic examination demonstrates frontal severe periventricular cystic leukoencephalopathy, along with mild ex-vacuo tri-ventricular dilatation. The most striking immunohistopathologic features are striato-thalamic neurodegeneration and deep white matter loss associated with strong reactive astrogliosis. This report supports that CLPB deficiency should be considered among the neurometabolic disorders associated with severe prenatal-onset neurologic impairment that may result from cystic leukoencephalopathy.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Leucoencefalopatías , Recién Nacido , Femenino , Embarazo , Humanos , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Encéfalo/patología , Epilepsia/metabolismo , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Codón sin Sentido/metabolismo , Enfermedades del Recién Nacido/patología
19.
Angew Chem Int Ed Engl ; 63(3): e202314028, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029352

RESUMEN

The caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural ß-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target. We show the inhibition of Staphylococcus aureus ClpP by cystargolide A and B by different biochemical methods in vitro. Synthesis of semisynthetic derivatives and probes with improved cell penetration allowed us to confirm ClpP as a specific target in S. aureus cells and to demonstrate the anti-virulence activity of this natural product class. Crystal structures show cystargolide A covalently bound to all 14 active sites of ClpP from S. aureus, Aquifex aeolicus, and Photorhabdus laumondii, and reveal the molecular mechanism of ClpP inhibition by ß-lactones, the predominant class of ClpP inhibitors.


Asunto(s)
Dipéptidos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Dominio Catalítico , Dipéptidos/metabolismo , Virulencia , Endopeptidasa Clp/metabolismo
20.
Mol Microbiol ; 121(1): 98-115, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041395

RESUMEN

Bacterial cell division requires the coordinated assembly and disassembly of a large protein complex called the divisome; however, the exact role of molecular chaperones in this critical process remains unclear. We here provide genetic evidence that ClpX unfoldase activity is a determinant for proper coordination of bacterial cell division by showing the growth defect of a Staphylococcus aureus clpX mutant is rescued by a spontaneously acquired G325V substitution in the ATP-binding domain of the essential FtsA cell division protein. The polymerization state of FtsA is thought to control initiation of bacterial septum synthesis and, while restoring the aberrant FtsA dynamics in clpX cells, the FtsAG325V variant displayed reduced ability to interact with itself and other cell division proteins. In wild-type cells, the ftsAG325V allele shared phenotypes with Escherichia coli superfission ftsA mutants and accelerated the cell cycle, increased the risk of daughter cell lysis, and conferred sensitivity to heat and antibiotics inhibiting cell wall synthesis. Strikingly, lethality was mitigated by spontaneous mutations that inactivate ClpX. Taken together, our results suggest that ClpX promotes septum synthesis by antagonizing FtsA interactions and illuminates the critical role of a protein unfoldase in coordinating bacterial cell division.


Asunto(s)
Proteínas de Escherichia coli , Infecciones Estafilocócicas , Humanos , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Staphylococcus aureus/metabolismo , División Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA